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The traditional Born series (TBS) and convergent Born series (CBS) methods to numerically solve the time-
independent inhomogeneous photoacoustic (PA) wave equation are discussed. The performance of these
algorithms is examined for a circular PA source (a disk of radius, a= 5 µm) in two dimensions. The speed of sound
within the source region was gradually decreased from vs = 1950 to 1200 m/s, but the same quantity for the ambi-
ent medium was fixed to v f = 1500 m/s. The PA fields were calculated over a large frequency band from f = 7.3 to
2000 MHz. Accordingly, the wave number (k f = 2π f /v f ) varied from k f = 0.03 to 8.38 µm−1. The TBS method
does not offer converging solutions when k f a≥ 25 for vs = 1950 m/s and k f a≥ 9 for vs = 1200 m/s. These
have been observed in both the near and far fields. However, the solutions for the CBS technique converge in all
cases. Both methods facilitate accurate solutions if the computational domain contains a collection of monodis-
perse/polydisperse disks considered in this study. Our numerical results suggest that the CBS protocol can provide
accurate solutions under various test conditions. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.402471

1. INTRODUCTION

The solutions to the inhomogeneous Helmholtz equation have
found many applications in practice, spanning from seismol-
ogy to electron scattering [1]. Analytic solutions can easily be
derived for simple geometries such as spheroidal particles and
infinite cylinders [2,3]. However, this equation, when applied
to model practical problems, needs to be solved numerically
because the shapes of the sources/scatterers are generally irregu-
lar. The commonly employed numerical schemes include finite
difference time domain, pseudo-spectral time domain, and
finite element methods, etc. Another class of techniques obtains
solutions by iteratively solving integral equations via the Green’s
function method [4]. The famous traditional Born series (TBS)
method belongs to this class. It is well known that the TBS
procedure provides converging solutions for small particles and
small scattering potential problems, but it fails to converge if
particle size and scattering potential are large. Osnabrugge et al .
have recently developed a method to address this issue, and it is
referred to as the convergent Born series (CBS). It is derived by
introducing a preconditioner into the TBS expression [5]. The
CBS can provide converging solutions for the inhomogeneous
Helmholtz equation in arbitrarily large media [5,6].

The time-independent photoacoustic (PA) wave equation
converts into an inhomogeneous Helmholtz equation if the
terms arising out of mismatch in the speed of sound of the source

region with respect to the ambient medium are retained. This
equation can be easily solved analytically for simple shapes [7].
Numerical solutions can be calculated for objects with arbitrary
shapes using the k-Wave toolbox, which implements a pseudo-
spectral method [8]. Natalie et al . proposed a transfer function
approach to solve inhomogeneous problems in PAs, and also
performed image reconstructions [9,10]. We have recently
deployed the Born series methods to solve the inhomogeneous
PA wave equation [11]. Our numerical study in two dimensions
revealed that the TBS method fails to converge when the varia-
tion in the speed of sound is approximately>22% or<− 11%
of the source region with respect to the ambient medium. The
CBS method provides the required robust numerical solution
even in case of mismatch in the speed of sound in various regions
of the computational domain. Though the methods have been
examined for PAs, they can also be applied to solve similar prob-
lems in acoustics. In other words, the numerical results would be
equally valid for a broad range of acoustic studies.

The Born series methods may be utilized to accurately cal-
culate the PA fields generated by normal and deformed red
blood cells (RBCs) for which the speed of sound mismatch with
respect to saline water is about 10%. Previously, we calculated
PA fields generated by normal and pathological RBCs using
the Green’s function method [12–14]. However, we did not
consider acoustic inhomogeneity of the source in these studies.
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The purpose of this work is to rigorously and quantitatively
evaluate the roles of various parameters of the Born series meth-
ods as well as to assess the performance of these methods under
different situations. For example, this study demonstrates (i)
how the PA field expands with iteration, (ii) how the solutions
behave in the near as well as in the far fields, (iii) what patterns
the TBS and CBS methods follow for convergence, (iv) how
mismatch in the density of the source region compared to the
surrounding medium influences the solution, (v) what would
happen when multiple sources are present in the computational
domain, etc. It has been shown that the TBS method can handle
various situations encountered in practice, but CBS further
extends the validity domain.

The presentation of the paper is as follows. In Section 2,
we derive the expressions for the PA field in the exact, TBS,
and CBS techniques. The numerical methods are detailed
in Section 3 and discussed in Section 4. A discussion and
conclusions of this study are offered in Section 5.

2. THEORETICAL FRAMEWORK

A. Exact Solution

The detailed derivations of various approaches can be found in
[11]. However, the theoretical framework is briefly mentioned
here for the sake of completeness. Consider an acoustically
inhomogeneous (compared to the surrounding medium) region
containing uniformly distributed chromophores. It is illumi-
nated by a pulsed laser light, and thus produces the PA waves
due to thermo-elastic expansion. The well-known PA wave
equations in the frequency domain can be cast as [7]

∇
2ψ(r)+ k2

s ψ(r)=
iωµβ I0

C P
,within the source, (1a)

∇
2ψ(r)+ k2

fψ(r)= 0, in the surrounding medium, (1b)

where µ, β, and C P are the optical absorption coefficient, iso-
baric thermal expansion coefficient, and specific heat for the
absorbing region, respectively; ω and I0 represent the modu-
lation frequency and the intensity of the incident light beam,
respectively. Here, ks and k f denote the wave numbers inside
and outside the PA source, respectively. Equation (1) can readily
be solved for regular objects (e.g., sphere, infinite cylinder, layer,
etc.). The solution is obtained by solving Eq. (1) in an appropri-
ate coordinate system and by demanding continuity of pressure

and normal component of particle velocity at the boundary
[7]. This is referred to as the exact method. It does not have any
restrictions on the size or strength of the inhomogeneity for
its validity. The PA field at a point r (outside the source) for an
infinite cylinder of radius a becomes [7]

ψex(r)= A
[

a J1(ks a)H1
0 (k f r )

ks a [J1(ks a)H1
0 (k f a)− ρ̂ ĉ J0(ks a)H1

1 (k f a)]

]
.

(2)
Here, A= iµβ Iovs /C p ; J and H1 are the Bessel function and
the Hankel function of first kind, respectively. The subscripts
0 and 1 denote the orders of each function. The dimensionless
quantities are defined as ρ̂ = ρs /ρ f and ĉ = vs /v f . A schematic
diagram is presented in Fig. 1(a). The subscript ex denotes the
exact method. Equation (2) can also be used to yield the PA field
generated by a solid circle/disk if we restrict ourselves to two
dimensions. Equation (2) in the far field can be approximated as

ψex(r)≈ A

√
2

πk f r

×

[
a J1(ks a)e i(k f r− π4 )

ks a [J1(ks a)H1
0 (k f a)− ρ̂ ĉ J0(ks a)H1

1 (k f a)]

]
.

(3)

If the illuminated region consists of an ensemble of absorbing
disks having the same opto-thermo-mechanical properties,
Eq. (2) can be written in a generalized form as

ψex(r)= A
N∑

n=1

×

[
an J1(ks an)H1

0 (k f |r− rn|)

ks an[J1(ks an)H1
0 (k f an)− ρ̂ ĉ J0(ks an)H1

1 (k f an)]

]
,

(4)

which in the far field reduces to

ψex(r)≈ A

√
2

πk f r
×

N∑
n=1

1

ks an

×

[
an J1(ks an)e

i(k f r− π4 )e−ik f ·rn

[J1(ks an)H1
0 (k f an)− ρ̂ ĉ J0(ks an)H1

1 (k f an)]

]
.

(5)

Fig. 1. (a) Schematic of the simulation setup for estimation of field produced by a single particle system. (b) and (c) Fields generated by a collection
of monodisperse disks and an ensemble of polydisperse disks, respectively. ABL indicates the absorbing layer.
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Here, rn and an are the position vector and the radius of the
nth source, respectively [see Fig. 1(b)]; the illuminated region
contains N number of sources; k f defines the direction of mea-
surement. This is called the discrete particle approach, where the
resultant PA field is simulated by adding the tiny fields produced
by the individual particles.

In this work, the PA pressure in the near- and far-field regions
have been estimated by numerically evaluating Eq. (2) for a
homogeneous disk. Furthermore, Eq. (5) has been computed
to obtain the PA fields generated by collections of monodis-
perse and polydisperse disks. The corresponding diagrams are
displayed in Figs. 1(b) and 1(c), respectively.

B. Traditional Born Series

The PA wave equation as expressed in Eq. (1) can be rewritten,
after some trivial manipulations, in a combined form as [5]

∇
2ψ(r)+ (k2

f + iε)ψ(r)=−S(r)− V (r)ψ(r), (6)

where ε is infinitesimally small real number and

S(r)=

{
−

iµβ Ioω
C p

, if |r| ≤ a
0, if |r|> a

. (7)

Similarly,

V (r)=
{

k2
s − k2

f − iε, if |r| ≤ a
−iε, if |r|> a

, (8)

with S(r) and V (r) being the source term and the scattering
potential, respectively. A representative diagram is shown in
Fig. 1(a). The Green’s function method can be employed to
solve Eq. (6) yielding [4,5]

ψ(r)=
∫

g (r|r0)[V (r0)ψ(r0)+ S(r0)]d
3r0, (9)

where g (r|r0) is the Green’s function, and it is defined as the
solution to

∇
2g (r|r0)+ (k2

f + iε)g (r|r0)=−δ(r− r0). (10)

Here, δ is the Dirac delta function and the Green’s function in
the Fourier domain in terms of Fourier-transformed coordinates
(p) becomes

g̃ (p)=
1

(|p|2 − k2
f − iε)

. (11)

Accordingly, the Green’s function in the far field in two and
three dimensions for a lossy unbounded medium can be
derived as

g (r|r0)≈
i
4

 2

π
√

k2
f + iε|r|

 1
2

e
i
(√

k2
f +iε|r−r0|−

π
4

)
(12)

and

g (r|r0)≈
e

i
√

k2
f +iε|r−r0|

4π |r|
, (13)

respectively. Equations (12) and (13) demonstrate that the
Green’s function decays exponentially with distance for finite
ε. This choice ensures that the function is localized and its total
energy becomes finite also [5].

The convolution sum presented in Eq. (9) can be cast in the
matrix form, yielding

ψ = GVψ + G S, (14)

where G = F −1 g̃ (p)F , with F and F −1 being the forward and
inverse Fourier transform operators, respectively. The recursive
expansion of Eq. (14) provides

ψTBS = [1+ GV + GV GV + . . .]G S. (15)

This infinite series converges if GV is less than unity [5]. The
TBS method has been found to be efficient only for solving the
inhomogeneous Helmholtz equation for small objects having
weak scattering potential. Equation (15) has been evaluated
herein to compute the PA fields for a variety of cases in two
dimensions.

C. Convergent Born Series

Let us consider that both sides of Eq. (14) are multiplied by a
preconditionerγ , providing [5]

γψ = γGVψ + γG S. (16)

It has been seen that such a step extends the validity domain of
the TBS method, facilitating converging results for large struc-
tures as well [5]. Equation (16), after rearrangement of terms
reduces to

ψCBS =MψCBS + γG S, (17)

where M = γGV − γ + 1. As in the previous case, an infinite
series can be obtained by recursive expansion of Eq. (17) as

ψCBS = [1+M +M2
+ . . .]γG S, (18)

requiring M < 1 for the convergence of the above infinite series.
Furthermore, it converges for all structures if one chooses,
γ = i

ε
V (r) and ε ≥max|k2

s − k2
f | [5]. Equation (18) has been

applied herein to compute the PA fields generated by different
two dimensional systems containing a single particle and many
particles, as shown in Fig. 1.

3. NUMERICAL METHODS

The performance of the TBS and CBS methods was examined
by comparing the approximate and exact results for two-
dimensional systems. Simulations involving two-dimensional
systems are fast and also capable of providing useful insights
about the efficacy of the techniques. For this purpose, a homo-
geneous disk with a = 5 µm was placed at the center of the
computational domain. The speed of sound of the ambient
medium was fixed at v f = 1500 m/s. This numerical value is
close to that of the extracellular matrix at room temperature
[15]. Nevertheless, the speed of sound within the source was
varied as vs = 1950, 1800, 1650, 1500, 1350, and 1200 m/s.
Therefore, the variation of the speed of sound mismatch param-
eter was restricted in this work to between 30% and −20%
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with respect to that of the surrounding fluid medium. The PA
fields were calculated at frequencies spanning from f = 7.3 to
2000 MHz, with an increment of 7.3 MHz. The corresponding
wavelengths could be computed to be≈ 205.5 to 0.75 µm, and
the numerical values of wave number (k f = 2π f /v f ) became
k f = 0.03 to 8.38 µm−1. Optical and thermo-mechanical
parameters for the PA source were set to unity (I0 = 1, µ= 1,
β = 1, C p = 1) [15]. Such a choice would control the amplitude
of the PA field, but would not affect its spectral features. The
density of the medium inside the PA source was considered to be
the same as that of the outside, ρs = ρ f = 1000 kg/m3. The PA
fields were computed at a point close to the source (at a distance
10µm from the center of the source) as well as far away from the
source (at a distance 75 µm). The PA field produced by a single
disk was obtained by evaluating Eq. (2) for the exact method.

The size of the two-dimensional system was taken as
2048× 2048 with a pixel size of 100 nm (see Fig. 1) in order to
obtain the PA fields provided by the TBS and CBS approaches.
At first, Eqs. (7) and (8) were evaluated to generate the spatial
map of S(r) and V (r), respectively. The numerical values of
Green’s function were also determined at the grid points in
the frequency domain [Eq. (11)]. Initial pressure values were
taken as

ψTBS0(r)= ifft2[g̃ (p)fft2S(r)] (19)

and

ψCBS0(r)= γ (ifft2[g̃ (p)fft2S(r)]) (20)

for the two approaches, respectively. The notations fft2 and ifft2

stand for the forward and inverse fast Fourier transforms in two
dimensions, respectively. Moreover, all the multiplications were
performed elementwise. After that, iterative computations were
carried out. The pressure data for the TBS and CBS algorithms
were generated in the following manners:

ψTBSn+1(r)= ifft2[g̃ (p)fft2[V (r)ψTBSn (r)+ S(r)]] (21)

and

ψCBSn+1(r)=ψCBSn (r)− (i/ε)V (r)(ψCBSn (r)

− ifft2[g̃ (p)fft2[V (r)ψCBSn (r)+ S(r)]]),
(22)

respectively. Here, n is the iteration number. After each iter-
ation, the total error along the center line was calculated
as

Total error=
2048∑
m=1

|ψn+1(1024,m)−ψn(1024,m)|
|ψn(1024,m)|

. (23)

We assumed that the steady state was reached if the total error
was less than 10−4. The iterative calculation stopped once the
steady state was reached or after 2000 steps, whichever was
earlier.

It might be noted here that the PA waves at each boundary
were absorbed within a region (with thickness spanning 100
grid points) called the absorbing layer (ABL). This layer greatly
reduced the amplitudes of the reflected waves. Essentially,
each wave in the boundary layer was dampened exponentially

with a decay constant
√
ε, which was arbitrarily chosen. An

attenuation mask was used for this purpose, such as

AtnMsk(r)=
{

e−
√
ε|r|, if |r| lies within the ABL

1, otherwise.
(24)

Therefore, after each iteration, the pressure field was updated as
ψn = AtnMskψn+1. The updatedψn was inserted into Eq. (21)
as an input, and then the new ψn+1 was estimated. The same
steps were also followed for the CBS method. It might be further
mentioned here that the convolution sums in Eqs. (21) and (22)
were evaluated via a fast Fourier transform, which inherently
implements the periodic boundary conditions. In other words,
it causes waves leaving from one boundary to reappear from the
opposite boundary. This effect can be suppressed by wrapping
the computational domain with an absorbing layer. The attenu-
ation mask serves this purpose. It seemed to be a very crucial step
in order to obtain accurate estimates of the PA field.

In this work, the role of ε on the convergence of the PA
field in different methods was investigated first. Accordingly,
the numerical values of ε were chosen to be ε = 0.6k2

f and
0.8k2

f . However, in all other computations, ε was taken as
ε = 0.8k2

f . In fact, max|k2
s − k2

f | could be computed to be
0.41k2

f , 0.31k2
f , 0.17k2

f , 0, 0.23k2
f , and 0.56k2

f when vs was
varied from 1950 to 1200 m/s. Therefore, both the values of ε
satisfied ε ≥max|k2

s − k2
f |. It might be noted that Osnabrugge

et al . also used ε = 0.8k2
f in their work [5]. The numerical

algorithm is presented in detail in [11]. The numerical code
was written in a Matlab environment, and can be found at [16].
The code was executed in a high-performance virtual machine
[CentOS, Intel Core Processor (Broadwell, IBRS) working at
2.19 GHz, 128 GB RAM, 40 Cores].

In order to develop better insights regarding the robust-
ness of the TBS and CBS algorithms, we also calculated and
compared the PA fields generated by the two-dimensional
systems consisting of monodisperse and polydisperse disks as
shown in Figs. 1(b) and 1(c), respectively. Essentially, six disks
were placed randomly within each numerical phantom. The
radius and position coordinates of each disk are presented in
Table 1. The density and the speed of sound of the PA sources

Table 1. Radii and Position Coordinates of the Disks
Considered in Many-Particle Systems

Many-Particle System a (µm) x (µm) y (µm)

Monodisperse Disks 5 0 0
5 −23.5 17.5
5 −32.5 −32.5
5 7.5 −22.5
5 19.5 0
5 12.5 18.5

Polydisperse Disks 2 0 0
22 −22.5 17.5
15 −32.5 −32.5
6 7.5 −22.5
11 17 0
2 12.5 18.5
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were taken to be the same as that of the surrounding medium
(i.e.,ρs = ρ f = 1000 kg/m3 and vs = v f = 1500 m/s).

4. NUMERICAL RESULTS

A. Convergence of Pressure Field

Plots of the real part ofψ(r)with distance from the center of the
source at f ≈ 102 MHz after some specific iterations are given
in Fig. 2, in order to study how the pressure field expands with
iteration. The pressure fields were calculated at ε = 0.8k2

f and
0.6k2

f for both the TBS and CBS protocols. Figures 2(a)–2(c)
display that the pressure field expands gradually as the iteration
proceeds, and finally reaches the steady state. For example, the
pressure field only remains non-zero in the proximal regions of
the source after the first iteration [see Fig. 2(a)]. However, the
pressure field builds up outside the source region after the fifth
iteration. The propagation speed of the PA field is higher for
ε = 0.6k2

f in comparison to that of 0.8k2
f . For instance, more

fluctuations can be observed in the distal regions from the source
for ε = 0.6k2

f than that of the 0.8k2
f [see blue line compared

to magenta circles in Fig. 2(b)]. Further, as expected, pressure
data attain steady state after the 75th and 114th iterations for
the lower and higher values of ε, respectively [see Fig. 2(c)].
Therefore, the smaller the value of ε, the faster is the conver-
gence. The corresponding plots for the CBS technique are given
in Figs. 2(d)–2(f ), and analogous observations can be made.

B. Single-Particle System

1. Near Field

Figure 3 shows the variation of the pressure field as a function of
frequency over a large bandwidth (7–2000 MHz) at different
speed of sound mismatch conditions when the solutions were

shouted in the near field. The corresponding pressure field pro-
vided by the exact method is also plotted for comparison. The
variation of the size parameter (k f a ) for the entire frequency
range is presented along the top x axis in Figs. 3(a) and 3(f ).
The curves exhibit the well-known peaks and dips pattern. The
number of oscillations increased as vs was decreased from 1950
to 1200 m/s. Both the TBS and CBS methods exhibit good
agreement with the exact result over the entire frequency/size
parameter range [see Figs. 3(b)–3(e)]. The location and depth
of the minima (also heights of the maxima) are well reproduced
by the TBS and CBS methods, as evident from these figures.
Figures 3(a)–3(f ) demonstrate that the CBS method provides
accurate fits to the exact curves. However, the TBS curves
demonstrate large deviation compared to the exact method as
shown in Figs. 3(a) and 3(f ). It grows nonlinearly as the fre-
quency/size parameter increases (scale along the right y axis).
The nonlinear behavior distinctively appears at k f a > 25 in
Fig. 3(a) and k f a > 9 in Fig. 3(f ).

2. Far Field

Figure 4 illustrates how the PA pressure varies with frequency
over the same bandwidth at different speed of sound contrast
settings. The PA pressure was computed at a large distance
(75 µm) from the source. Similar graphs were also presented
in [11]. The curves demonstrate similar trends as observed in
Fig. 3. However, the magnitude of the PA pressure at each fre-
quency is less than that of Fig. 3. This is due to the fact that the
pressure field falls off with distance (i.e., 1/

√
r in two dimen-

sions). As in the previous case, converging solutions for the
TBS method have been obtained up to k f a ≈ 25 in Fig. 4(a)
and k f a ≈ 9 in Fig. 4(f ). The CBS method remains valid in
the entire range of speed of sound mismatch considered in this
study.
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Fig. 2. (a)–(c) Variation of real part of ψ at ≈ 102 MHz along the central line for a single PA source after some specific iterations for the TBS
method at two particular values of ε. (d)–(f ) Same as (a)–(c) but for the CBS method. Itn means iteration.
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Fig. 3. (a)–(f ) Variation of the PA pressure in the near field (emitted by a disk of 5 µm radius) with frequency. The solid line, dash-dot-dash line,
and dash-dash line with marker O are for the exact, TBS, and CBS methods, respectively. The corresponding change of the size parameter (k f a ) is pre-
sented at the top x axis in (a) and (f ). The distance of the detector from the center of the source was 10 µm. The scale for the TBS method in (a) and
(f ) is shown along the right y axis.
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Fig. 4. (a)–(f ) Plots of the PA fields computed at the far field as a function of frequency for a source with 5 µm radius. The corresponding change
of the size parameter (k f a ) is presented at the top x axis in (a) and (f ). The detector was placed at a distance 75µm from the center of the source. The
scale for the TBS method in (a) and (f ) is drawn along the right y axis.

C. Many-Particle Systems

1. MonodisperseDisks

The PA field from a collection of monodisperse disks has been
calculated for a point detector situated at a large distance from
the center of the computational domain. Computed PA fields

are shown in Figs. 5(a) and 5(b) for the TBS and CBS algo-
rithms, respectively. Two separate graphs have been used for this
purpose to increase the clarity of the graphs. The PA pressure
data for the exact method are also included in each figure as
a ready reference. Figures 5(a) and 5(b) in general appear as
Fig. 4(d), meaning that they retain the spectral features of a
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Fig. 5. (a) Plots of the PA field calculated in the far field for a collection of monodisperse disks for the exact and TBS methods. (b) Same as (a) but
for the CBS approach.

source of radius 5µm. For example, the locations of the minima
appear at the same frequencies as those of Fig. 4(d). However,
the curves in Fig. 5 are not as smooth as those of Fig. 4(d).
Small fluctuations exist over the entire frequency range. This is
because of the interference of the waves coming from multiple
disks. The interference pattern is superimposed with the single
particle spectrum. It may be noted that the amplitudes of fluc-
tuations are not prominent up to approximately 1200 MHz;
nevertheless, they become comparable to the heights of the
peaks and depths of the dips of the single particle graph at higher
frequencies.

2. PolydisperseDisks

The PA spectra for a system comprised of multiple particles with
size dispersity are shown in Fig. 6 for the three methods. The
PA field was calculated at a large distance from the center of the
computational region. The density and speed of sound inside
and outside the PA sources were considered to be the same as
mentioned earlier. The plots for the TBS and CBS techniques
are presented in two separate figures in order to improve the
visibility of subtle changes. It is evident from Fig. 6 that the
strength of the PA field is greater than that of Fig. 5 at least in
the lower frequency regime (<100 MHz). This is because of
the presence of bigger PA sources. The PA spectra do not show
regularly spaced maxima and minima which are present in the

previous figures [see Fig. 5]. Further, each spectrum demon-
strates prominent and rapid fluctuations owing to the fact that
the illuminated region encloses sources with nonuniform sizes.
Note that the resultant spectrum is the superposition of such
spectra from sources with different sizes. Finally, the computed
spectra for the TBS and CBS methods exhibit good agreement
with the exact result over the entire frequency range, confirming
that the Born series methods can be deployed to estimate the PA
field generated by an ensemble of polydisperse light-absorbing
structures.

5. DISCUSSION AND CONCLUSIONS

The Born series methods, known as the TBS and CBS schemes,
have been deployed in this work to solve the time-independent
inhomogeneous PA wave equation. The source term of this
equation has two parts. The first part appears because of the
conversion of optical energy into pressure wave via the PA effect.
It becomes a constant for an optically homogeneous source
and for uniform illumination. It is easy to find out an analytical
(regular shapes) or numerical (irregular objects) solution to the
PA wave equation when it retains this part only. The second
part arises when the speed of sound within the source region
differs from that of the surrounding medium. It essentially acts
as a scattering potential. It behaves as a potential well when
vs > v f (or ks < k f ) and as a potential barrier when vs < v f

(or ks > k f ). The contribution of this part to the final solution
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Fig. 6. (a) Variation of the PA fields (far away from the source) as a function of frequency for the exact and the TBS methods when the computa-
tional region contains six arbitrarily positioned disks with size dispersity. (b) Same as (a) but for the CBS algorithm.



1914 Vol. 37, No. 12 / December 2020 / Journal of the Optical Society of America A Research Article

can be found out if the pressure field inside the source is known.
Obtaining a converging solution for this part is not trivial, and
an iterative approach is generally applied for this purpose.

It may be noted that in this formulation [Eq. (6)], scattering
potential for an acoustically homogeneous source becomes
nonzero (i.e., V =−iε) for nonvanishing ε. For such a case,
the solution has to be obtained iteratively. The solution grows
with iteration because of V whereas it decays because of the
Green’s function. These two factors essentially balance each
other, and that is why both the TBS and CBS solutions exhibit
good agreement with the exact solution [see Figs. 3(d) and 4(d)].

The TBS method converges very fast for low-frequency waves
[see Fig. 7(a)]. However, it takes longer for high-frequency
waves. For instance, it converged within approximately 100
iterations up to 100 MHz, but nearly 350 steps were required at
500 MHz when vs = v f = 1500 m/s. The number of iterations
did not differ much when contrast in the speed of sound was
varied. Moreover, it was observed that the number of iterations
required for convergence followed approximately the same pat-
tern as that of the PA spectrum [see Figs. 3 and 4]. It means that
the number of iterations needed for convergence was greater
for maxima locations compared to that of minima positions.
The CBS algorithm took the same number of steps as that of the
TBS technique at any frequency for convergence. Nevertheless,
the execution time for the CBS method at each frequency was
longer because more matrix operations were performed than the
TBS protocol, as shown in Fig. 7(b). It was found that lower the
value of ε, the faster the convergence was for both the methods.
However, the lower bound of ε has to satisfy ε ≥max|k2

s − k2
f |

for the CBS technique. Additionally, the computation time
required for PA field calculation using the Born series and the
k-Wave methods needs to be compared in the future.

It is clear from Eq. (2) that the exact approach takes care of
the mismatch in the density between the source and the sur-
rounding medium while solving the problem, whereas it is not
included in Eq. (6). We investigated this aspect as well in this
work. Figure 8 illustrates how the PA fields vary with frequency
when the density of the source region was varied within±10%
with respect to the ambient medium. The speed of sound was
set to be constant for both media (i.e., vs = v f = 1500 m/s).
The PA pressure data for the CBS technique was not included
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Fig. 7. (a) Plots of number of iterations required for conver-
gence versus frequency for the TBS and CBS methods when
vs = v f = 1500 m/s. (b) Plots of execution time needed for
convergence versus frequency.
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Fig. 8. Demonstration of the PA fields far away from the source and
generated by the exact and TBS methods as a function of frequency for
a series of density mismatch settings when vs = v f = 1500 m/s.

in this figure since both the iterative methods become the same
when vs = v f . The scale of the x axis was limited to 1000 MHz
in order to improve the clarity of the figure. It can be seen from
Fig. 8 that plots for the exact method are not visibly distinguish-
able from those of the TBS technique, establishing that the
density mismatch has less impact on the PA field than the speed
of sound contrast. Therefore, the Born series method may be
applied even if the difference in density between the source and
the ambient medium is up to±10%.

The Born series methods were also utilized in this work
to estimate the PA field generated by a collection of sources.
The corresponding simulation results for the TBS and CBS
techniques exhibited good agreement with the exact results.
It might be mentioned here that for this case, we considered
vs = v f = 1500 m/s in order to avoid multiple scattering of
the PA waves. It appears that the Born series framework can
be employed as well to study the effect of multiple scattering
of acoustic waves. In that case, vs 6= v f . We plan to address
this issue in the future. It might also be interesting to examine
how the CBS would work for large acoustic inhomogeneity
(e.g., bone–tissue interface).

In conclusion, in this work, we employed the Born series
methods to solve the time-independent inhomogeneous PA
wave equation. The inhomogeneity term originating from
contrast in the speed of sound between the source and the sur-
rounding medium was included within the wave equation. The
performance of the Born series methods has been examined
by numerically calculating the PA field generated by a homo-
geneous disk, and then by comparing it with the exact result.
The accuracy of these techniques in estimating the PA field
produced by an ensemble of disks (monodisperse/polydisperse)
was also assessed. The TBS scheme was found to reproduce the
exact results for sufficiently large objects (up to k f a = 42) when
the contrast in the speed of sound was limited from >− 11%
to <22%. The validity domain of the Born series method was
further extended by the CBS algorithm, which could provide
accurate results even when the contrast in the speed of sound was
varied from −20% to 30%. The methods as well as numerical
findings should be valid in the case of similar problems in acous-
tics. Our simulation results suggest that the CBS protocol may
be applied in practice to obtain the numerical solution to the
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inhomogeneous PA wave equation for a source having arbitrary
size and shape, and sufficiently large scattering strength.
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