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Abstract
The photoacoustic (PA)field calculation using aGreenʼs function approach for nonspherical
axisymmetric fluid particles is discussed. The PAfields have been computed for spheroidal droplets,
Chebyshev particles and normal and pathological red blood cells (RBCs) over a large frequency band
(10–1000MHz). Theoretically constructed RBC contours have beenfitted using the Legendre
polynomial expansion for parametrization of cell shapes. It is shown thatfirstminimumof the PA
spectrum appears at a lower frequency as thewidth of the particle along the direction ofmeasurement
increases. The spectra for higher order (n= 6, 8)Chebyshev particles resembled that of an equivalent
sphere up tofirstminimum. Thefirstminimum for a stomatocyte appeared (420MHz)much earlier
compared to that (640MHz) of normal RBCwhenmeasured along the direction of the symmetry axis;
whereas the locations were 310 and 240MHz, respectively from a perpendicular direction. The
evaluation of cellularmorphologymight be feasible by analyzing the single particle PA spectrum.

1. Introduction

Several methods have been developed to study light
scattering by a variety of particles, namely, particulate
matter, biological cells and tissues. The Mie theory,
which is an exact method, has been extensively
employed to obtain scattering solutions for regular
(e.g. spherical, cylindrical etc) objects [1]. Waterman
developed amethod known as theT-matrixmethod to
examine light scattering by nonspherical particles
[2, 3]. This approach has found important applications
in many fields such as characterization of optical
properties of aerosol particles [1]. Another approach
referred to as the discrete dipole approximation has
been developed as a flexible and powerful technique
for computing scattering and absorption by targets of
arbitrary geometry [4]. The Born approximation
method has been used to yield scattering solutions for
soft particles [5]. In the context of ultrasonic scatter-
ing, scattering solutions for solid regular targets can be
obtained using the Faran model [6]. The angular
distribution of scattering amplitude for fluid spheres

can be calculated analytically too [7]. Waterman’s T-
matrix formulation has also been implemented to
investige acoustic scattering of erythrocyte suspension
[8, 9]. There also exist some approximate methods
based on the Born approximation and its variants
yielding scattering solutions for weak scatterers [10].
In these cases, the wave equation is solved using a
Green’s functionmethod.

The exact analytical solutions to the photoacoustic
(PA)wave equation can be derived using separation of
variables method for sources with regular shapes [11].
The exact solution for a fluid sphere can faithfully
model PA fields generated by fluid droplets [11]. It has
also been used to represent PA signals from cells [12–
17]. If the single particle solution is known, the resul-
tant PA field generated by many particles (or a tissue)
can be obtainted by linearly summing fields emitted by
the individual cells. This is the approach adopted to
study how time and spectral domain features of PA
signals are dependent on the spatial organization or
size distribution of cells [12, 14, 16, 17]. The same sin-
gle particle theoretical formulation has been applied to
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investigate how biophysical and biochemical proper-
ties of cells affect PA signal properties [13–17]. An
inverse problem framework has been recently pro-
posed to assess mean size and average variance in
the optical absorption coefficients of tissue micro-
structures from received PA signals [18]. It analyzes
PA signals in the frequency domain using correlation
models. It may be noted that in these studies cells
are assumed as fluid spheres which seems to be a
valid approximation, at least in the low frequency
range [19, 20].

Strohm et al, in fact, experimentally demonstrated
that spherical approximation is not valid above
100MHz for PA sources like red blood cells (RBCs)
[19, 20]. The PA signals from a series of normal and
treated RBCs were measured at different orientations
using ultra-high frequency transducers (with center
frequencies at 200, 375, 1200 MHz). They also per-
formed numerical simulations using the finite element
method to compare theoretical and experimental
results. These works revealed that a micron-sized par-
ticle has unique spectral features above 100MHz that
are strongly dependent on size, shape and orientation
of the particle. It is believed that these features could be
exploited to help diagnose RBC pathology from just a
single drop of blood in a clinical setting through an
automated process. Recently, Li et al developed meth-
ods for calculating PA fields from spheroidal droplets
[21, 22]. However, analytical derivation in a spheroidal
coordinate system is nontrivial. On the other hand PA
signal emitted by a source with arbitrary shape can be
simulated using k-Wave tool box and accordingly, sig-
nal characteristics can be examined [23]. For example,
this tool box has recently been explored to simulate PA
waves for nanoparticles of various shapes [24]. How-
ever, in general, solution to the PA wave equation in
3D are resource intensive and time consuming. There-
fore, a more efficient method to calculate the PA fields
is desirable.

In this paper, we used a Green’s function approach
to solve the PA wave equation. It is a simple and fast
procedure for obtaining solutions for regular and irre-
gular objects. The detailed derivation of differential PA
cross-section is also presented in this work. It is
defined as the acoustic power received per unit solid
angle divided by the intensity of the light beam. It has
been developed by drawing analogy with light and
sound scattering problems. The differential scattering
cross-section can relate theoretical results with exper-
imental findings. The total PA cross-section can be
computed by integrating the differential PA cross-
section over the whole solid angle. It can be thought as
a hypothetical area for which light energy is converted
into sound energy. Using this approach, we computed
PA fields from nonspherical axisymmetric fluid parti-
cles, including spheroidal droplets, the Chebyshev
particles [26] and normal and pathological RBCs. The
first two classes of particles are theoretically interesting

to study whereas the third set of corpuscles have been
investigated to gain insights for developing a PA char-
acterization tool to assess cellular morphology. Para-
metric surface modeling approach involving the
Legendre polynomial expansion has been imple-
mented to construct contours of discocyte and stoma-
tocyte states of RBCs. It is shown that locations of
spectral minima depend upon the size of particles and
direction of measurement. The numerical results pre-
sented in this paper were validated by performing 2D
simulations using the k-Wave simulation tool
box [23].

The organization of the paper is as follows.
Section 2 presents themathematical derivation for cal-
culating the differential PA cross-section. The para-
metric descriptions of various shapes and numerical
parameters are also given in this section. The next
section describes the numerical results. A discussion of
the merits of the current approach is presented in
section 4. The conclusions of this study are drawn in
the same section as well.

2.Materials andmethods

2.1. PAfield calculation
The time independent wave equation for PA pressure
is given by,

 + =
wmb
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where μ, β, CP are the optical absorption coefficient,
isobaric thermal expansion coefficient and specific
heat for the absorbing region, respectively. Here, ω
and I0 indicate modulation frequency and intensity of
the incident light beam; k is the wave number of the
acoustic wave. The acoustic properties (e.g. density
and speed of sound) of the absorbing and the ambient
media are similar. The solution to equation (1) can be
obtained as [25],
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function; q f( )rr , , and q f(rr , ,0 0 0 0) denote field and
source points, respectively as shown in figure 1. The
subscript ext indicates that the field point is outside the
absorbing region (i.e. >r r0). The free space Green’s
function is given by [25],
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where

òp
= - -( ) ( )·M Ak r

1
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e d . 5k ri 3

0
0

Analogous to the differential scattering cross-
section, differential PA cross-section (defined as the
acoustic power per unit solid angle received far away
from the PA source divided by the intensity of the light
beam) can be expressed as [18],

s
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where ρ and v are the density and speed of sound of the
surrounding medium. Scattering cross-sections have
been computed and measured in various branches of
science to study scattering properties of imhomogene-
ities. The total PA cross-section can readily be
calculated by integrating the differential PA cross-
section s ( )k over the entire solid angle. The total PA
cross-section indicates a hypothetical area and light
energy of which converts into acoustic energy due to
the PA effect. For a regular object, integration in
equation (5) can be calculated analytically providing a
closed form expression for s ( )k . For example, for a
homogeneous spherical absorber equation (6) reduces
to,
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where j1 is the spherical Bessel function of order unity
and ñ is the radius of the spherical absorber. For an
irregular PA source, it is not possible to yield analytical
solution, however, a numerical solution can be
obtained.

The time domain form for PA pressure for a delta
function heating pulse can bewritten as [11],
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where F is the optical fluence. It may be emphasized
here that equation (8) represents an analytic signal.
Thus, the real and the imaginary parts form a Hilbert
transform pair. The real part has been considered as
the PA signal. In this work, equation (8) has been
numerically evaluated to simulate PA signals for some
of the shapes considered in this study.

2.2. Axisymmetric nonspherical shapes
2.2.1. Spheroidal droplets
The geometry of an irregular absorber having azi-
muthal symmetry can be described in spherical polar
coordinates q f¢ ¢ ¢( )r , , by setting, q¢ = ¢( )r F ; F is a
function that relates ¢r and q¢ (see figure 1). For
example, for a spheroidal particle we can write the
distance q¢ ¢( )r of a point on the surface to be,

q
q q
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¢ + ¢
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where a and b are the semi axes (for oblate sphere
<b a and for prolate sphere >b a). Figure 2 shows

some spheroids with different aspect ratios that have
been considered in this study. For all droplets the
volume remains the same. Equations (2) and (5) for a
nonspherical object can be simplified as,
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respectively. The above integration was numerically
calculated in this work to generate PA fields and
accordingly differential PA cross-sections for various
spherical and axisymmetric nonspherical light absorb-
ing particles.

2.2.2. Chebyshev particles
For a Chebyshev particle, distance of a point on the
surface can bewritten as [26],

q q¢ ¢ = + ¢( ) [ ( )] ( )r R T1 cos , 12c n

where q q¢ = ¢( )T ncos cosn is the Chebyshev polyno-
mial of degree n, n refers to the waviness parameter, Rc

is the radius of the unperturbed sphere and  is the
deformation parameter. Such a particle is obtained by
continuously deforming a sphere using a Chebyshev
polynomial of degree n. Scattering properties of this
two parameter family of particles have been studied
extensively in the field of light scattering [26]. Some of
the Chebyshev particles at fixed volume are shown in

Figure 1.Geometry of the PA set up.

3

Biomed. Phys. Eng. Express 3 (2017) 015017 RK Saha et al



figure 3 for = 0.25 and figure 4 for = - 0.25. The
particles are symmetric with respect to the Z axis (see
figure 3(a)). The particles with even n are also
symmetric with respect to a plane perpendicular to the
symmetry axis. The particles with odd n are not
symmetric about the same plane. The heights of
peaks/troughs of dips (of surface curvature) increase
as themagnitude of  increases. However, the number
of peaks and dips increases with increasing n. The
frequency domain solution of PA field can be com-
puted utilizing equation (11) for the Chebyshev
particles.

2.2.3. Red blood corpuscles
RBCs under the normal physiological conditions
appear as biconcave discocytes. It has been known for
more than 50 years that there are many biochemical
agents that can modify RBC morphology [27, 28].
Some agents can induce a series of crenated shapes
known as echinocytes. For such cells, many little
equally spaced protrusions are projected outwards.
There are several agents that can induce concave
shapes referred to as stomatocytes. Both normal and

pathological shapes can be fitted well with spherical
harmonics expansion [29, 30]. In fact, spherical
harmonics expansion has been found to be a con-
venient tool to parametrize cell morphology. This set
of functions can fit both symmetrical and nonsymme-
trical objects. The fitting problem becomes relatively
simple for azimuthally symmetric particles. In this
case, cell contour can be expanded in terms of the
Legendre polynomials as,

åq a q¢ ¢ = + ¢( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥r R P1 cos , 13e

n
n n

where Re is the radius of spherical envelope that
encloses RBC; an is the parameter describing the shape
and Pn is the Legendre polynomial of degree n. It may
be noted that the Legedre polynomials are orthogonal
functions and form complete set of basis functions.
Any arbitrary function between q p¢ 0 can be
expressed in terms of these basis vectors. In this study,
we use the above expansion to obtain normal discocyte
shape and two different shapes simulating stomato-
cytes. The 2D cross-sectional views of the shapes are

Figure 2.Representative plots of spheroidal droplets with constant volume; b:a=1:4 (top row, left panel), b:a=1:2 (top row, right
panel), b:a=2:1 (bottom row, left panel), b:a=4:1 (bottom row, right panel).
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given in figures 5(a)–(c) and 3D shapes in figure 6. The
PA fields, as well as differential PA cross-sections, have
been computed for those corpuscles.

2.3. Numerical parameters
2.3.1. Physical parameters
The density and speed of sound of the surrouding
medium were chosen as ρ = 1005 kg m−3 and
v= 1500 m s–1, respectively. The same values were also
taken for the PA source. The optical and thermo-
mechanical parameters for the absorbing object were
taken as constants ( m b= = = =I C1, 1, 1, 1P0 ).
PA pressure amplitudes were evaluated for a wide
range of frequencies from 1.5 to 2000MHz. To carry
out the integration in equation (11), the source volume
was discritized into a number of voxels (200 nm as the
length of each side). The trapezoidal rule was used to
perform the numerical integrations. A computer code
was written in MATLAB for this purpose. It was
executed in a personal computer (Intel(R) Core(TM)
i3-3220 CPU, 3.30 GHz, 6 GB RAM). Figure 7 shows a
comparison between numerical and analytical results
for a homogeneous spherical PA source (of 5 μm

radius). Excellent match between these curves vali-
dates the numerical scheme implemented in this
study.

2.3.2. Shape parameters
The differential PA cross-section was calculated for
eight spheroidal shapes with aspect ratios b:a=1:8,
1:4, 1:2, 2:1, 4:1, 8:1. The shape parameters are given in
table 1. For the second case, we considered ten
different Chebyshev shapes (see table 1 for parameter
specification). For each case, volumewas fixed at 523.6
μm3, which is the volume of a fluid sphere of radius
5μm.

The parametric equation of the Evans–Fung
model has been extensively used to generate contour
of a healthy RBC and it is given by [31],

x
x x x
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e
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0 1
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where ξ is the horizontal distance and three coeffi-
cients c c,0 1 and c2 determine RBC shape [3] (see
figure 5). The numerical values of these coefficients

Figure 3.TheChebyshev particles with = 0.25; n=2 (top row, left panel), n=3 (top row, right panel), n=4 (bottom row, left
panel) and n=8 (bottom row, right panel).
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can be obtained from four morphological parameters
expected to be known from measurements. The
morphological parameters, as shown in figures 5(a)–
(c), are diameter (D), dimple thickness (t), maximum
thickness (h), diameter of a circle drawn on the
location of maximum thickness (d). The numerical
values of these four morphological parameters for a
normal RBC were taken from literature [3] and
presented in table 1. Two shapes mimicking stomato-
cytes were simulated (referred to as Stomatocyte1 and
Stomatocyte2 in the text) by varying these morpholo-
gical parameters phenomenologically. For pathologi-
cal RBCs, the upper hemisphere was generated using
equation (14) while the lower part was a half sphere.
2D and 3D views of these cells are demonstrated in
figures 5 and 6, respectively. The theoretically con-
structed shapes were then fitted with the expansion
given in equation (13) in order to estimate an. At first
we generated s number of radial samples (i.e. r1, r2...rs)
at different angular locations (q1, q2...qs) using
equation (14). Then we constructed a system of
equations considering up to Lth degree Legendre
polynomial as (see equation (13)),

q q q
q q q

q q q
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The above equations have been solved using the least
square fitting technique obtaining an s. In this work,
we generated more than 100 radial samples and
infintie sum in equation (13)was truncated at L=19,
which was fixed based on the literature [30]. In fact,
accuracy of fitting did not improve significantly if
higher order terms were retained. The fitted curves are
shown in figures 5(a)–(c) along with the theoretical
curves (from equation (14)). Excellent agreement can
be seen in figures 5(a)–(c). The relative strengths of an

are plotted in figure 5(d) for each case. Reconstructed
3D shapes are displayed infigure 6.

Figure 4.TheChebyshev particles with = - 0.25; n=2 (top row, left panel), n=3 (top row, right panel), n=4 (bottom row, left
panel) and n=8 (bottom row, right panel).
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3. Results

Representative plots ∣ ( )∣M f 2 for different oblate and
prolate spheroids of the same volume are shown in
figure 8(a) over a wide range of frequencies (10–1000
MHz). This quantity has been calculated along the axis
of symmetry. The aspect ratio of each droplet is
presented in the legend. To improve the clarity of the
figure, lines are plotted in two subfigures and also

some lines have been omitted. The result for an
equivalent sphere (i.e. b:a= 1:1) is also included in the
figure for comparison. Figure 8(a) shows that magni-
tudes of power spectra for different spheroidal objects
are comparable at frequencies below 10MHz. Shape
variation does not affect spectral features in the low
frequency range. After 10 MHz each curve passes
through successive maxima andminima. The number
of oscillations increases as the aspect ratio increases.

Figure 5.Two-dimensional cross-sections of normal and pathological RBCs. (a)Normal RBC, (b) Stomatocyte1, (c) Stomatocyte2.
(d)Plots of coefficients (an) of the Legendre polynomials.

Figure 6. Simulated shapes of normal erythrocyte and stomatocytes. Left panel: normal RBC,middle panel: Stomatocyte1 and right
panel: Stomatocyte2.
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The first minimum for the particle with b:a=8:1
appears at the lowest frequency (approximately
50 MHz). In contrast, the spectrum for the object
having b:a=1:8 is nearly flat up to approximately
600MHz. The first minimum for this particle arises at
860MHz. The thickness of the particle along the
direction of measurement controls the locations
of first minimum as well as higher order spectral
features (peaks and dips). The spectral maxima and
minima for the intermediate particles occur at fre-
quencies >100 MHz. Similar observations can be
made from figure 8(b) which demonstrates power
spectra for the same particles when measured
perpendicular to the axis of symmetry. As expected,
the curves are oriented in the reverse order with
respect tofigure 8(a).

Figure 9(a) illustrates how power spectra vary for a
series of Chebyshev particles ( = 0.25; n=2, 3, 6
and 8). This figure contains two parts (lower and
upper panels) so that the graphs are displayed dis-
tinctly. The number of maxima and minima within
100–1000MHz is maximum for n=2. Additionally
for this particle, oscillation starts earlier (first mini-
mum at 150MHz) compared to the others. This is due
to the fact that it is the thickest particle, within this

class of particles, along the axis of symmetry (see
figure 3, top row, left panel). The spectrum for n=3
has no spectral feature (flat) over the entire frequency
range. The amplitude of oscillation of spectral features
are noticeably smaller than those of the others. The
first minima positions for n=6 and 8 appear close to
that of the sphere. Further, the gap between first and
second minima for n=6 or 8 is wider than that of
two and three. The theoretical spectra for the same
particles are demonstrated in figure 9(b) when com-
puted in a transverse direction (q p= 2). The peak
and trough pattern for n=2 is similar to that of
figure 9(a). However, minima locations because of
lower thickness occur at higher frequencies in
figure 9(b). The spectrum for n=3 exhibits more
pronounced spectral features (maxima and minima)
at regular intervals in comparison to those of
figure 9(a). The spectra for higher order particles
resemble that of the sphere up to nearly 250MHz.
After that deviations are great owing to shape-com-
plexity as compared to the PA wavelength. Figure 10
displays computed spectra for Chebyshev particles
with = - 0.25 and n=2, 3, 6 and 8. The spectra for
n=2 along q = 0 and p 2 manifest expected varia-
tions. The spectral signatures for n=3 in figures 10(a)
and (b) are identical with those of figures 9(a) and (b),
respectively. As discussed above, spectra for complex
shapes (i.e. n= 6 and 8) closely match with that of the
sphere at least up to the first minimum. Thereafter
spectral variations are complex and interpretation is
not straight forward.

The spectral behaviors of normal and pathological
RBCs are presented in figures 11(a) and (b) along and
perpendicular to the symmetry axis, respectively. As
mentioned earlier, two subfigures are used to plot the
lines for each case for better presentation. The same
curve for an equivalent sphere is also provided in both
of the figures for comparison. The spectrum is flat and
essentially featureless from 100 to 500MHz for a heal-
thy RBC as shown in figure 11(a). The first spectral
minimum in this case appears at 640MHz. An RBC is
really thin along this direction (see figure 5(a)) and that
pushes the first minimum to occur at a very high fre-
quency. The spectra corresponding to stomatocyes are
similar. The variation of thickness at the center is
below 20% between the stomatocytes and thus seems
to have negligible effect in the spectral domain. Never-
theless, the first minimum for stomatocytes appear
much earlier (≈421 MHz), due to the change in shape
of the cell, compared to that of normal erythrocyte.
Several maxima and minima are enclosed within
100–500MHz for biconcave RBC with the first mini-
mum appearing at 241MHz (figure 11(b)). The spec-
tra for stomatocytes have feature patterns between
those of normal and spherical RBCs since the dia-
meters of the former particles (see figures 5(b) and (c))
lie between those of the later objects.

Figure 7.Comparison between analytical and numerical
results for a homogeneous light absorbing sphere (of 5μm
radius).

Table 1.Numerical values of parameters for various PA sources. The
unit for RBCmorphological parameters isμm.

Objects

Volume

(μm3) Shape parameters

Spheroids 523.6 b:a=1:1
523.6 b:a=1:8, 1:4, 1:2, 2:1, 4:1, 8:1

Chebyshev 523.6 = 0

523.6 = 0.25, n=2, 3, 4, 6, 8
523.6 = - 0.25, n=2, 3, 4, 6, 8

RBCs 105.1 D=7.65, t/2=0.72, h/2=1.42,
Re = 0.5D, d=0.7D, L=19

104.4 D=6.28, t/2=1.1, h/2=1.5,
Re = 0.5D, d=0.7D, L=19

105 D=6.45, t/2=0.25, h/2=1.5,
Re = 0.5D, d=0.7D, L=19
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4.Discussion and conclusions

Various PA spectral lines generated by a series of
particles at different orientations are presented in this
work. These are obtained by direct computation of the
frequency domain solution to the PA wave equation
using a Green’s function approach. It is demonstrated
that spectral lines are different for different particles.
Therefore, it is expected that the corresponding PA
signals should be different for different particles too.
To verify this, the PA signals from normal and
pathological RBCs have been computed by numeri-
cally evaluating equation (8) and are displayed in
figure 12. A sharp and narrow N-shaped pulse has
been computed when the detector is located at q = 0
as shown in figure 12(a). The pulse is elongated when
probed from q p= 2. Its amplitude is approximately
reduced by a factor of four and the PA signal duration
is three times greater than those of the former pulse.
This can be attributed to the fact that RBC is thinner
when viewed by the ultrasound detector from the first
direction compared to the second direction. The
difference between the PA signals emitted by Stomato-
cyte1 and Stomatocyte2 is small because they are
similar (as given in figures 12(b) and (c)). As expected
for a homogeneous sphere, signals are identical from
all directions as shown infigure 12(d).

The spectral lines for the particles considered in
this study were also generated via the k-Wave simula-
tion tool box for comparison6. In this case, we per-
formed simulations in 2D since 3D simulations in
k-Wave are time consuming. Figure 13(a) displays the
spectral lines for four RBC shapes (i.e. discocyte, Sto-
matocyte1, Stomatocyte2 and spherical) for the obser-
vation direction q = 0 . The graphs for the method
presented in this work for the same 2D particles are
shown in figure 13(b). The locations of frequency

minima as well as spectral slope up to 200MHz for
each line in figure 13(a) are comparable to that of
figure 13(b). For example, spectral slope for both the
methods can be found to be approximately 0.06
dBMHz–1 within the frequency band 10–200MHz for
normal RBC. The computational results for q p= 2
are presented in figures 13(c) and (d) for those meth-
ods, respectively. These figures demonstrate good cor-
respondence between the methods for each particle. It
was observed that the k-Wave tool box took about
18 min on a personal computer to simulate PA signals
from a normal or pathological RBC. The execution
time for the same computer evaluating a PA signal for
one detector location was less than a minute for the
approach presented here. The computational time for
the current method would increase if multiple detec-
tor positions are considered. However, for the k-Wave
method, the simulation time would not change even
though signals are measured frommany directions. In
general, the presentmethod is a fastermethod than the
k-Wave method and is sufficient since in our flow
cytometry application only one transducer (and thus
detector location) is used.

The results presented in this paper are also cosis-
tent with those of previous publications [19, 20]. The
firstminimum in the experimental spectrum appeared
to be at about 800MHz for a normal RBC for q = 0 .
However, it occurs at 640MHz for our case. In this
work, we assumed that the acoustic properties (density
and speed of sound) of PA source and the surrounding
medium were the same. Nevertheless, this was not the
case during the experiment. The density and speed of
sound for RBC are higher than those of the saline
water. The speed of sound inside RBC controls the
wave-number of a wave and thus dictates the locations
of frequencyminima.

In this work, we restricted ourselves to the axisym-
metric shapes. These shapes can be represented well
with the Legendre polynomial expansion, as shown for
RBCs. However, RBC-shapes under the influence of

Figure 8.Plots of ∣ ( )∣M f 2 as a function of frequency for different spheroids calculated along (q = 0) and perpendicular q = p( )2
to

the axis of symmetry in (a) and (b), respectively. To improve the clarity of eachfigure, lines are presented in two subfigures (upper and
lower panels).

6
The spatial grid size was chosen to be 1024×1024 with a

resolution of 0.2μm.
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certain agents become complex and nonaxisymmetric.
Such shapes can be fitted well using the spherical har-
monic expansion facilitating parameterization of sur-
faces. This is known as parametric surface modeling.
The parametric surface modeling is an active research
area in medical image analysis [29, 30]. Therefore,

complex nonaxisymmetric shapes (e.g. echinocyte
states) could bemodeled using the spherical harmonic
expansion. Those results could be compared to those
of a normal RBC. It might also be speculated that PA
images of cells and organelles could be parameterized
through the spherical harmonic expansion for

Figure 9. (a)Variations of ∣ ( )∣M f 2 with ultrasonic frequency for theChebyshev particles ( = 0.25) along q = 0. (b) Similar to (a)
but for q = p

2
. Eachfigure is divided into two parts (upper and lower panels) to improve the clarity of the lines.

Figure 10.Representative graphs of ∣ ( )∣M f 2 for theChebyshev particles with = - 0.25 for two perpendicular directions (q = 0 in
(a) and q = p

2
in (b)). For each direction, some of the lines are plotted in the upper panel and rest of the lines are displayed in the lower

panel.

Figure 11.Computed ∣ ( )∣M f s2 for normal and pathological RBCs as a function of frequency. (a)The quantity is evaluated in the
q = 0 direction. It has two parts (upper and lower panels). (b) Same as (a) but for q = p

2
.
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quantitative evaluation of their morphologies. Addi-
tionally, the PA technique is a unique modality that
can provide spectral information which in turn may
help to cross-check the accuracy of parametrization.

The rapid analysis of spectral features is critical for
the work on the determination of cell shape and size
using the PA methods. Measurements using the PA
signal analysis have been used to calculate the nucleus

to cytoplasmic ratio of cells for the differentiation of
cells [32]. We have recently incorporated such high
frequency transducers in microfluidic devices, and are
working on differentiating different cell types [33]. In
this approach, we need to perform a best fit to the PA
data measured for thousands of signals collected from
cells. In the long term, we aspire to perform analysis
of the PA signals in near real time for the rapid

Figure 12.Plots of PA signals generated by normal and pathological RBCs. The signals along (q = 0) and perpendicular (q p= 2) to
the axis of symmetry are shown. (a)Discocyte, (b) Stomatocyte1, (c) Stomatocyte2, (d) Sphere.

Figure 13.Plots of spectral power for four RBC shapes (i.e. normal RBC, stomatocyte1, stomatocyte2 and equivalent sphere). (a)The
spectral lines obtained using the k-Wave tool box q = 0. (b)The same lines for aGreen’s function approach. (c) and (d)The same
curves by thosemethods, respectively for q p= 2.
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characterization and classification of cells in our PA/
acousticflow cytometer.

In conclusion, the PA fields in the far field region
for nonspherical axisymmetric fluid particles were
derived using a Green’s function approach. The analy-
tical expression for differential PA cross-section was
also presented. The Legendre polynomial expansions
were utilized to fit theoretically constructed RBC con-
tours representing discocyte and stomatocytes. The
location of the first frequencyminimum for the spher-
oidal droplet decreased as the aspect ratio increased. It
varied from 600 to 50MHz for the particles con-
sidered in this study, for the measurement direction
q = 0 . However, for q = 90 the location of the first
frequency minimum increased with increasing aspect
ratio. The same graphs for higher order (n= 6, 8)Che-
byshev particles exhibited a close match to that of a
homogeneous sphere up to first frequency minimum
from both observation directions (along and lateral to
the axis of symmetry). The PA spectra for normal and
pathological RBCs were different. For stomatocyte
states, the first minimum occurred (420 MHz) much
earlier than that of healthy RBC (640MHz)whenmea-
sured from q = 0 direction. However, for q = 90
minima appeared at about 310 and 240MHz, respec-
tively. Much insight could be gained from this study as
to how locations of frequency minima depend on the
width of the PA source along the direction ofmeasure-
ment. Moreover, it might be possible to assess cellular
morphology from the PA spectral pattern. Identifica-
tion of the particle state based on the spectral features
detected for frequencies between 100 and 1000MHz is
critical for our current work on the detection of RBC
pathology. The approach that relies on simultaneous
irradiation of the particles with light and ultrasound,
and identification of the particle state based on the
spectral features that are derived from the signals mea-
sured [19, 20].
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