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A frequency dependent differential photoacoustic cross-section (DPACS) over a large frequency band (100–
1000 MHz) was computed, and subsequently, morphological parameters of a photoacoustic (PA) source were
quantified. The Green’s function approach was utilized for calculating the DPACS for spheroidal droplets with
varying aspect ratios, Chebyshev particles with different waviness and deformation parameters, and normal red
blood cells and cells affected by hereditary disorders (e.g., spherocytosis, elliptocytosis, and stomatocytosis).
The theoretical framework considers that PA waves propagate through an acoustically dispersive and absorbing
medium and are detected by a planar detector of finite size. The frequency dependent DPACS profile was fitted
with tri-axial ellipsoid, finite cylinder, and toroid form factor models to obtain size and shape information of the PA
source. The tri-axial ellipsoid form factor model was found to provide better estimates of the shape parameters com-
pared to other models for a variety of sources. The inverse problem framework may motivate developing PA-based
technology to assess single-cell morphology. ©2020Optical Society of America
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1. INTRODUCTION

Normal red blood cells (RBCs) are astonishingly deformable
and stable, enabling them to travel through capillaries and per-
form regular physiological functions [1]. A healthy erythrocyte
also does not have any nucleus and appears as a biconcave disc in
the absence of external forces. This particular shape has a high
surface-to-volume ratio (S/V), which is strongly correlated with
its normal activities. Genetic disorders, contagious diseases,
viral infections, and changes in blood chemistry can alter the
erythrocyte shape, reducing its ability to bend and deform.
Alteration in the shape of RBCs obstructs the blood circulation
and generally becomes the reason for tissue necrosis [2]. Apart
from the above medical conditions, there are several hereditary
disorders where RBCs cannot retain the biconcave shape [3].
Hereditary spherocytosis, elliptocytosis, and stomatocytosis (see
top row of Fig. 1) are such disorders [1,3,4]. One out of 2000
humans in the Caucasian race suffer from the first two disorders.
In general, in these cases, the cohesion between the lipid bi-layer
and cytoskeleton is weakened by the membrane proteins or
integrity of cytoskeleton, resulting in the loss of surface area
(decrease in S/V) and irreversible shape change [1]. Deformed
RBCs are recognized as diseased cells by the spleen (a secondary
immune organ of the human body) and consequently removed
from circulation, which leads to serious blood-related disorders
(e.g., hemolytic anemia).

Current computerized diagnostic methods use electrical
impedance or light-scattering techniques to determine RBC
concentration and mean corpuscular volume [5]. For exam-
ple, Gienger et al. used an optical flow cytometry technique to
capture the shape and size properties of RBCs. The effect of
hydrodynamic forces that change the structure of RBCs has
also been examined [6,7]. The techniques, namely, cytology,
blood smear microscopic examination, and ektacytometry, have
been employed to identify hemolytic anemia, by distinguishing
the shape of RBCs. These techniques are arduous and time
consuming. In the case of cytology, it is also very difficult to find
cells with moderate spherocytosis or elliptocytosis.

The generation of acoustic waves due to absorption of light
by a material containing chromophores is known as the photo-
acoustic (PA) effect. Generally, a short pulsed laser (operating
in the visible to near-infrared region) illuminates a tissue, which
absorbs light and produces wide band (kHz to GHz) pressure
waves due to thermoelastic expansion. Ultrasound transducers
capture such waves and convert them into electrical signals.
Several groups have successfully captured the PA signals at
a single-cell level. For example, Galaza et al. used diagnostic
ultrasound transducers (≈3.5 to 20 MHz) to detect the PA
signals from diseased cells (e.g., malaria infected cells, sickle
cells, circulatory tumor cells, etc.) in circulation in vivo [8–10].
Strohm et al. measured PA signals using ultra-high-frequency
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Fig. 1. Top row: surface plots (in 3D) of normal RBC and cells
suffering from hereditary disorders. Bottom row: visualization of a PA
flow cytometry setup. The solid arrow represents the axis of symmetry,
and the dashed arrow indicates the direction of measurement.

transducers (few hundred megahertz to gigahertz) from normal
and deformed RBCs [2,11,12]. PA signal analysis has also been
performed to determine the nucleus-to-cytoplasmic ratio of
cancer cells [13]. It is a general parameter often utilized to assess
cell malignancy. They demonstrated that size and shape param-
eters of the light absorbing cells dictate spectral features above
100 MHz [2,11].

Therefore, a natural question is, would it be possible to obtain
morphological parameters of the PA source from a measured
single-particle spectrum? People believe that it may be possible,
leading to development of a new instrument, namely, a PA flow
cytometer for in vitro/in vivo characterization of abnormal cells
in the blood stream to diagnose and combat deadly diseases.
The advantage of the PA technique is that an automated system
capable of measuring a large sample size in a realistic time frame
can be developed. A schematic diagram of the proposed flow
cytometer for in vitro studies is presented in Fig. 1 (bottom
row). The source region contains chromophores. The ambient
medium (e.g., saline water) does not have chromophores. Thus,
the incident light pulse selectively heats up a certain domain
producing the PA signals. This holds for optical wavelengths
spanning 532–1064 nm, where most PA experiments are car-
ried out. It is clear in the figure that the PA signals are collected
from individual cells with arbitrary orientations. Moreover, a
single PA radio-frequency line from a source has to be recorded
within 100 ms for a typical pulsed laser with 10 Hz as the pulse
repetition frequency. Therefore, for example, signals from 10
cells would be acquired in 1 s. Fluid should flow in a controlled
manner so that each time laser pulse illuminates an individual
cell.

We considered a quantity called the differential PA cross-
section (DPACS) as a metric to study the effects of size and
shape of a source on the emitted PA field [14–16]. The expres-
sion for DPACS is derived by defining it as the acoustic power
received by a detector situated far away from the source divided
by the intensity of the incident light beam per unit solid angle.
Essentially, we applied the Green’s function approach to
compute the PA field generated by a particle of interest and,
accordingly, DPACS was evaluated. It is analogous to the

differential scattering cross-section that has been analyzed
theoretically and experimentally in many fields to obtain prop-
erties of the scatterer. We examined variation of DPACS with
frequency for a large set of objects such as spheroidal particles
with varying aspect ratios (ARs), Chebyshev particles with
different waviness (n) and deformation (ε) parameters, and
normal and pathological RBCs [14]. We also investigated
changes of DPACS as a function of polar angle at 390 MHz
for these particles and subsequently demonstrated that the
DPACS curves can be fitted with the tri-axial ellipsoid form
factor (TAEFF) and cylinder form factor (CFF) models to assess
their morphological parameters [15,16]. Recently, we deployed
the Born series method to calculate the pressure field generated
by an acoustically inhomogeneous source [17]. The numerical
results emphasize that the traditional Born series method pro-
vides an accurate solution for a large source with high speed of
sound contrast (−11% to 22%), but the convergent Born series
technique further extends these limits.

The aim of the paper is twofold. In the forward problem, we
examine how DPACS varies with frequency (100–1000 MHz)
when measured by a finite detector. The coupling fluid medium
between the source and the transducer is assumed to be acous-
tically dispersive and lossy as well. In the inverse problem,
the DPACS curve averaged over many orientations gener-
ated by a test object as mentioned above is fitted with the
form factor models to extract shape parameters. Besides the
TEAFF and CFF models, we also employ the toroid form fac-
tor (TFF) model in this work for this purpose. To the best of
our knowledge, this is the first time it has been shown, using
numerical simulation, that the morphological parameters
of a PA source can be extracted from the DPACS spectrum.
The detailed derivations of these models are presented in this
work. The performance of the models is investigated rig-
orously for different biological targets. The TAEFF model
provides accurate estimates for particles resembling ellip-
soids. The TFF and CFF models seem to be inferior compared
to the TEAFF model in assessing the shape parameters of
cells. The theoretical framework developed here may find
application to analyze experimental data for assessing cellular
morphology.

The layout of the paper is as follows. The forward and inverse
problem frameworks are discussed in Section 2. Realistic sig-
nal simulation, spectrum analysis protocols, and numerical
methods implemented in this study are described in Section 3.
The simulation results are highlighted in Section 4. Some of
the important aspects of this study are presented in Section 5,
and the conclusions of this study are drawn in this section
as well.

2. THEORETICAL FRAMEWORK

A. Forward Framework

The PA wave equation in the frequency domain after satisfying
thermal and stress confinements can be expressed as [18]

∇
2p+ k2p=

{ iωµβ I0
C P

, within the source
0, in the surrounding medium,

(1)
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where µ, β, and C P are the optical absorption coefficient,
isobaric thermal expansion coefficient, and specific heat for
the absorbing region, respectively. Here, I0, ω, and k indicate
the intensity of the light beam, modulation frequency of the
light beam, and wave number of the acoustic wave, respectively.
Equation (1) assumes that the source is acoustically homo-
geneous with respect to the surrounding medium (acoustic
impedance mismatch is small) and light distribution inside it is
uniform. Moreover, the media inside and outside the source are
acoustically nondispersive and nonabsorbing. The solution to
Eq. (1) using the Green’s function approach becomes [14,15]

pext(r, k)=
∫

Vvol

iµβI0ω

C P
G(r|r0)d

3r0, (2)

where G(r|r0)=−
e ik|r−r0|

4π |r−r0|
is the free-space Green’s function,

with r(r , θ, φ) and r0(r0, θ0, φ0) as the field and source points,
respectively [19]; Vvol represents the volume of the PA source.
A representative PA geometry in two dimensions is shown in
Fig. 2 (top row). The subscript ext indicates that the field point
is situated outside the PA source (i.e., r > r0). Equation (2)
for a homogeneous source and in the far-field approximation
(r >> r0) can be written as

pext(r, k)≈−
e ikr

4πr
iµβI0ω

C P

∫
Vvol

e−ik·r0d3r0

=−
e ikr

4πr
iµβ I0ω

C P
ϒ

=
e ikr

r
M(k), (3)

where

ϒ =

∫
Vvol

e−ik·r0d3r0, (4)

and M(k)=−iµβI0ωϒ/(4πC P ) is the amplitude of the
outgoing spherical wave generated by the PA source, and hence,
DPACS can be defined as [14,15]

σ(k, θ)=
|M(k)|2

2ρv I0
, (5)

where ρ and v are the density and speed of sound of the sur-
rounding medium, respectively. It has been proposed by us by
drawing an analogy with a differential scattering cross-section,
which has been computed and measured in numerous fields to
study scattering properties of inhomogeneity.

B. Inverse Framework

The integration in Eq. (4) vis-à -vis Eq. (5) can be calculated
analytically for regular objects providing closed-form formulas
for σ(k). For example, Eq. (5) for a spheroidal particle becomes
[20,21]

Fig. 2. Top row: geometry of the PA setup. Bottom row: surface
plots of the model particles used in form factor calculations (left to
right: tri-axial ellipsoid, cylinder, and toroid).

ϒ =

∫
Vvol

e−i(kx x0+ky y0+kzz0)dx0dy0dz0

=
ρ2ρ3

ρ2
1

∫
Vvol

e−i(k′x x ′0+k′y y ′0+k′zz′0)dx ′0dy ′0dz′0

=
4πρ1ρ2ρ3

3

3 j1(k′ρ1)

k′ρ1
, (6)

assuming k′x = kx , k′y = kyρ2/ρ1, k′z = kzρ3/ρ1, x ′0 = x0,
y ′0 = ρ1 y0/ρ2, z′0 = ρ1z0/ρ3, where ρ1, ρ2, and ρ3

are the semi-axes of the spheroidal particle, and k′ =
k
ρ1

√
ρ2

1 sin2θcos2φ + ρ2
2 sin2θ sin2φ + ρ2

3 cos2θ ; j1 is the

spherical Bessel function of order unity. Thus, Eq. (6) leads to

σ(k, θ)=
µ2β2I0ω

2

2ρvC 2
P

V 2
vol

16π2
FF 2, (7)

where

FF= 3 j1(k′ρ1)/(k′ρ1)

is known as the TAEFF. Figure 2 (bottom row, left panel) dis-
plays the geometrical configuration of a spheroidal particle. We
mention here that size and shape information of the PA source
are retained in FF. Moreover, FF→ 1 for a small particle. The
form factor models have been extensively used in the literature
to evaluate the size of scattering objects [20].

Similarly, for a uniform cylinder of radius 0 and length L
(Fig. 2, bottom row, middle panel),ϒ can be derived as [21]

ϒ =

∫ 0

0

∫ 2π

0

∫ L
2

−
L
2

e−i(kz0 cos θ+kr0 sin θ cosψ0)r0dr0dψ0dz0

= π02L
2J1(k0 sin θ)

k0 sin θ

sin(k L
2 cos θ)

k L
2 cos θ

,
(8)
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where J1 is the Bessel function of order one. Therefore, the
expression for the CFF can be cast as

FF=
2J1(k0 sin(θ))

k0 sin(θ)

sin(k L
2 cos(θ))

k L
2 cos(θ)

. (9)

Equation (4) for a toroid, whose plane is perpendicular to the
z axis as shown in Fig. 2 (bottom row, right panel), can be calcu-
lated as [22]

ϒ =

∫
+Rc

−Rc

∫ 2π

0

∫ R+

R−

e−i[kz0 cos θ+kr0 sin θ cosψ0]r0dr0dψ0dz0

= 2π
∫
+Rc

−Rc

[R+ J1(k R+ sin θ)− R− J1(k R− sin θ)]

×
cos(kz0 cos θ)

k sin θ
dz0. (10)

Here, R+ = Rt +

√
R2

c − z2
0, and R− = Rt −

√
R2

c − z2
0;

Rt and Rc are the toroid radius and cross-sectional radius,
respectively. Therefore, the TFF can be expressed as [22]

FF=
1

πR2
c Rt

∫
+Rc

−Rc

[R+ J1(k R+ sin θ)− R− J1(k R− sin θ)]]

×
cos(kz0 cos θ)

k sin θ
dz0. (11)

In this work, numerically generated frequency dependent
DPACS curves for various particles analogous to biological tar-
gets are fitted with the TAEFF, CFF, and TFF models to extract
morphological parameters.

C. PA Sources Considered in This Study

The rotation of an ellipse around its major/minor axis produces
a prolate/oblate spheroid. The distance of a point that lies on the
surface of a spheroid is given by

r ′(θ ′)=
ab

[b2sin2θ ′ + a2cos2θ ′]
1/2 , (12)

with a and b the semi-axes, respectively, for prolate spheroid
b > a and for oblate spheroid b < a .

The Chebyshev shape can be produced as [23]

r ′(θ ′)= Rcb[1+ ε cos nθ ′], (13)

where n and ε are the waviness and deformation parame-
ters, respectively; Rcb is the radius of the unperturbed sphere.
Chebyshev particles have found wide applications in many
streams of science and engineering to model shapes of particles
of interest. These particles are nonspherical and symmetric
about the z axis.

In this work, we employ the Yurkin model to generate the
contour of normal RBCs in 3D (left image of top row in Fig. 1).
It is given by [24–26]

ξ 4
+ 2R4ξ

2z2
+ z4
+ R1ξ

2
+ R2z2

+ R3 = 0. (14)

It has four degrees of freedom. The numerical values of R1,
R2, R3, and R4 can be determined from the morphological

parameters of RBCs [e.g., diameter (D), dimple thickness (t),
maximum height (h), and diameter of the circle passing through
the maximum height (d)]. The morphological parameters are
shown in Fig. 2 (top row).

3. NUMERICAL METHOD

A. Computation of Realistic PA Signal and Spectrum
Analysis

Consider that the PA waves generated by a source propagate
through a lossy and dispersive medium. Therefore, the PA field
detected by a point detector can be cast as [27,28]

pext(r, ω)=−
∫

Vvol

iµβI0ω

C P

e iω|r−r0|/v

4π |r− r0|

× e−α0|r−r0|[|ω|
γ
−i tan(πγ /2)ω|ω|γ−1

]d3r0. (15)

Here, it is assumed that the acoustic attenuation coefficient (α)
follows a frequency power law such as [27]

α = α0ω
γ , (16)

whereα0 and γ are the prefactor and exponent of the power law,
respectively. The numerical value of γ typically lies between
one and two for soft tissue [27]. Note that the second exponen-
tial in Eq. (15) has two parts. The first and second parts arise
because of attenuation and dispersion of the acoustic waves,
respectively. These two factors together satisfy the causality
condition and are also connected through the Kramers–Kronig
relations [27].

For a finite detector, the average field can be obtained as

pavg
ext (r, ω)=

−1

Ad

∫
Ad

d2rd

∫
Vvol

iµβI0ω

C P

e iω|r+rd−r0|/v

4π |r+ rd − r0|

× e−α0|r+rd−r0|[|ω|
γ
−i tan(πγ/2)ω|ω|γ−1

]d3r0,

(17)

where r and rd indicate the position vectors for the center of the
detector and a point on the detector, respectively; Ad denotes
the surface area of the detector normal to r; the superscript avg
states the average field. A schematic diagram is shown in Fig. 2
(top row). The corresponding time domain signal for a delta
function heating pulse can be calculated as

pm(t)=
1

2π

∫
∞

−∞

pavg
ext (r, ω)e

−iωt dω, (18)

where the subscript m stands for measured signal. Equation (18)
can be evaluated to obtain time series PA pressure data (or PA
signal) generated by a source and when the waves propagate
through an acoustically lossy and dispersive medium. Further,
artificial random noise can be added with such a simulated signal
to mimic an experimental situation.

The attenuation compensated spectrum averaged over many
orientations (No ) of the source is given by

Sm(ω)= 〈[|F(pm)|eα0ω
γ r
]
2
〉, (19)
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whereF is the Fourier transform operator, and< > denotes the
ensemble average (i.e., over many orientations). Therefore, the
DPACS becomes

σO(ω)=
Smr 2

2ρv I0
. (20)

The subscript O indicates that σ is averaged over many
orientations.

Size and shape parameters of a PA source can be extracted
using various form factor models ifσo is known. Two approaches
are employed herein to accomplish this. In the first method
(referred to as method 1 in the text), we iteratively minimize the
following quantity as

�=
∑

i

∣∣∣ σOT(ωi )
σOR(ωi )

−
V 2

TFF2
OT(ωi )

V 2
R FF2

OR(ωi )

∣∣∣
σOT(ωi )
σOR(ωi )

, (21)

where VT and VR are the volume of the test and reference par-
ticles, respectively; σOT and σO R are the orientation averaged
DPACS for those particles, respectively, and FF averaged over
many orientations is given by

FFO =
1

2

∫ π

0
FF 2 sin θdθ . (22)

The exact values of shape parameters of the reference particle are
known a priori.

In the second approach (termed as method 2 in the text), the
following quantity is minimized iteratively:

�=
∑

i

∣∣∣ σOT(ωi )/max[σOT(ωi )]
σOR(ωi )/max[σOR(ωi )]

−
FF2

OT(ωi )

FF2
OR(ωi )

∣∣∣
σOT(ωi )/max[σOT(ωi )]
σOR(ωi )/max[σOR(ωi )]

. (23)

In this work, both methods are deployed to assess the shape
parameters of spheroidal and Chebyshev particles, whereas only
method 1 is applied to RBCs.

B. Physical Parameters

The optical and thermo-mechanical parameters for the
absorbing object were taken as- I0 = 1.51× 1012 Jm−2 s−1,
µ= 809.02 m−1, β = 1.5× 10−4 K−1, C P = 3.23×
103Jkg−1 K−1 [15]. The density and the speed of sound of
the surrounding medium were chosen as ρ = 1005 kg/m3

and v = 1498 m/s, respectively [15]. The frequency
dependent attenuation parameters were chosen as α0 =

5.5× 10−10 Np(rad/s)−γ m−1, γ = 1.5 [27]. These numerical
values correspond to those of common body fluids or tissues.
The average spectrum was computed over NO = 200 orienta-
tions. Table 1 displays the numerical values of the parameters
considered in this study.

C. Shape Parameters

In this work, we studied spheroidal particles with AR= 1:8,
1:4, 1:2, 2:1, 4:1, and 8:1, Chebyshev particles with different
waviness parameters n = 2, 4, 6, and deformation parame-
ters ε =±0.25. Four higher-order Chebyshev particles were

Table 1. Physical Parameters Taken in Computation

ρ 1005 kg/m3

v 1498 m/s
µ 809.02 m−1

β 1.5× 10−4 K−1

C P 3.23× 103 Jkg−1 K−1

I0 1.51× 1012 Jm−2 s−1

α0 5.5× 10−10 Np (rad/s)−γ m−1

γ 1.5
r 100µm
Ad 5.03× 103 µm2

NO 200

Table 2. Shape Parameters Utilized in Calculation
a

Objects Volume Shape Parameters

Spheroids 523.6 b:a = 1:2, 1:4, 1:8, 2:1, 4:1, 8:1
Chebyshev 523.6 ε =±0.25, n = 2, 4 and 6

523.6 ε =±0.05, n = 35 and 45
RBC 122.4 D= 7.65, t/2= 0.70, h/2= 1.42, d = 0.7D
ST 112.2 D= 6.37, t/2= 1.36, h/2= 1.47, d = 0.7D
SC 104.3 b:a = 1:1
EC 104.6 b:a = 7:11

aUnit for length parameters is in µm, and volume is in µm3.

also considered with n = 35, 45, and deformation param-
eters ε =±0.05 [29]. The volume was taken as constant
(523.6 µm3) for all spheroidal and Chebyshev particles. These
numerical values are presented in Table 2.

Surface plots of normal and pathological RBCs are displayed
in Fig. 1 (top row). The Yurkin model was employed to obtain
the 3D shape of normal RBCs. The four morphological param-
eters corresponding to normal RBCs (row 5, Table 2) were
utilized to find out the parameters (R1, R2, R3, and R4) of the
Yurkin model. The shape mimicking stomatocyte (ST) was
produced by varying these parameters phenomenologically
(row 6, Table 2). The upper half for ST was generated using
Eq. (14); however, the lower part was assumed to be a half-
sphere. Two shapes originating from hereditary disorders,
referred to as spherocyte (SC) and elliptocyte (EC), were
also included in the study. The associated values of AR were
taken from the literature and are given in rows 7–8, Table 2,
respectively.

D. Numerical Computation

Equation (17) was calculated in this work for different particles.
The PA field for each particle with a random orientation was cal-
culated over a large acoustic frequency band (100–1000 MHz,
with an increment of ≈5 MHz). A planar detector with circu-
lar aperture of radius 40 µm was placed at a distance 100 µm
from the center of the source to capture impinging pressure
waves [11–13]. The schematic diagram is shown in Fig. 2 (top
row). The volume integral in Eq. (17) was evaluated using
Simpson’s 1/3 rule (with grid size, d x = dy = dz= 200 nm) to
find the PA pressure at a particular point lying on the detector.
The surface integral was carried out employing the Monte Carlo
method [30]. Essentially, PA fields at 500 random points lying
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on the detector were calculated and then summed up to obtain
average pressure recorded by the detector. This procedure was
repeated for 200 random orientations of the source particle.
Moreover, dimensions of the source were also varied a little
bit (±2% with respect to mean length in each dimension) to
introduce intra-variability among each type of source while
computing PA spectra from 200 random orientations. In other
words, we considered 200 slightly different particles for 200
orientations. Average spectrum (attenuation compensated) was
determined from 200 different spectra [see Eq. (19)]. A com-
puter code in C was written for this purpose and was executed
in a virtual machine [CentOS, Intel Core Processor (Broadwell,
IBRS)] working at 2.19 GHz, 256 GB RAM, 80 cores). It
took about 10 min to run and to generate spectral data for each
spheroidal particle for one orientation. After that, DPACS
for the test particle was computed using Eq. (20). Similarly,
DPACS for the reference particle was also obtained. The first
spheroidal particle with AR= 1:2 acted as the reference particle
(a = 6.28 µm, b = 3.14 µm). Note that the time domain signal
was not calculated in this work (discussed below).

The next step was to vary the fitting parameters
(e.g., ρ1, ρ2, ρ3 for the TAEFF model; 0 and L for the CFF
model; Rt and Rc for the TFF model) iteratively, and at each
step, fitting error (�) was computed [from Eqs. (21) and (23)
in the two methods, respectively] and recorded. The angular
domain of θ from zero to π was uniformly divided into 200
points, and accordingly, FFO was calculated by evaluating
Eq. (22). The set of parameters with minimum � provided
characteristic dimensions of the PA source along different
directions. The spectrum analysis was performed in MATLAB.

4. NUMERICAL RESULTS

Representative plots of frequency dependent DPACS (at
θ = π/4) under various conditions for spheroids with AR= 1:4
(a = 7.93 µm, b = 1.98 µm) and 4:1 (a = 3.14 µm,
b = 12.56 µm) are shown in Figs. 3(a) and 3(b), respectively,
over a frequency band of 100–1000 MHz. The solid (blue)
line presents the simulated PA spectrum when the pressure
waves propagate through an acoustically nondispersive, lossless
medium and are detected by a point detector. The dashed (red)
line exhibits the calculated PA spectrum when the surround-
ing fluid is acoustically nondispersive and lossless and the PA
waves are detected by a finite detector. The dotted (green) line
shows the attenuation compensated PA spectrum measured
by a finite detector, and the coupling medium is acoustically
dispersive and lossy. The same plots for the Chebyshev particles
with Rcb = 4.93 µm, n = 4, ε = 0.25 and Rcb = 4.78 µm,
n = 4, ε =−0.25 are displayed in Figs. 3(c) and 3(d), respec-
tively. These curves illustrate the well-known peaks and dips
pattern. The curves (solid and dashed lines) demonstrate a good
match in the low frequency range [up to nearly 420 MHz in
Fig. 3(a)]. However, the curve for the finite detector slightly
deviates with respect to that of the point detector in the high
frequency range (>420 MHz). This may be due to the averaging
effect for a detector with finite size. The oscillations in the PA
spectrum for the third case (finite detector and dispersive, lossy
medium) become less prominent (compared to the other two
curves) approximately beyond 450 MHz. Obviously, this is due

10-25

10-20

10-15

 (
m

2 )

PD, 
0
=0 dB/MHz /cm

FD, 
0
=0 dB/MHz /cm

FD, 
0
=0.75 dB/MHz /cm, =1.5

100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)

10-25

10-20

10-15

AR=4:1(b)

AR=1:4(a)

10-25

10-20

10-15

 (
m

2 )

100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)

10-25

10-20

10-15

(d)

(c) n = 4,  = 0.25

n = 4,  = -0.25

Fig. 3. (a) Plot of frequency dependent DPACS calculated at
θ = π/4 for a spheroidal particle with aspect ratio AR= 1:4. Solid
line: simulated DPACS when waves are detected by a point detector
(PD) and propagate through an acoustically nondispersive, lossless
medium; dashed line: simulated DPACS when a finite detector (FD)
is used to sense the PA waves and the medium is acoustically lossless
and nondispersive; dotted line: attenuation compensated DPACS for
a FD and acoustically dispersive, lossy medium. (b) Same as (a) but
for a spheroidal particle with AR= 4:1. (c), (d) Similar graphs for
Chebyshev particles with n = 4, ε = 0.25 and n = 4, ε =−0.25,
respectively.

to the effects of the finite aperture of the detector and attenu-
ation compensation. Similar trends can be observed in other
figures. The number of oscillations is more in Fig. 3(b) than that
of the other graphs. Further, depths of a few dips in Fig. 3(d) are
less in comparison to those of the other figures. Representative
plots of the DPACS as a function of frequency are shown in
Fig. 4 for RBCs. The curves appear almost similar.

Plots of attenuation compensated normalized DPACS
(i.e., with respect to the DPACS of the reference particle) are
shown in Fig. 5 for spheroidal droplets and Chebshev particles.
Best fitted curves produced by the TAEFF model for method
1 [Eq. (21)] and method 2 [Eq. (23)] are presented in the same
figure as well. The TAEFF model provides in general very good
fits to the simulated DPACS data over the entire frequency
range. The locations of maxima and minima are well reproduced
by the fitted curves. The peaks and dips of the fitted lines look
more prominent compared to those of the simulated data (solid
line). This is because of the fact that theoretical functions have
been used for fitting, and they are valid for a point detector
and nondispersive, lossless coupling medium. The numerical
values of the best fit parameters are given in Table 3. The corre-
sponding nominal values (mean± std) are also included in the
same table. It shows that the assessed morphological parameters
demonstrate a good match with the actual values. In general,
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Fig. 4. (a) Variation of DPACS computed at θ = π/4 as a function
of frequency for normal RBC. Solid line: computed DPACS for a point
detector (PD) and acoustically nondispersive, lossless medium; dashed
line: simulated DPACS for a finite detector (FD) and acoustically
nondispersive, lossless medium; dotted line: attenuation compen-
sated DPACS for a FD and acoustically dispersive and lossy medium.
(b)–(d) Same as (a) but for stomatocyte (ST), spherocyte (SC), and
elliptocyte (EC), respectively.

method 2 works better than method 1 in predicting shape and
size parameters of the source particles. It is important to note
that both methods perform even better for complex Chebyshev
particles.

Figure 6 displays plots of the normalized DPACS (atten-
uation compensated) for normal and deformed RBCs. Best
fitted curves for the TEAFF, CFF, and TFF models provided
by method 1 are also drawn in each figure. The corresponding
numerical values are included in Table 4. The TEAFF model
appears to provide good fits to the simulated curves (solid lines).
The fitted lines for the CFF model seems to work better for the
deformed RBCs [Figs. 6(b)–6(d)] than the normal RBC. The
best fitted lines for the TFF model deviate greatly for all cases,
particularly in the low frequency range. Though the fittings
by the form factor models seem good in some cases, estimated
parameters differ significantly from the desired values. As
expected, volume error for the TEAFF model is less for the SC
and EC cells, but it overestimates the volume of normal RBCs
(second column, Table 4). For ST, extracted shape parameters
though are not accurate but exhibit valid changes (i.e., diameter
shrinks and length along the symmetry axis increases). The best
fit parameters of the CFF model are given in the third column of
Table 4. It underestimates at least one of the shape parameters.
The TFF model correctly predicts the distance of the outer
periphery from the center (i.e., Rt + Rc ) with high accuracy for
normal RBCs. Note that in all cases, the ring torus (Rc < Rt )
provided the best fits, and the predicted values are not useful.
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Fig. 5. (a), (b) Fitting of the frequency dependent normalized
DPACS curves using the TAEFF model for spheroidal particles with
aspect ratio AR= 1:4 and AR= 4:1, respectively. (c), (d) Same plots
for Chebyshev particles with n = 4, ε = 0.25 and n = 4, ε =−0.25,
respectively. Solid (blue) line plots σOT/σOR as a function of fre-
quency; dashed (red) and dotted (green) lines are the same plots of
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OR for the best fit parameters facilitated by method 2,
respectively.

The outcomes of method 2 were not satisfactory, and that is why
they are not incorporated herein.

5. DISCUSSION AND CONCLUSIONS

The time independent Helmholtz wave equation for the PA
wave propagation is solved numerically using the Green’s func-
tion approach for calculating fields generated by spheroidal
droplets, Chebyshev particles, and normal and diseased RBCs.
The coupling medium between the source and the detector was
chosen to be acoustically dispersive and lossy. The detector was
considered to be a finite detector. These two aspects were incor-
porated in this study to mimic a real situation. The frequency
dependent DPACS has also been computed for each particle.
The number of oscillations in the DPACS curve increases, and
its first minimum appears earlier as the length of the PA source
increases along the direction of measurement. The magnitude of
the DPACS grows as the area perpendicular to the direction of
measurement increases.

Average frequency dependent DPACS (attenuation com-
pensated) was computed for each particle over 200 orientations,
resembling an experimental situation. While computing 200
spectra, slightly different particles were considered, as discussed
above. This approach essentially introduces intra-variability
of each target object and contributes to uncertainty in the
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Table 3. Estimated Values (Corresponding to the Best Fitted Curves) of the Morphological Parameters for
Spheroidal and Chebyshev Particles Considered in This Study

a

Nominal Values (µm) Estimated Values (µm) Using Method 1 Estimated Values (µm) Using Method 2

a = 6.28± 0.07, b = 3.14± 0.03, AR= 1:2 ρ1 = 6.18, ρ3 = 3.29, VE= 0.60% ρ1 = 6.18, ρ3 = 3.29, VE= 0.60%
a = 7.94± 0.08, b = 1.98± 0.02, AR= 1:4 ρ1 = 6.20, ρ3 = 2.15, VE= 33.80% ρ1 = 8.25, ρ3 = 2.10, VE= 14.47%
a = 10.0± 0.10, b = 1.25± 0.01, AR= 1:8 ρ1 = 5.80, ρ3 = 1.40, VE= 62.28% ρ1 = 10.5, ρ3 = 1.40, VE= 23.61%
a = 3.96± 0.04, b = 7.94± 0.08, AR= 2:1 ρ1 = 3.80, ρ3 = 6.40, VE= 25.98% ρ1 = 3.80, ρ3 = 9.05, VE= 4.66%
a = 3.14± 0.03, b = 12.57± 0.13, AR= 4:1 ρ1 = 3.00, ρ3 = 8.20, VE= 40.89% ρ1 = 3.00, ρ3 = 11.9, VE= 14.22%
a = 2.50± 0.03, b = 20.02± 0.21, AR= 8:1 ρ1 = 2.35, ρ3 = 13.40, VE= 40.73% ρ1 = 2.35, ρ3 = 16.40, VE= 27.46%
Rcb = 5.31± 0.06, n = 2, ε = 0.25 ρ1 = 3.90, ρ3 = 6.50, VE= 20.81% ρ1 = 3.85, ρ3 = 8.60, VE= 2.09%
Rcb = 4.93± 0.05, n= 4, ε = 0.25 ρ1 = 4.30, ρ3 = 6.35, VE= 5.96% ρ1 = 4.30, ρ3 = 7.10, VE= 5.14%
Rcb = 4.89± 0.05, n= 6, ε = 0.25 ρ1 = 5.05, ρ3 = 4.25, VE= 1.19% ρ1 = 4.60, ρ3 = 6.75, VE= 14.39%
Rcb = 5.00± 0.05, n= 35, ε = 0.05 ρ1 = 5.00, ρ3 = 4.40, VE= 11.90% ρ1 = 4.70, ρ3 = 5.35, VE= 5.34%
Rcb = 5.00± 0.05, n = 45, ε = 0.05 ρ1 = 5.00, ρ3 = 4.40, VE= 11.90% ρ1 = 4.70, ρ3 = 5.35, VE= 5.34%
Rcb = 4.53± 0.05, n= 2, ε =−0.25 ρ1 = 5.50, ρ3 = 3.50, VE= 15.20% ρ1 = 6.20, ρ3 = 3.50, VE= 7.75%
Rcb = 4.78± 0.05, n= 4, ε =−0.25 ρ1 = 4.25, ρ3 = 6.00, VE= 13.20% ρ1 = 4.25, ρ3 = 7.40, VE= 7.04%
Rcb = 4.82± 0.05, n = 6, ε =−0.25 ρ1 = 5.20, ρ3 = 4.30, VE= 6.87% ρ1 = 5.60, ρ3 = 4.50, VE= 13.02%
Rcb = 5.00± 0.05, n= 35, ε =−0.05 ρ1 = 5.00, ρ3 = 4.40, VE= 11.90% ρ1 = 4.70, ρ3 = 5.35, VE= 5.34%
Rcb = 5.00± 0.05, n= 45, ε =−0.05 ρ1 = 5.00, ρ3 = 4.40, VE= 11.90% ρ1 = 4.70, ρ3 = 5.35, VE= 5.34%

aNominal values of the parameters are also presented here for comparison. Calculated volume error (VE) for each case is incorporated in the table. AR stands for
aspect ratio, and the unit for a , b, Rcb, ρ1, and ρ3 is µm.

estimation. The finite size of the aperture of the detector aver-
ages out the incident pressure field and also acts as a source of
uncertainty in the prediction. Measured time domain PA signals
are corrupted with electronic noise, which affects the solution
to the inverse problem as well. In this work, we did not calculate
the time domain PA signal or add any synthetic electronic noise
to such a signal. The time domain PA signal could be easily
computed by taking the inverse Fourier transform of Eq. (17).
The available functions (e.g., awgn in MATLAB, addNoise in
the k-Wave toolbox [28]) distribute the noise power equally

over the entire bandwidth of the signal. When we applied such a
function to add noise to the simulated PA signals, we observed
that noise power in the high frequency range (>500 MHz)
became comparable to the signal power, leading to difficulty to
solve the inverse problem. It is known that low noise amplifiers
are used in practice to mitigate this issue while recording high
frequency signals.

The normalized DPACS curves were fitted with the TAEFF,
CFF, and TFF models. The arguments for which these models
provided best fits to the simulated DPACS were considered
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Fig. 6. (a) Normalized DPACS and fitted curves for normal RBC. (b)–(d) Same as (a) but for stomatocyte (ST), spherocyte (SC), and elliptocyte
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Table 4. Extracted Values (for the Best Fitted Curves) of Morphological Parameters for Normal and Deformed
RBCs Considered in This Study

a

Nominal Values

Estimated Values (µm) Using Method 1

TAEFF CFF TFF

RBC, D= 7.65± 0.09 ρ1 = 4.05, ρ3 = 3.35 0 = 3.45, L = 1.20 Rt = 2.90, Rc = 0.80
t/2= 0.7, h/2= 1.42, d= 0.7D VE= 88.04% VE= 63.34% VE= 70.06%
ST, D= 6.37± 0.07 ρ1 = 2.95, ρ3 = 1.95 0 = 2.65, L = 3.70 Rt = 1.50, Rc = 1.20
t/2= 1.36, h/2= 1.47 d= 0.7D VE= 36.64% VE= 27.24% VE= 61.99%
SC, a = 2.92± 0.03, ρ1 = 2.65, ρ3 = 3.00 0 = 2.55, L = 4.50, Rt = 2.20, Rc = 0.40
b = 2.92± 0.03, AR= 1:1 VE= 15.40% VE= 11.86% VE= 93.33%
EC, a = 3.40± 0.04 ρ1 = 2.95, ρ3 = 1.90 0 = 1.95, L = 4.50 Rt = 1.65, Rc = 0.80
b = 2.16± 0.02, AR= 7:11 VE= 33.78% VE= 48.60% VE= 80.07%

aNominal values of the parameters are presented here for comparison. Volume error (VE) is also included in the table. AR stands for aspect ratio, and the unit for D,
h , t , ρ1, ρ3,0, L, Rt and Rc is µm.

as the characteristic dimensions of the source. To do so, we
divided the spectrum of the test particle with that of the refer-
ence particle. Various system dependent effects were cancelled
out because of this step, and thus, estimates became reliable. In
this work, physical parameters of the test and reference parti-
cles were assumed to be the same and hence, allowed us to use
method 1 [Eq. (21)] for size estimation. Method 2 [Eq. (23)]
is more general and can be applied even when this assumption
does not hold. Method 2 though worked well for the sphe-
roidal and Chebyshev particles but did not provide reliable
estimates for RBCs (data not shown). Further, investigations
are required to design a robust minimization procedure with
suitable constraints so that morphological information of cells
can be predicted accurately.

As mentioned earlier, the underlying assumption of Eq. (1)
is that light distribution inside the PA source is uniform. This
assumption may not be valid in general. Fluence distribution
inside the source may become inhomogeneous owing to scat-
tering of light waves. Further, the medium inside the source
was considered to be a fluid medium, which does not support
shear waves. However, for RBCs, the membrane has shear and
bending resistance. These properties may alter the wavevector k
inside and outside the source. The effect of light polarization on
PA emission is also required to be examined. In this work, defor-
mation of cells due to hydrodynamic forces was ignored. Further
investigations are required to address these issues. Experimental
validation of the proposed methodology is needed to examine its
utility in practice.

In conclusion, a theoretical model is presented for calculating
frequency dependent DPACS for an arbitrary source whose
impedance mismatch is small compared to the surrounding
medium (resembling biological cells). The model includes
the effects of dispersion, attenuation of the PA waves (while
propagating through the coupling medium), and their detec-
tion with a planar detector of finite size. Simulated frequency
dependent DPACS (100–1000 MHz) averaged over many
orientations is generated for simple spheroidal droplets, com-
plex Chebyshev particles, and realistic normal and deformed
RBCs. The DPACS spectra are fitted with TAEFF, CFF, and
TFF models to determine the morphological parameters of the
PA sources. The TAEFF model, in general, provides reliable
estimates for a variety of shapes. The spectrum analysis protocol

needs further modification in order to employ it in practice to
quantify cell shape parameters and, accordingly, differentiate
normal and diseased RBCs.
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