
Study on angular distribution of differential
photoacoustic cross-section and its implication
in source size determination
ANUJ KAUSHIK, DEEPAK SONKER, AND RATAN K. SAHA*
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Allahabad 211015, India
*Corresponding author: ratank.saha@iiita.ac.in

Received 21 November 2018; revised 21 January 2019; accepted 21 January 2019; posted 22 January 2019 (Doc. ID 352520);
published 22 February 2019

Angular distribution of a differential photoacoustic cross-section (DPACS) has been examined for various non-
spherical axisymmetric particles. The DPACS as a function of measurement angle has been computed for sphe-
roidal particles with varying aspect ratios and fitted with a tri-axes ellipsoid form factor model to extract shape
parameters. Similar study has been carried out for normal and pathological red blood cells, and fitting has been
performed with the tri-axes ellipsoid and finite cylinder form factor models to evaluate cellular morphology. It is
found that an enhancement of the DPACS occurs as the surface area of the photoacoustic source normal to the
direction of measurement is increased. It decreases as the thickness of the source along the same direction in-
creases. For example, the DPACS for normal erythrocyte along the direction of symmetry is nearly 20 times
greater than a pathological cell. Further, the first minimum appears slightly later (≈4°) for a healthy cell compared
with that of a diseased cell. Shape information of spheroids can be precisely estimated by the first model. Both
models provide accurate estimates of shape parameters for normal red blood cells (errors within 4%). It may be
possible to assess cellular morphology from an angular profile of the DPACS using form factor models. © 2019

Optical Society of America

https://doi.org/10.1364/JOSAA.36.000387

1. INTRODUCTION

Photoacoustic (PA) imaging is a nonionizing, noninvasive, and
hybrid imaging modality. In this technique, a tissue is illumi-
nated by a nanosecond pulsed laser. It absorbs light energy,
gets heated, and exhibits thermoelastic expansion releasing
broadband acoustic waves [1]. Microscopy and tomography
techniques have been developed over the last two decades, ex-
ploiting the PA effect [2,3]. The major advances of this tech-
nique are as follows: (i) high-contrast images can be formed at
ultrasonic resolution because endogenous/exogenous chromo-
phores produce PA signals and nonabsorbing tissue compo-
nents do not emit any background signal, (ii) imaging at a
depth of several centimeters with a resolution of a few hundred
micrometers is possible because both ballistic and diffusion
photons contribute to the generation of the PA signals, and
(iii) it has the ability to construct functional images by selec-
tively exciting chromophores at two/three optical wavelengths
followed by a simple spectroscopic analysis. The PA imaging
technique has been used to visualize small animal vasculature,
brain hemodynamics, blood oxygen saturation, and hemoglo-
bin concentration [2,3]. The PA method is also one of the
fastest-growing techniques for molecular imaging [4,5].

Recent works in this field have demonstrated that single cell
imaging is possible using the PA microscopy for visible or near-
infrared input light [6–8]. This technique does not need any
labeling and therefore can be used to image live red blood cells
(RBCs), melanoma cells, etc. These cells contain endogenous
contrast agents such as hemoglobin and melanin, respectively,
and hence produce acoustic signals upon light absorption.
However, it is difficult to obtain information of their size
and shape from the PA images. Strohm et al. further showed
that PA spectral features are related to the size and shape of cells
under investigation [7,8]. Therefore, it may be feasible to assess
cellular morphology by analyzing experimental PA signals in
the frequency domain. Theoretical studies can also be carried
out to gain insight into how physical and morphological prop-
erties of cells affect PA spectral features. Previously, we calcu-
lated a PA signal from a single RBC assuming as a sphere by
solving the PA wave equation in the frequency domain using
the exact method [9]. The model was successively explored to
study the effects of RBC aggregation and oxygenation on a PA
signal [10,11]. PAs of malaria-infected RBCs and melanoma
cells in blood have been examined by exploiting this model,
too [12,13]. Experiments were also conducted to examine
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the effects of RBC aggregation and hemolysis of RBCs on PA
signals [14,15].

The exact method cannot work for irregular shapes. To over-
come this limitation, Li et al. recently developed methods for
calculating the PA signals from spheroidal droplets [16,17].
This method uses a spheroidal coordinate system, and the cor-
respondingmathematical formulation is not straightforward. PA
signals from sources with arbitrary geometries can be simulated
using the k-Wave simulation toolbox [18], which is a widely
used free software. It implements a pseudospectral method to
solve the PAwave equation. Recently, we adopted Green’s func-
tion method to solve the PA wave equation and, accordingly,
defined a quantity called the differential photoacoustic cross-sec-
tion (DPACS) [19]. It is defined as the acoustic power received
per unit solid angle divided by the intensity of the incident light
beam. Green’s function technique in general provides closed-
form solutions for regular objects (e.g., sphere, cylinder), and
numerical solutions can be obtained for irregular objects.
Variation of the PA spectral power (which is proportional to
the DPACS) for various particles, including normal and de-
formed RBCs, have been studied extensively over a wide-
frequency range (10–1000 MHz) [19]. It was shown that the
locations of frequency minima depend on the width of the
PA source along the direction of measurement. Uluc et al. de-
veloped a robust transport model for characterization of RBC
morphology in microchannel flow [20]. The authors coupled
the Navier–Stokes and the PA wave equations to study effects
of many factors such as deformability (plasma viscosity, plasma
density, intercellular interaction) and laser parameters (beam-
width, pulse duration, etc.) on single-cell PA emission. It may
be mentioned here that the evaluation of RBC deformation is of
profound interest from the clinical point of view.Deformation of
RBCs occurs greatly in the case of malaria and sickle cell anemia
and induces circulatory disorder significantly [21,22].

The objective of the paper is to study how the DPACS varies
with angle of measurement for different shapes. In this forward
problem formulation, we computed angular patterns of the
DPACS for spheroidal droplets and normal and deformed
RBCs. The first class of particles has been considered because
it is simple and widely used in other studies. The second set of
corpuscles may be interesting from the application point of
view. Surface parametrization with the Legendre polynomial
expansion has also been performed for RBCs as well. It is shown
that magnitude of the DPACS increases as the surface area of
the PA source normal to the direction of measurement in-
creases. Moreover, it decreases as the width of the particle along
the direction of measurement increases. The form factor mod-
els have been extensively used in light, X-ray, and neutron-
scattering problems to estimate scatter size [23–25]. It is
accomplished by fitting angular distribution of differential scat-
tering cross-section with a suitable form factor model. An at-
tempt has been made in this work as well to estimate the size of
the PA source from angular distribution of the DPACS using
tri-axes ellipsoid and finite cylinder form factor models. The
numerical results demonstrate that characteristic size can be
obtained accurately for regular objects (e.g., ellipsoid). The in-
verse frameworks provide best estimates for morphological
parameters of normal RBC.

The organization of the paper is as follows. The next section
details the definition of the DPACS. It also describes different
shapes considered in this study. The form factor models and
size estimation procedure are described in this section too.
The numerical results illustrating angular distributions of the
DPACS for various nonspherical axisymmetric shapes are pre-
sented in Section 3. The results are also discussed in Section 3.
The conclusions are drawn in Section 4.

2. MATERIALS AND METHODS

A. Derivation of the PA Field

The mathematical expressions for the PA wave equation, its
solution, and DPACS are given in detail in previous publica-
tions [19,26]. However, for the sake of completeness, pertinent
equations are presented here in brief. The broadband PA pulse
generated by tissue upon absorption of electro-magnetic radi-
ation is governed by the inhomogeneous wave equation as [9]

∇2p −
1

v2
∂2p
∂t2

� −
β

Cp

∂H
∂t

, (1)

where β is the thermal expansion coefficient, Cp is the specific
heat capacity, v is the speed of sound for the absorbing region,
and H is a function that describes heating of the sample per
unit time and volume. The condition of thermal confinement
is included during the derivation of the above equation. If the
optical radiation of intensity I 0 propagates along the x axis and
varies sinusoidally with time, then the heating function can be
expressed as

H �x, t� � μ�x�I 0e−iωt , (2)

where μ�x� is the light absorption coefficient of the illuminated
region and ω is the modulation frequency of the laser beam.
Equation (2) indicates that the light absorption coefficient
varies along the x direction. However, it may in general vary
along all three dimensions depending upon the spatial distri-
bution of permittivity (or refractive index) of the medium.
The steady-state pressure can be written for a homogeneous
absorber as

∇2p� k2p �
� iωμβI 0

CP
, inside the absorber

0, outside the absorbe
, (3)

with k as the wavenumber of the acoustic wave. The solution to
Eq. (3) can be obtained as

pext�r, k� �
Z

AG�rjr0�d3r0, (4)

where A � iμβI 0ω
Cp

and G�rjr0� is the free space Green’s func-

tion, and r�r, θ,ϕ� and r0�r0, θ0,ϕ0� denote field and source
points, respectively. A schematic diagram is shown in Fig. 1.
The subscript ext indicates that the field point is outside the
absorbing region (i.e., r > r0). The free space Green’s function
satisfies [27]

∇2G�rjr0� � k2G�rjr0� � δ�r − r0� (5)

and is given by
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G�rjr0� � −
eikjr−r0j

4πjr − r0j
: (6)

Here, we consider a simple situation that a source has an
impedance matching with its surrounding medium. In the
far field �r ≫ r0�, Green’s function can be approximated as
G�rjr0� ≈ −�1∕4πr�eikr e−ik·r0 with k as the direction of mea-
surement; thus, Eq. (4) becomes

pext�r, k� ≈ −
eikr

4πr

Z
Ae−ik·r0d3r0 �

eikr

r
M�k�, (7)

where

M �k� � −
1

4π

Z
Ae−ik·r0d3r0: (8)

It may be noted that M �k� denotes the amplitude of the
outgoing spherical wave emitted by the PA source.

B. Derivation of the Differential PA Cross-Section

The differential scattering cross-section is a well-defined quan-
tity, which has been computed and measured in various
branches of science and engineering to study scattering proper-
ties of imhomogeneties. An analogous expression for the PA
emission can be deduced. Let us define a quantity called the
DPACS (i.e., acoustic power per unit solid angle received
far away from the PA source divided by the intensity of light
beam), which can be expressed as [19,26]

σ�k, θ� � jM �k�j2
2ρvI0

: (9)

Here, ρ is density of the surrounding medium. The total PA
cross-section can readily be calculated by integrating σ�k, θ�
over the entire solid angle. The total PA cross-section can
be interpreted as a hypothetical area, and light energy of which
converts into acoustic energy due to the PA effect. For a regular
object, integration in Eq. (8) can be calculated analytically pro-
viding a closed-form expression for σ�k, θ�. For instance, for a
homogeneous spherical absorber, Eq. (9) reduces to [19,26]

σ�k, θ� � μ2β2I 0v
2ρC2

P
ϱ4�j1�kϱ��2, (10)

where j1 is the spherical Bessel function of order unity and ϱ is
the radius of the spherical absorber. For an irregular PA source,

it is not possible to yield an analytical solution; however, a
numerical solution can be obtained for the DPACS. In this
work, we calculate Eq. (9) as a function of measurement angle
θ, as shown in Fig. 1 for different nonspherical axisymmetric
particles such as spheroidal droplets and RBCs.

C. Derivation of the Form Factor

The DPACS as given in Eq. (10) can also be written as

σ�k, θ� � μ2β2I 0v
2ρC2

P
ϱ4�j1�kϱ��2

� μ2β2I 0ω2

2ρvC2
P

ϱ6

9

�3j1�kϱ��2
k2ϱ2

� μ2β2I 0ω2

2ρvC2
P

V 2
vol

16π2
FF 2, (11)

where

FF � 3j1�kϱ�
kϱ

(12)

is known as the form factor (in this case it is a spherical form
factor). Here, V vol denotes the volume of the spherical absorber

[for a nonspherical absorber the second factor, V 2
vol

16π2
in Eq. (11),

will have a different form]. Note that FF → 1 when kϱ → 0;
therefore, σ�k, θ� will not be a function of θ for a point PA
source. In other words, the DPACS will be independent of
its shape. For a PA source with finite size, the form factor ex-
hibits variation with angle and hence dictates how σ�k, θ� will
vary with θ.

In Eq. (11), we have used a spherical form factor; however,
several other form factor models are also available in the liter-
ature [23–25]. For example, a tri-axes ellipsoid form factor is
expressed as [23]

FF � 3j1�k 0ϱ1�
k 0ϱ1

, (13)

where ϱ1, ϱ2, and ϱ3 are the semi-axes of the ellipsoid and
k 0 � k

ϱ1
�ϱ21 sin2 θ cos2 ϕ� ϱ22 sin

2 θ sin2 ϕ� ϱ23 cos
2 θ�12. The

finite cylinder form factor is given by [23,25]

FF � 2J1�kΓ sin θ�
kΓ sin θ

sin��kL cos θ�∕2�
�kL cos θ�∕2 , (14)

where Γ and L are the radius and length of the cylinder, respec-
tively. In this work, the form factor models have been used to
obtain size and shape information of the PA source from
angular distribution of the DPACS.

D. Nonspherical Axisymmetric PA Sources

1. Spheroidal Droplets

A spheroid can be generated by rotating an ellipse either about
its major axis or its minor axis. Accordingly, they are known as
prolate and oblate spheres, respectively. The radial distance of a
point on the surface of such an object is given by (see Fig. 1)

r 0�θ 0� � ab
�b2 sin2 θ 0 � a2 cos2 θ 0�1∕2 , (15)

with a and b are the semi-axes. For prolate sphere b > a and for
oblate sphere b < a. Two representative shapes of spheroidal

Fig. 1. Demonstration of PA wave generation from an erythrocyte.
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droplets are shown in Fig. 2. In this work, we have studied how
the angular distribution of the DPACS changes for different
spheroidal droplets.

2. Red Blood Corpuscles

A normal RBC looks like a biconcave disk, which is axially sym-
metric. It is really thin at the center but slightly thicker at the
edge. This particular shape maximizes surface-to-volume ratio
and helps to perform physiological functions [28]. There are
many agents that can alter the normal shape of RBCs [29,30].
Two common forms of pathological shapes are echinocyte and
stomatocyte. In the case of echinocyte, many equally spaced
similar protrusions projecting outward are observed to exist.
Stomatocytes are axisymmetric- and concave-shaped cells. In
this study, we will restrict ourselves to axisymmetric shapes,
which can be obtained by rotating the following curve [19],

r 0�θ 0� � Re

h
1�

X
n

αnPn�cos θ 0�
i
, (16)

about an axis passing through θ 0 � 0. Here, Re is the radius of
a spherical envelope that encloses RBC, α is the parameter that
controls shape, and Pn is the Legendre polynomial of degree n.
The Legendre polynomials are orthogonal basis functions and
form a complete set of basis functions. Any arbitrary function
within 0 ≤ θ ≤ π can be expanded in terms of these basis func-
tions. In this work, this expansion was used to generate shapes
for normal RBC and pathological RBCs mimicking stomato-
cytes. Angular distribution of the DPACS has been computed
for such cells.

E. Simulation Parameters

1. Physical Parameters

The density and speed of sound for the PA source were taken as
ρ � 1005 kg∕m3 and v � 1498 m∕s, respectively. The same
numerical values were also considered for the surrounding
medium. Further, specific heat capacity and thermal expansion
coefficient for the absorbing region were chosen as CP �
3.23 × 103 J kg−1 K−1 and β � 1.5 × 10−4 J kg−1 K−1, respec-
tively [31]. The intensity of the light beam was fixed to
I 0 � 1.51 × 1012 Jm−2 s−1. This value was calculated by divid-
ing fluence with the pulse width [7]. The optical absorption
coefficient for RBC was calculated using the formula μ �
2.303ϵcHb and found out to be 809.02 m−1 at 798 nm (ϵ
is the molar extinction coefficient and cHb is the molar concen-
tration of hemoglobin). It was assumed that each RBC approx-
imately contains 280 million hemoglobin molecules, and light

absorption by oxy- and deoxy-hemoglobin molecules is the
same at this wavelength [32,33]. This value was also used
for spheroidal particles. The numerical values for these param-
eters are summarized in Table 1.

2. Shape Parameters

In this work, we considered seven different spheroidal droplets.
The aspect ratio varied from 8:1 to 1:8; however, the volume
remained fixed at ≈524 μm3 for each particle. This volume
corresponded to a sphere of radius 5 μm. Details of shape
parameters of these particles are given in Table 2.

Various parametric models are available in the literature to
theoretically construct RBC shape [28]. Some commonly used
models with three or more degrees of freedom include the
Evans–Fung model, Kuchel–Fackrell model, and Yurkin
model. In this work, we rely on the Cassini oval, which can
be cast as [34]

�x2 � y2 � z2 � η2�2 − 4η2�x2 � y2� � ζ4: (17)

It has two degrees of freedom. It has been observed that the
biconcave shape can be reproduced from Eq. (17) when η is
slightly less than ζ. Further, the numerical values of η and ζ
can be determined from four morphological parameters,
namely, diameter (D), dimple thickness (t), maximum thick-
ness (h), and the diameter of the circular contour drawn on the
location of the maximum thickness (d ) {see Fig. 1(b) of [28]}
because they are related as D2 � 4�ζ2 � η2�, t2 � 4�ζ2 − η2�,
and h � ζ2∕η. Typical values of morphological parameters
corresponding to normal RBC are listed in Table 2 (rows 3
and 4). Two shapes mimicking stomatocytes (Stomatocyte1
and Stomatocyte2) were produced by varying these morpho-
logical parameters phenomenologically. For these shapes, the
upper half was generated using Eq. (17); however, the lower
part was assumed to be a half-sphere. The Cassini param-
eters (in μm) were computed to be η � 2.66, 2.04, 2.31 and
ζ � 2.75, 2.45, 2.32, respectively, for three shapes.

Fig. 2. Spheroidal droplets with b:a � 1:2 (left panel) and
b:a � 2:1 (right panel).

Table 1. Numerical Values for Physical Parameters Used
in Computation

ρ 1005 kg∕m3

v 1498 m/s
μ 809.02 m−1

β 1.5 × 10−4 K−1

CP 3.23 × 103 J kg−1 K−1

I 0 1.51 × 1012 Jm−2 s−1

Table 2. Numerical Values for Shape Parameters Used
in Calculation (Unit for Length Parameters Is in μm)

Objects Volume (μm3) Shape Parameters

Spheroids 523.6 b:a � 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1
RBCs 104 D � 7.65, t∕2 � 0.70, h∕2 � 1.42,

Re � 0.5D, d � 0.7D, L � 19
105 D � 6.37, t∕2 � 1.36, h∕2 � 1.47,

Re � 0.5D, d � 0.7D, L � 19
104 D � 6.54, t∕2 � 0.21, h∕2 � 1.16,

Re � 0.5D, d � 0.7D, L � 19
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Theoretically constructed shapes were then fitted with the
expansion given in Eq. (16) in order to estimate αn. At first, we
generated s number of radial samples (i.e., r1, r2…rs) at differ-
ent angular locations (θ1, θ2…θs). Then, we constructed a sys-
tem of equations considering up to the Lth deg Legendre
polynomial as [see Eq. (16)]0
BBBBBBBBBB@

P0�γ1� P1�γ1� … PL�γ1�
P0�γ2� P1�γ2� … PL�γ2�

·

·

·

P0�γs� P1�γs� … PL�γs�

1
CCCCCCCCCCA

0
BBBBBBBB@

α0

α1

·

·

·

αL

1
CCCCCCCCA

�

0
BBBBBBBBBB@

r1
Re
− 1

r2
Re
− 1

·

·

·
rs
Re
− 1

1
CCCCCCCCCCA
,

(18)

where γ1 � cos θ1, γ2 � cos θ2,…γs � cos θs. The above
equations have been solved using the least-square fitting tech-
nique for obtaining αns. In this work, we generated more than
181 radial samples, and the infinite sum in Eq. (16) was
truncated at L � 19, which was fixed based on the literature
[35,36]. Simulated 3D shapes are shown in Fig. 3 (upper panel),
and associated α vectors are also plotted in Fig. 3 (lower panel).

F. Computation of the DPACS

The amplitude of the PA field at a distance r � 1 mm gener-
ated by a source was obtained by evaluating the integration in
Eq. (8). The Monte Carlo integration method was imple-
mented for this purpose [37]. Essentially, a large number of
points were randomly thrown within a rectangular box that en-
closed the PA source of interest. The points/throws located in-
side the source only contributed to the field calculation. For
example, a box of size V b � 11 × 11 × 11 μm3 was chosen
to bound a spherical particle of radius 5 μm. A total number
of NT � 5 × 106 points were thrown inside the box, and the
number of throws within the spherical shape was counted to be
N In ≈ 2 × 106. The fields generated by such a point source at
181 detector positions were computed and stored in an array.
After that, fields for individual points inside the PA source were

evaluated for each detector position and summed up to obtain
the resultant field. The average infinitesimal volume element
could be found out to be d 3r0 ≈ V b∕NT . The DPACS was
calculated as a function of polar angle (θ). This means that
the 181 detectors were placed from 0 to 180° with a separation
of 1°. The execution time to determine the DPACS at 181 an-
gular locations was estimated to be ≈30 s in a personal com-
puter (OS, Window 10; RAM, 12 GB; i5 processor; 3.50 GHz,
clock speed). A large number of Monte Carlo throws was
considered in this study to obtain converging results.

The PA signals from normal and infected RBCs were also
computed using the k-Wave toolbox. This step was performed
to qualitatively validate results generated by Green’s function ap-
proach for RBCs. Computational grid size was taken as 256 ×
256 × 256 with a resolution of 0.1 μm, and a perfectly matched
layer of the thickness of 20 grid points was attached to the com-
putational domain from outside. The PA source of interest was
placed at the center of the computational grid, and signals were
recorded by 181 points detectors uniformly located between
θ � 0–180°. Each detector was positioned at a distance of 12 μm
from the center. The PA power at 390 MHz was computed for
each shape and plotted as a function of measurement angle for
comparison. This simulation was carried out in a workstation
(OS, Linux; RAM, 32 GB; Xeon processor; 2.10 GHz, clock
speed). The computational time was about 2 h and 30 min.

G. Size Estimation from Angular Distribution of the
DPACS Using Form Factor Models

As stated earlier, various form factor models have been used in
light, x-ray, and neutron scattering problems to fit the angular
distribution of differential scattering cross-section data and, ac-
cordingly, to determine scatter size. In this work, we also per-
formed a similar analysis. At first, angular location at which
the DPACS became maximum was identified (let θm); then,
a normalized spectrum was obtained as σ�k, θ�∕σ�k, θm�. An
identical step was also executed for the form factor [i.e.,
FF�k, θ�∕FF�k, θm�]. The next step was to iteratively vary the
fitting parameters (e.g., ϱ1, ϱ2, ϱ3 in the case of the tri-axes
ellipsoid model and Γ, L in the case of the finite cylinder
model) and minimize the following cost function:

Ω �
����10 log10

�
σ�k, θ�
σ�k, θm�

�
− 10 log10

�
FF2�k, θ�
FF2�k, θm�

�����
2

, (19)

where k k refers to the Euclidean norm. Note that the total
error between the simulated (normalized) and fitted curves
was computed over a range of θm to the first minimum in
the increasing θ direction. The set of parameters with mini-
mum fitting error provided characteristic dimensions of the
PA source along different directions. In this work, the tri-axes
ellipsoid form factor model was used to fit the DPACS data
corresponding to ellipsoids. However, both the tri-axes ellipsoid
and the finite cylinder models were utilized to fit the DPACS
data for RBCs.

3. RESULTS AND DISCUSSION

Plots of the DPACS calculated at 200 MHz (wavelength,
λ ≈ 7.5 μm) as a function of polar angle (θ) for oblate spheres
are shown in Fig. 4(a). The variation of the radius with an angle

Fig. 3. Visualization of normal and pathological RBCs in 3D (nor-
mal RBC top row, left panel; Stomatocyte1 top row, middle panel;
Stomatocyte2 top row, right panel). Plots of α vectors (bottom row).
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for each object is presented in Fig. 4(b). The DPACS for a
spherical droplet with 5 μm radius is also plotted in the same
figure for ready reference. It remains constant throughout the
angular domain considered in this study because a spherical
source acts as a monopole source. For oblate spheres, σ becomes
maximum at θ � 0 and then passes through successive maxima
and minima. The heights of maxima gradually decrease as θ
increases from 0 to π∕2 for each line. The angular interval be-
tween two successive maxima/minima decreases as the aspect
ratio increases. Further, the first minimum appears earlier
for the curve with a higher aspect ratio than that of the lower
aspect ratio. For example, the first minimum for a particle with
b:a � 1:8 nearly occurs at 28° but that of b:a � 1:2 arises
around 43°. It can be noted that σ is symmetric with respect
to θ � π∕2. This is expected because the PA sources are sym-
metric with respect to the z � 0 plane. Similar graphs for pro-
late spheres over the entire angular regime are displayed in
Fig. 4(c), and an angular variation of the radius of those objects
is shown in Fig. 4(d). Each line exhibits well-known peak and
dip patterns. Additionally, σ values at the locations of maxima
grow with increasing measurement angle and attain the maxi-
mum at θ � π∕2. The number of oscillations increases as the
aspect ratio is increased, as we have observed in Fig. 4(a). It may
be noted that Figs. 4(a) and 4(b) in general vary in a comple-
mentary manner, meaning that the DPACS becomes maxi-
mum when r�θ� approaches minimum and vice versa. The
same is true for Figs. 4(c) and 4(d). In other words, Fig. 4 re-
veals that the magnitude of the DPACS at an angular location
depends upon the geometrical cross-sectional area of the source
exposed to that direction.

Figure 5(a) illustrates how the DPACS varies with θ for
different RBCs, and the angular profile for radius for each cell
is shown in Fig. 5(b). In this case, we considered 400 MHz,
which corresponded to a wavelength of ≈3.75 μm. The plot
of σ for the equivalent sphere (of radius 2.92 μm) is also included
in this figure for comparison. Note that, for normal RBC, the
computed value of the DPACS at θ � 0° is significantly greater
than that of θ � π∕2. This shape has generated only one mini-
mum, which has appeared nearly at 38°. The line remains flat
over a large angle from θ � 50° to 90°. It is symmetric with
respect to θ � π∕2 because its radial profile is symmetric, as
shown in Fig. 5(b). Computed values of σ for Stomatocyte1
and Stomatocyte2 are shown in this figure over the entire angular
domain. Both curves follow an identical trend. The curve cor-
responding to Stomatocyte1 exhibits a dip at 34°, which is
slightly earlier than that of the normal erythrocyte. However, the
same for Stomatocyte2 is not so prominent. As in the previous
case, the line for the DPACS for each deformed RBC looks sym-
metric with respect to π∕2. This may be due to the fact that the
thickness profile is approximately symmetric for both cases, as
shown in Fig. 5(b). The DPACS for normal RBC is approxi-
mately 1 order of magnitude higher than that of pathological
RBCs when it is measured along the symmetry axis. This is be-
cause the surface area of the healthy RBC perpendicular to the
z axis is larger than that of diseased RBCs.

The angular pattern of the PA signal power has also been
examined using the k-Wave toolbox for RBCs. Simulation re-
sults at 390 MHz are displayed in Fig. 6 over the whole angular
range. It can be seen that the PA signal power for normal
RBC is significantly higher than pathological RBCs at 0°.
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Minima positions for infected RBCs appear slightly ahead of
the normal erythrocyte. These are consistent with Fig. 5(a).
However, little quantitative disagreement between the two ap-
proaches may be noticed. For example, the curves for normal
RBC and Stomatocyte2 are overlapping at 90° in Fig. 5(a), but
they are not overlapping in Fig. 6. The PA fields in the former
method were computed at r � 1000 μm, but, in the latter pro-
cedure, it was 12 μm. Little quantitative difference might have
occurred due to this mismatch. Overall qualitative agreement
between Figs. 5(a) and 6 validates the Green’s function results.

Normalized DPACSs as a function of θ are plotted in
Fig. 7(a) for oblate spheres. The corresponding best-fitted
curves based on the tri-axes ellipsoid form factor model are also
presented in the same figure over the entire angular range. The
model provides excellent fit to the normalized curves, and
the corresponding evaluated parameters are presented in
Table 3 (rows 4–12). The angular range over which fitting
was performed for each case, and associated fitting error as a
measure of goodness of fit are also given in this table. It can
be seen that numerical values of ϱ1 and ϱ3 are accurately esti-
mated when the DPACS data are fitted along the ϕ � 0° di-
rection (compare Rows 4 and 6 of Columns 2 and 4). However,
ϱ2 and ϱ3 are correctly predicted when ϕ � 90° (compare
Rows 5 and 6 of Columns 2 and 5). Figure 7(b) demonstrates
normalized graphs for prolate spheroids. The best-fitted curves
are included in the same figure as well. In this case, the model
also facilitates exact fits to the curves, and that is why estimates
are accurate, as appended in Table 3 (Rows 13–21).

Plots of normalized DPACSs are shown in Fig. 8 for RBCs.
Best-fitted curves for the tri-axes ellipsoid and the finite cylin-
der form factor models are displayed in the same figure as well.
Numerical values for the fit parameters and fitting errors are
given in Table 4. Both the models provide good fits to the si-
mulated data over the entire angular domain, as shown in the
top panel of Fig. 8 (the finite cylinder form factor model seems
to be marginally inferior near θ � 90°). Table 4 (Rows 4–6 and
Columns 4 and 5) demonstrates that the predicted values of ϱ1
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and ϱ2 agree well with the nominal values (deviation is ≈4%).
The estimated value of ϱ3 lies between t � 1.4 and h �
2.84 μm. The extracted value of Γ (Rows 4 and 5, Column 7)
is close to the physical value (error ≈2%) and L is comparable
with the average thickness of the cell (≈2.14 μm). Both models
display a close match to the simulated DPACS curves up to the
first minimum for Stomatocyte1 and Stomatocyte2 (see middle
and lower panels of Fig. 8, respectively). However, the fittings
are not good at the large angles (approximately between 40°
and 140°). The models slightly overestimate the dimension
along the x axis∕y axis of Stomatocyte1 by 18% and 20%, re-
spectively. This is also true for the other cell. It is not straight-
forward to correlate the actual and determined values of the

third dimension owing to the complexity of shapes for the de-
formed cells. Moreover, a fitting error did not change when ϱ3
varied from 0.1 to 0.5 μm with an increment of 0.01 μm for
Stomatocyte2. The same was observed for L, too. That is why it
is written as not converging in Table 4.

In this work, the PA fields have been calculated for non-
spherical axisymmetric particles. This was accomplished by
solving the time-independent wave equation by Green’s func-
tion method. It provides an integral solution to the wave equa-
tion. The integration in this work was carried out using the
Monte Carlo technique. The accuracy of this numerical
method can be checked by comparing numerical and analytical
results for the case of a homogeneous spherical source. It has
been observed that it is a fast method and facilitates accurate
results (data not shown). As stated earlier, we simulated pres-
sure signals in the k-Wave toolbox from different RBCs with an
initial pressure of unit strength and power at 390 MHz (de-
noted as jM�k�j2 in Fig. 6) was subsequently calculated for
each shape. The power as a function of measurement angle
was plotted to qualitatively match with the corresponding
DPACS curve. The k-Wave toolbox does not allow us to con-
trol the magnitude of incident light intensity (I 0); rather, an
initial pressure rise has to be given as an input. Therefore, it
was not possible to compute σ for this method, as the magni-
tude of I 0 was not available, and difference (or error) between
the k-Wave and Green’s function results could not be obtained
as well. Moreover, Green’s function method works well because
the condition of impedance matching has been imposed.
However, impedance for RBCs approximately differ from
the saline water by 16%; in that case, this method may not

Table 3. Comparative Study between the Nominal Values of the Morphological Parameters of the Spheroids Considered
in This Study and the Estimated Values of the Semi-axes along the x , y , and z Directions, Respectivelya

PA Source Spheroid Nominal Values (μm) Angular Range for Fitting

Estimated Values (μm)

Tri-axes Ellipsoid

ϕ � 0° ϕ � 90° Fitting Error (%)

AR � 1:2
a � 6.93

0–43°
ϱ1 � 6.93 5.83

0.48a � 6.93 ϱ2 � 5.59 6.93
b � 3.46 ϱ3 � 3.46 3.46

AR � 1:4
a � 8.72

0–35°
ϱ1 � 8.74 7.70

0.23a � 8.72 ϱ2 � 8.90 8.74
b � 2.18 ϱ3 � 2.14 2.14

AR � 1:8
a � 10.96

0–28°
ϱ1 � 10.95 10.41

0.08a � 10.96 ϱ2 � 10.19 10.95
b � 1.37 ϱ3 � 1.39 1.39

AR � 2:1
a � 4.36

90–114°
ϱ1 � 4.38 3.84

0.26a � 4.36 ϱ2 � 5.27 4.38
b � 8.72 ϱ3 � 8.67 8.67

AR � 4:1
a � 3.46

90–108°
ϱ1 � 3.46 2.85

0.10a � 3.46 ϱ2 � 4.32 3.46
b � 13.86 ϱ3 � 13.86 13.86

AR � 8:1
a � 2.75

90–102°
ϱ1 � 2.75 2.75

0.10a � 2.75 ϱ2 � 1.89 2.75
b � 22.01 ϱ3 � 22.01 22.01

aNote that the curve fitting error is defined as fitting error � k10 log10 � σ�k, θ�σ�k, θm ��−10 log10 � FF
2 �k, θ�

FF2 �k, θm ��k
k10 log10 � σ�k, θ�σ�k, θm ��k

× 100%; k k refers to the Euclidean norm and θ varied from θm (where

DPACS became maximum) to the first minimum in the increasing θ direction. Fitting error was found to be the same in both the directions (ϕ � 0 and 90°).
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work faithfully. Therefore, improved methods need to be de-
vised to address this issue.

Figures 4(a) and 4(c) reveal that the surface area
perpendicular to the direction of measurement determines
the magnitude of the DPACS. It increases as the surface area
increases. It is expected because the number of point sources
emitting the PA fields and interfering constructively at the de-
tector location (which is far away from the PA source) grows as
the geometrical cross-sectional area increases, causing the
DPACS to be high. On the other hand, it can be observed that
the DPACS diminishes, as the thickness of the source along the
direction of measurement increases. It may be speculated that
an increase in thickness promotes incoherent addition of fields
from point sources resulting in the DPACS to be low. It may
also appear that these statements are not always valid [e.g., the
DPACS for 1:8 (solid line) is higher than 1:4 (dashed–dotted
line) at θ � 90° in Fig. 4(a)]. This is due to the fact that the
curves exhibit oscillatory patterns. Additionally, such state-
ments may better hold for envelopes (not shown in the figures)
of those curves.

It is evident from Fig. 5(a) as well as from Fig. 6 that the
DPACS attains its maximum when it is measured from θ �
0° for normal RBC. It looks like a thin disc when viewed from
this direction. The maximum thickness of healthy RBC is about
h � 2.84 μm, which is less than the wavelength (3.75 μm) of
interest; therefore, coherent addition of PA fields by points
sources significantly increases along θ � 0°. Nevertheless, the
maximum thickness becomesD � 7.65 μmwhen probed from
θ � 90°; therefore, some PA fields meet out of phase, reducing
the magnitude of the DPACS. As in the previous case, along
θ � 0°, σ decreases as the cross-sectional area normal along this
direction decreases. Nevertheless, the corresponding trend is not
followed along θ � 90°. This is because RBC shapes are not sim-
ple. Moreover, an angular profile of the DPACS would lose its
features (i.e., maxima andminima) if detection is performed at a
lower frequency. For instance, the first minimum for normal
RBC starts to appear within the angular domain at 200 MHz
and the same for pathological RBCs becomes visible above

250MHz.Nominimumwill be noticeable for RBCs ifmeasure-
ments are carried out below 200 MHz.

The form factor models have been successfully employed in
different branches of science and engineering to analyze light,
x-ray, and neutron scattering data to determine scatterer size. In
that context, FF is a function of qϱ, where q � ks − ki is the
momentum transfer with ki and ks the incident and scattered
wave vectors, respectively; consequently, FF → 1 in the forward
direction because qϱ → 0 in this direction. However, the analo-
gous situation did not arise in the case of PA emission at least
for the acoustic frequencies considered in this study. The shape
parameters were estimated precisely for spheroidal droplets and
normal RBC. The extracted values for thickness parameters ex-
hibited greater variability for pathological RBCs. Along with
the best fit parameters, we also applied a fit process on the data,
and the parameters of the fit were retrieved with uncertainties.
Essentially, we stored all the combinations of values (ϱ1, ϱ2, ϱ3)
or �ϱ1, ϱ2, ϱ3�∕�Γ, L� for which absolute fitting errors were
≤5%. After that, mean and standard deviation were obtained
for each shape parameter (data not shown). It was found that
the uncertainty in each measurement for spheroidal particles
remains below 10%, and that is why precise estimation was
accomplished. A similar study carried out for normal RBC de-
montrated that standard deviation in general in each case re-
mains to be <10%. However, for deformed RBCs, standard
deviations along the z axis approach to 50%, showing that
the estimates in this direction are erroneous. More robust
methods may be developed in the future to accurately fit
the DPACS curves, particularly for deformed RBCs and, con-
sequently, obtain estimates for clinical usage. Furthermore, in
this work, we considered axisymmetric shapes only. In the fu-
ture, nonaxisymmetric shapes, particularly echinocyte states of
RBC, would be considered. Hence, it would be interesting to
construct nonspherical nonaxisymmetric shapes using spherical
harmonic expansion [35,36] and examine how DPACS would
vary with angle (both polar and azimuthal) for such shapes. It
would also be interesting to investigate how form factor models
would work assessing characteristic sizes of diseased cells.

Table 4. Comparison between the Actual and the Evaluated Values of the Morphological Parameters for Normal and
Pathological RBCsa

PA Source Nominal Values (μm)
Angular Range
for Fitting

Estimated Values (μm)

Tri-axes Ellipsoid Finite Cylinder

ϕ � 0° ϕ � 90° Fitting Error (%) Estimates Fitting Error (%)

Normal RBC
Re � 3.82

0–38°
ϱ1 � 3.65 2.83

0.13
Γ � 3.74

1.0t∕2 � 0.7 ϱ2 � 4.10 3.65 L � 2.19
h∕2 � 1.42 ϱ3 � 1.88 1.88

Stomatocyte1
Re � 3.18

0–34°
ϱ1 � 3.76 4.61

2.0
Γ � 3.81

1.8t∕2 � 1.36 ϱ2 � 2.43 3.76 L � 2.11
h∕2 � 1.47 ϱ3 � 1.82 1.82

Stomatocyte2

Re � 3.27

0–33°
ϱ1 � 3.67 4.87

6.6

Γ � 3.24
7.4t∕2 � 0.21 ϱ2 � 2.07 3.67 L � Not

h∕2 � 1.16 ϱ3 � Not Not converging
converging converging

aNote that the curve fitting error is defined as fitting error � k10 log10� σ�k, θ�
σ�k, θm ��−10 log10� FF2 �k, θ�

FF2 �k, θm ��k
k10 log10� σ�k, θ�

σ�k, θm ��k × 100%; k k refers to the Euclidean norm and θ varied from θm (where

DPACS became maximum) to the first minimum in the increasing θ direction. Fitting error was found to be the same in both the directions (ϕ � 0 and 90°).
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4. CONCLUSIONS

In conclusion, an expression for the DPACS in terms of form
factor is derived. Variation of the DPACSs with polar angles for
spheroidal droplets and normal and pathological RBCs have
been investigated and also fitted with form factor models to
determine shape parameters. It is found that the DPACS in-
creases as the surface area of the PA source perpendicular to
the direction of measurement increases and decreases as the
thickness of the source along the same direction increases.
For example, the DPACS along the symmetry axis grows by
20-fold when the surface area is increased by 44% (from
Stomatocyte1 to normal RBC). Further, angular positions of
minima also depend on cellular size and shape. The tri-axes
form factor model provided accurate estimates of shape param-
eters for spheroidal droplets. Morphology of normal RBC was
evaluated with ≈4% accuracy using the tri-axes and finite cyl-
inder form factor models. This study may guide design experi-
ments to measure angular distribution of the DPACS and,
accordingly, to assess cellular morphology by optimizing exper-
imental and theoretical data.
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