
Coherent and incoherent ultrasound backscatter from cell
aggregates

Romain de Monchy
Aix-Marseille Universit�e, Centre National de la Recherche Scientifique, Centrale Marseille,
Laboratoire de M�ecanique et d’Acoustique, 4 Impasse Nikola Tesla, CS 40006,
13453 Marseille cedex 13, France

François Destrempes
Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Centre
(CRCHUM), 900 St-Denis, Suite R11.720, Montreal H2X 0A9, Canada

Ratan K. Saha
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Devghat,
Allahabad 211012, India

Guy Cloutiera)

Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Centre
(CRCHUM), 900 St-Denis, Suite R11.720, Montreal H2X 0A9, Canada

Emilie Franceschinib)

Aix-Marseille Universit�e, Centre National de la Recherche Scientifique, Centrale Marseille,
Laboratoire de M�ecanique et d’Acoustique, 4 Impasse Nikola Tesla, CS 40006,
13453 Marseille cedex 13, France

(Received 2 March 2016; revised 16 June 2016; accepted 17 August 2016; published online 30
September 2016)

The effective medium theory (EMT) was recently developed to model the ultrasound backscatter

from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 58, 2668–2679 (2011)]. The EMT assumes that aggregates can be treated

as homogeneous effective scatterers, which have effective properties determined by the aggregate

compactness and the acoustical characteristics of the cells and the surrounding medium. In this

study, the EMT is further developed to decompose the differential backscattering cross section of a

single cell aggregate into coherent and incoherent components. The coherent component corresponds

to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent

component considers the variance of the scattering amplitude (i.e., the mean squared norm of the

fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical

expression for the incoherent component based on the structure factor is proposed and compared

with another formulation based on the Gaussian direct correlation function. This theoretical

improvement is assessed using computer simulations of ultrasound backscatter from aggregating

cells. The consideration of the incoherent component based on the structure factor allows us to

approximate the simulations satisfactorily for a product of the wavenumber times the aggregate

radius krag around 2. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4962502]

[GH] Pages: 2173–2184

I. INTRODUCTION

Ultrasound scattering from biological tissues exhibits a

frequency dependence which is related to the structure of

the insonified medium. For determining the tissue micro-

structure, one approach consists in fitting the measured

frequency-dependent backscatter coefficient (BSC) to a the-

oretical BSC derived using an appropriate theoretical scat-

tering model. Two theoretical scattering models are often

used in the field of quantitative ultrasound (QUS) imaging.

The first model, named the spherical Gaussian model,

describes a tissue as a random inhomogeneous continuum

with impedance fluctuations.1 The second model, named the

fluid sphere model, considers tissue as randomly distributed

discrete scatterers with impedance differing from a homoge-

neous background medium, where the cells are generally

considered as the dominant source of scatterers and modeled

as fluid spheres.2 In both models, the scatterers are assumed

to be independently and uniformly randomly distributed,

which may correspond to the case of a low scatterer concen-

tration, such that each scatterer individually contributes to

the backscattered power. As a result, the BSC is propor-

tional to the scatterer number density. This relationship has

been used to compute the estimates of scatterer size and

concentration.
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However, biological tissues often have high cellular

concentrations and complex structures that invalidate the

assumption of those models.3,4 For example, some tumors

have densely packed cells and eventually aggregating cells

such as breast sarcoma.5 Blood contains a high volume frac-

tion of red blood cells (RBCs) between 30% and 50% that

form aggregates having linear structures (termed rouleaux)

in normal blood or clumps in some pathologies, as in diabe-

tes mellitus.6,7 Therefore, theoretical scattering models have

been proposed to include high cellular concentration

together with aggregating cells, and to estimate scatterer

structures.8,9 A scattering model called the effective medium

theory combined with the structure factor model (EMTSFM)

was recently proposed.10 In this model, the aggregates of

cells are viewed as individual scatterers which have effective

properties determined by the aggregate compactness and the

acoustical characteristics of the cells and the surrounding

medium. The approximation of cell aggregates as homoge-

neous effective scatterers is combined with the structure

factor model to consider the concentrated medium, i.e., to

consider the interference effects caused by the correlations

between the spatial positions of effective scatterers. The

EMTSFM allows characterization of the radius and of the

compactness of cell aggregates, as shown in a previous simu-

lation study.11

The goal of the current study was to further develop the

EMTSFM and to extend its validity into a larger frequency

range. In that aim, the effective medium theory (EMT) was

modified to decompose the differential backscattering cross

section of a single cell aggregate into coherent and incoher-

ent components as proposed by Morse and Ingard.12 The

coherent component corresponds to the squared norm of the

average scattering amplitude from the effective scatterer,

and the incoherent component considers the variance of the

scattering amplitude (i.e., the mean squared norm of the fluc-

tuation of the scattering amplitude around its mean) within

the effective scatterer. Note that only the coherent compo-

nent was taken into account in our previous works.10,11 A

new theoretical expression for the incoherent component

based on the structure factor is proposed. This theoretical

improvement was assessed using three-dimensional (3D)

computer simulations of ultrasound backscatter from aggre-

gating RBCs. The new incoherent component based on the

structure factor was compared to the incoherent component

based on a Gaussian direct correlation function proposed by

Morse and Ingard.12

II. THEORY

In this section, the theoretical expression for the ultra-

sound backscattering response from one aggregate of cells is

proposed. Then, the theoretical BSC expression for an

ensemble of identical aggregates that was developed in Ref.

10 is briefly recalled.

A. Differential backscattering cross-section rag of one
aggregate of cells

In the present paper, we consider identical cells distrib-

uted randomly inside an aggregate. It is assumed that the

incident wavelength is large compared to the cell size.

Consequently, the cell shape can be approximated by a

sphere of radius a having an equivalent volume Vc ¼ ð4=
3Þpa3. Cells are described in terms of their mass density qc

and compressibility jc, and their surrounding medium is

characterized by a mass density q0 and a compressibility j0.

The cells are assumed to have small fluctuations in acoustic

parameters4,9 such that multiple scattering is neglected in

line with the Born approximation. An aggregate of cells,

denoted Vag, is assumed to be spherical as it occurs in some

tissues (e.g., RBC aggregates in pathological cases6,7 or

breast sarcoma tumors5). Assuming that the distance from

Vag to the point of observation is much larger that the dimen-

sions of Vag (i.e., far-field approximation), the backscattered

wave pressure from an aggregate is expressed in terms of the

backscattered amplitude Uag, i.e., psðrÞ ¼ ðeikr=rÞUagðkÞ,
with13

Uag kð Þ ¼ k2

4p

ð
Vag

cj r0ð Þ � cq r0ð Þ
� �

e2ikn0�r0 d3r0;

where k is the wavenumber, r0 is the position in the 3D space,

n0 is the incident wave direction, cjðr0Þ ¼ ðjðr0Þ � j0Þ=j0,

and cqðr0Þ ¼ ðqðr0Þ � q0Þ=qðr0Þ are the fractional variations

in compressibility and mass density, respectively. One has

cjðr0Þ � cqðr0Þ ¼
cj � cq ðif r0 is inside the cellsÞ;
0 ðif r0 is outside the cellsÞ;

(

(1)

where cj ¼ ðjc � j0Þ=j0 and cq ¼ ðqc � q0Þ=qc. Assuming

N identical cells inside an aggregate with centers located at

positions rj, j ¼ 1; :::;N, and considering the change of vari-

able r00 ¼ r0 � rj, the scattering amplitude can be expressed

as

Uag kð Þ¼
k2 cj�cqð Þ

4p
Vc V�1

c

ð
Va

e2ikn0�r00 d3r00

� �XN

j¼1

e2ikn0�rj ;

(2)

where Va is a sphere of radius a centered at the origin (see

Appendix A for details). The integral term in Eq. (2) is equal

to

V�1
c

ð
Va

e2ikn0�r00 d3r00 ¼
3 sin 2kað Þ � 2ka cos 2kað Þð Þ

2kað Þ3

 !

¼ F0 k; að Þ; (3)

and F0ðk; aÞ2 ¼ Fðk; aÞ is the fluid-sphere form factor.13

From there, the scattering amplitude resulting from one

aggregate is expressed as

Uag kð Þ ¼
k2 cj � cqð Þ

4p
VcF0 k; að Þ

XN

j¼1

e2ikn0�rj : (4)
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As previously studied by Morse and Ingard,12 the differ-

ential backscattering cross-section rag of an aggregate is

computed as the sum of two components

rag ¼ rag;coh þ rag;inc; (5)

where the coherent component rag;coh is the squared norm of

the average scattering amplitude, and the incoherent compo-

nent rag;inc describes the mean squared norm of the fluctua-

tion of the scattering amplitude around its mean (i.e., the

variance of the scattering amplitude), as detailed below.

1. The coherent component

The coherent component of the differential backscatter-

ing cross-section is obtained from the coherent scattering

amplitude as

rag;cohðkÞ ¼ jhUagðkÞij2;

where h� � �i represents the expected value of a random vari-

able. One computes

hUag kð Þi ¼
k2 cj � cqð Þ

4p
VcF0 k; að Þ

XN

j¼1

he2ikn0�rji

¼
k2 cj � cqð Þ

4p
/iVagF0 k; að Þ 1

N

XN

j¼1

he2ikn0�rji; (6)

where Vag ¼ ð4=3Þpr3
ag is the volume of an aggregate of

radius rag, and /i ¼ NVc=Vag is the aggregate compactness.

Next, we define

qag ¼ ½/i=qc þ ð1� /iÞ=q0��1;

jag ¼ /ijc þ ð1� /iÞj0; (7)

which are obtained from the average values of 1=q and j,

respectively, within the aggregate, as mentioned in Eq. (8.2.23)

of Morse and Ingard.12 Denoting cj;ag ¼ ðjag � j0Þ=j0 and

cq;ag ¼ ðqag � q0Þ=qag, one computes ðcj � cqÞ/i ¼ cj;ag

� cq;ag. Based on these definitions, it follows that the coherent

scattering amplitude of the aggregate is expressed as

hUag kð Þi ¼
k2 cj;ag � cq;agð Þ

4p
VagF0 k; að Þ 1

N

XN

j¼1

he2ikn0�rji:

(8)

Note that in this derivation, no approximation was used, but

rather algebraic manipulations and definitions.

The expression F cohðkÞ ¼ F0ðk; aÞ1=N
PN

j¼1he2ikn0�rji
corresponds to the Fourier transform of the function h1=
N
P

vaðr� rjÞi that describes a system of spheres, where

vaðr� rjÞ ¼ 1 inside a sphere Va of radius a centered at rj,

and 0 elsewhere. Since it is not straightforward to compute

the expression F cohðkÞ, we approximate this quantity with

the expression F0ðk; r0Þ given in Eq. (3) for an equivalent

full sphere of radius r0. The full sphere choice was motivated

here by the postulated spherical distribution of cells in

aggregates. In order to match the low frequency approxima-

tions of the scattering amplitudes from the system of spheres

and from the equivalent full sphere, their gyration radii Rg

should be equal. The gyration radius of an object corre-

sponds to the root mean square distance of the object’s

points from its center of mass. In the case of a system of N
spheres of radius a, the gyration radius is equal to

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5
a2 þ 1

N

XN

j¼1

jrjj2
vuut ; (9)

where rj is the position vector of the jth cell with respect to

the aggregate center, as given in Eq. (6) of Saha et al.14

So, the radius r0 of the equivalent full sphere must be

expressed as r0 ¼
ffiffiffiffiffiffiffiffi
5=3

p
Rg, as demonstrated in Appendix B.

Henceforth, from Eq. (8), the coherent scattering amplitude

resulting from one aggregate is approximated as

hUag kð Þi �
k2 cj;ag � cq;agð Þ

4p
VagF0 k;

ffiffiffi
5

3

r
Rg

 !
: (10)

All together, the coherent component of the differential

backscattering cross-section is modeled as

rag;coh kð Þ �
k4 cj;ag � cq;agð Þ2

16p2
V2

agF k;

ffiffiffi
5

3

r
Rg

 !
: (11)

One should note that in the former work,10 the fluid-sphere

form factor F given in Eq. (11), was computed by consider-

ing the external radius of the aggregate rag (instead offfiffiffiffiffiffiffiffi
5=3

p
Rg in the present work). Comparison between the for-

mer and the present coherent form factors will be presented

in the Sec. IV A.

2. The incoherent component

Inside an aggregate, each cell produces a scattered wave

as a sphere of radius a, with density qc and compressibility

jc, in a surrounding medium of density q0 and compressibil-

ity j0 throughout the aggregate. But since the density and

compressibility of the corresponding effective scatterer are

equal to qag and kag, respectively, the ratio of the speed of

sound in the surrounding medium to the average speed of

sound within the aggregate is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiqagjag
p

=
ffiffiffiffiffiffiffiffiffiffi
q0j0
p

. Due

to this diffraction phenomenon, the wavenumber accounting

for the acoustical inhomogeneities within an aggregate is

modified as12 kag ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiqagjag
p

=
ffiffiffiffiffiffiffiffiffiffi
q0j0
p

. Based on Eq. (4), the

incoherent component of the differential backscattering

cross-section is equal to

rag;incðkÞ ¼ hjUagðkagÞ � hUagðkagÞij2i (12)

¼
k4

ag cj � cqð Þ2

16p2
V2

c NF kag; að ÞS0 kag; a;/i

� �
;

(13)

where
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S0 k; a;/ið Þ ¼ 1

N

XN

j¼1

e2ikn0�rj �
XN

j¼1

he2ikn0�rji
					

					
2* +

(14)

is the structure factor for a collection of N randomly distrib-

uted identical spheres of radius a and of concentration /i

within an aggregate. Assuming that the aggregate is suffi-

ciently large, Eq. (14) corresponds to Eq. (10) in Ref. 15. This

latter structure factor was analytically calculated as estab-

lished by Wertheim,16 which is denoted here by Sðkag; a;/iÞ.
One thus obtains the expression

rag;inc kð Þ �
k4

ag cj � cqð Þ2

16p2
VagVc/iF kag; að ÞS kag; a;/i

� �
:

(15)

In the remaining of the paper, we compute the differential

backscattering cross-section rag ¼ rag;coh þ rag;inc of an

aggregate using Eqs. (5), (11), and (15).

Let us mention that one can derive an alternative expres-

sion of the incoherent component of the differential back-

scattering cross-section based on a Gaussian direct

correlation function rag;inc;G as proposed by Morse and

Ingard.12 The proposed computation of rag;inc;G is a modified

version of the incoherent component of Ref. 12 and is

expressed as follows:

rag;inc;G kð Þ �
k4

ag cj � cqð Þ2

16p2
Vag/i 1� /ið Þ

� 8
ffiffiffi
2
p

p3=2

3
d5k2

age�d2kag ; (16)

where d is the correlation distance related to the cell radius a
as d ¼ ð21=6=31=3p1=6Þa � 0:643092� a, as proposed by

Insana and Brown [see Eq. (81), p.107, in Ref. 13]. Details

can be found in Appendix C. The differential backscattering

cross-section of an aggregate based on Eqs. (5), (11), and

(16) is denoted rag;G in the following.

B. Backscatter coefficient BSCEMTSFM from
an ensemble of identical aggregates

The BSC from an ensemble of identical aggregates is

obtained by summing the contributions from individual

effective scatterers and modeling the effective scatterers

interaction by a statistical mechanics structure factor Sag as

follows:10,11

BSCEMTSFMðkÞ ¼ magragðkÞSagðk; rag;/agÞ; (17)

where mag is the number density of effective scatterers,

which is related to the volume fraction of effective scatterers

/ag as mag ¼ /ag=Vag and rag is computed using Eqs. (5),

(11), and (15). In Eq. (17), Sag is the structure factor for a

collection of randomly distributed identical effective scatter-

ers of radius rag and of concentration /ag, analytically com-

puted as established by Wertheim.16 The volume fraction of

effective scatterers is equal to the volume fraction of cells

in the tissue / divided by the aggregate compactness /i:

/ag ¼ /=/i.

III. 3D SIMULATION METHOD

The proposed theory was tested on 3D computer simu-

lations of ultrasound backscatter from aggregating RBCs.

The choice of this example was motivated by the fact that

RBCs form quasi-spherical aggregates under pathological

conditions, as in diabetes mellitus.6,7 and occupy a large

volume fraction (between 30% and 50%), so that the struc-

ture factor intervenes. Moreover, in the field of ultrasound

blood characterization, RBCs are often assumed to be iden-

tical scatterers of simple shape (as spheres) with weak rela-

tive acoustic parameter contrast thus allowing to assume

the absence of multiple scattering (RBCs qc ¼ 1.092 kg/m3,

jc ¼ 3.41� 10–10 m/N, and blood plasma q0 ¼ 1.021 kg/m3

and j0 ¼ 4.09 � 10–10 m/N).9,11,17

The 3D simulation study was conducted based on the

structure factor model (SFM). The SFM is an ultrasound

scattering model largely used to predict the frequency depen-

dence of the BSC from aggregated RBCs.8,10,11,14,17 The

SFM consists of summing contributions from individual

cells and modeling cell interaction by a statistical mechanics

structure factor, whatever the complexity of the cells spatial

distribution such as cell aggregates. The structure factor

computation for a complex particle spatial distribution was

described in details in Sec. 6.3.1 of Ref. 17. The current

section focuses on the procedure for obtaining cell aggre-

gates in the computer simulations, and then on the simula-

tion of the differential backscattering cross section of one

cell aggregate, denoted rag;sim, and of the BSCsim from

aggregated cells based on the SFM.

A. Simulation of spatial distribution of cells within one
aggregate

We describe here how the cell distribution inside one

aggregate was computed. The cell particle radius a was set

to 2.75 lm for all simulations, which corresponds to the

RBC size usually used in blood computer simulations.11 We

specified the aggregate radius rag defined as the radius of the

external envelope (Fig. 1) and the aggregate compactness /i

that fixes the number of cells N within the aggregate. N cells

were uniformly randomly distributed such that cells within a

radius of rag could overlap, and the total number of overlap-

ping pairs was counted. Then, the system was able to evolve

by randomly selecting a cell, and moving it randomly to a

new position inside the spherical aggregate. If the number of

overlapping pairs of the new system was no more than in the

previous system, the displacement was accepted. This proce-

dure was iterated until no overlapping was detected. One can

refer to Sec. B.1 in Ref. 18 for more details. This process

allowed to reach aggregate compactness /i up to 40% in 3D,

whereas a method using a random sequential absorption19

would give compactness near 30%. Figure 1 illustrates spa-

tial arrangements of cells within a single aggregate for two

aggregate compactnesses of 10% and 40% with an identical

aggregate radius rag=a ¼ 7. The radius of gyration was com-

puted using Eq. (9). For the aggregate example given in

Fig. 1, a change of compactness from 10% to 40% induces a

slight increase of the radius of gyration from Rg ¼ 13:47 lm

to Rg ¼ 14:26 lm.
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B. Computation of a simulated rag,sim curve

The simulated differential backscattering cross section

of one cell aggregate rag;sim, was computed using the SFM

(Refs. 10 and 11) as follows:

rag;simðkÞ ¼ NrbðkÞS0simðkÞ; (18)

where rb is the differential backscattering cross section of a

single cell given by the fluid-filled sphere expression12,13

rb kð Þ ¼ k4V2
c c

2
z

4p2
F k; að Þ; (19)

and S0sim is the simulated structure factor representing the

spatial positioning of the cells inside the aggregate and

defined as

S0sim kð Þ ¼ 1

N

XN

j¼1

e2ikn0�rj

					
					
2* +
; (20)

where the cell positions rj are given using the procedure

described in Sec. III A. The simulated structure factor S0sim

was determined from the 3D Fourier transform of the spatial

distribution of cells.17 A mean rag;sim curve was computed

by averaging over several realizations. To determine the

optimum number of realizations, the differential cross-

section of one aggregate rag;sim was computed by averaging

over 1, 10, 50, or 100 realizations. Then, in order to study

the variation among several differential cross-section simula-

tions rag;sim, ten such simulations of rag;sim were produced

(each one based on 1, 10, 50, or 100 realizations) yielding a

mean value r0ag;sim and a standard-deviation over the 10 sim-

ulations. Figure 2(a) shows an example of r0ag;sim as a func-

tion of frequency for a single aggregate of radius rag=a ¼ 6

and compactness /i ¼ 30%, and the displayed standard

deviations quantify the variation over the ten estimates of

rag;sim. When using 50 realizations, the coefficients of varia-

tion (i.e., the standard-deviation-to-mean ratio) was typically

comprised between 1/30 and 1/10 above 40 MHz and was

less than 1/100 below 20 MHz. It is clear from Fig. 2(a) that

50 realizations were sufficient to capture the behavior of the

rag;sim curve at high frequencies well.

C. Computation of a simulated BSC from several
aggregates

Random distributions of non-overlapping aggregates were

computed within the simulated cubical volume 4803 lm3 by

specifying the volume fraction / of cells of radius a, the aggre-

gate radius rag, and the aggregate compactness /i. The spatial

distribution of cells inside each aggregate was performed using

the procedure described in Sec. III A. The simulated cubical

volume was periodized, i.e., interactions between aggregates

were determined under periodic boundary conditions, in order

to remove the edge effects. The BSC from aggregated cells

was then computed using the SFM as follows:

BSCsim kð Þ ¼ /
Vc

rb kð ÞSsim kð Þ; (21)

where Ssim is the simulated structure factor representing the

spatial positioning of the cells inside the simulated tissue.

FIG. 1. (Color online) Examples of two cell aggregates of radius rag=a ¼ 7,

on the left with a compactness of /i ¼ 10%, and on the right with a com-

pactness of /i ¼ 40%. The radius of the external envelope is displayed with

transparency.

FIG. 2. (Color online) Differential backscattering cross section of one cell aggregate of radius rag=a ¼ 6 and compactness /i ¼ 30%. The symbols represent

the rag;sim computation. (a) Mean value r0ag;sim, as a function of frequency, over 10 estimates of rag;sim, each one based on 1, 10, 50, or 100 realizations. The

vertical lines indicate 61 standard-deviation. (b) The dashed line (or the solid line, respectively) represents the theoretical coherent component rag;coh given in

Eq. (11) using FðragÞ [or Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ, respectively]. (c) The solid line (or the dashed line, respectively) represents the theoretical rag (or rag;G, respectively),

both using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ in the coherent component.
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For each distribution of cells, the 3D Fourier transform

of the cell spatial positioning was computed to obtain the

simulated structure factor.17 The mean BSCsim curve was

obtained by averaging over 100 realizations for averaging

purposes.

IV. RESULTS

A. Comparison of the simulated and theoretical rag

The frequency-dependent differential backscattering

cross section of one cell aggregate rag;sim computed with the

SFM (using 50 realizations) is given in Figs. 2(b) and 2(c)

for a single aggregate of radius rag=a ¼ 6 and of compact-

ness /i ¼ 30%. Also shown in Fig. 2(b) [and Fig. 2(c),

respectively] are the theoretical differential backscattering

cross section considering only the coherent component (and

considering both coherent and incoherent components,

respectively). In Fig. 2(b), the dashed line (or the solid line,

respectively) represents the theoretical rag;coh given in Eq.

(11) using FðragÞ [or Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ, respectively]. The first

peaks of rag;sim and rag;coh using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ occur at the

same frequency (approximately 22.1 MHz). On the other

hand, the first peak of rag;coh using FðragÞ does not match

perfectly the simulation and occurs at a lower frequency

around 20.5 MHz.

In Fig. 2(c), the solid line represents rag ¼ rag;coh

þ rag;inc using Eqs. (5), (11), and (15) and the dashed line

represents rag;G ¼ rag;coh þ rag;inc;G using Eqs. (5), (11), and

(16). Consideration of the incoherent component allowed to

better match the frequency dependence and amplitude of

rag;sim at higher frequencies, for either expression rag;inc or

rag;inc;G of the incoherent component. Indeed, the rag;coh

curve shows very deep dips [Fig. 2(b)], whereas both rag and

rag;G curves match much better the dip behavior of the

rag;sim curve.

Figure 3 represents the simulated rag;sim (symbols) for a

radius rag=a ¼ 6 and aggregate compactnesses /i ¼ 10%,

20%, 30%, and 40%. One can note that the rag;sim curves

have more pronounced frequency dips when the aggregate

compactness increases. For the lower aggregate compact-

ness, only the first peak is well pronounced and the first dip

is smooth, whereas the first two peaks and the first dip are

clearly enhanced for the higher aggregate compactnesses.

This behavior suggests that for compact aggregates, the inci-

dent wave tends to be scattered as if the aggregate was a

well-defined sphere, whereas for the lower aggregate com-

pactness, the boundaries of the aggregates are not well

defined. The occurrence of the first frequency peak also shifts

toward higher frequencies from 22.6 MHz to 25.8 MHz when

the aggregate compactness decreases from 40% to 10%. Also

represented in Fig. 3 are the theoretical rag (solid line) and

rag;G (dashed line). Both models are accurate at /i ¼ 30%.

The rag;G curve matches better the simulation results for the

highest aggregate compactness /i ¼ 40%, whereas the rag

curve matches better the two lower compactnesses /i ¼ 10%

and 20%.

The relative errors for theoretical rag were evaluated as

�R¼ (rag� rag;sim)=rag;sim, where rag;sim was assumed to be

the exact solution. Some examples of relative errors for theo-

retical rag are given in Fig. 4(a) for a radius rag=a ¼ 6 and

aggregate compactness /i ¼ 30% (the aggregating configu-

ration chosen in this example corresponds to the one of Fig.

2). For aggregate compactnesses of 10% and 40%, the rela-

tive errors were studied for rag=a values varying from 5 to 9.

In each case, the frequency limit f and the corresponding

product krag for which the relative error was less than 15%

were determined. The resulting product krag limits are sum-

marized in Fig. 4(b) and 4(c). First, we assess the improve-

ment of the krag for the rag;coh expression using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ

(see the solid curves in Fig. 4). The former modeling using

FðragÞ gives krag around 0.96 [against 1.63 with the model-

ing using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ] for /i ¼ 10% and around 1.11

[against 1.67 with the modeling using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ] on aver-

age for /i ¼ 40%. Second, we focus on the improvement of

the krag considering the incoherent component expressions

(see the dashed curves in Fig. 4). For the lowest aggregate

compactness of 10%, consideration of the incoherent compo-

nent based on the structure factor rag;inc allowed us to

increase the krag from 1.63 to 2.07, whereas the incoherent

component based on the Gaussian direct correlation function

rag;inc;G did not allow us to improve the krag limit. For the

highest aggregate compactness of 40%, there was no signifi-

cant improvement in the krag limit whether the incoherent

component was considered or not: it means that the krag

FIG. 3. (Color online) Differential

backscattering cross sections of one

cell aggregate for different aggregate

compactnesses. The symbols represent

the rag;sim computation. The solid line

(dashed line, respectively) represents

the theoretical rag using Eqs. (5), (11),

and (15) [or the theoretical rag;G using

Eqs. (5), (11), and (16), respectively].

The inner frame of each subfigure

shows an enlarged view of the high

frequency domain, for more details.
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increase is mainly due to the modification of Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ in

the coherent component. To conclude, the overall best

results are obtained by taking into account (1) the modifica-

tion of Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ in the coherent component, and (2) the

incoherent component based on the structure factor rag;inc.

Thus, for the results presented in the remaining of the paper,

we will use the differential backscattering cross section rag

computed with Eqs. (5), (11), and (15).

B. Comparison of the simulated and theoretical BSC

Figure 5(a) shows simulated and theoretical frequency

dependent BSCs for three aggregate sizes rag=a ¼ 5, 7, and

9, a fixed aggregate compactness /i ¼ 40%, and a fixed cell

volume fraction / ¼ 16%. The symbols represent the

BSCsim computed with the SFM. The solid and dashed lines

depict the BSCEMTSFM using the proposed model of Eqs. (5),

(11), (15), and (17). The theoretical BSCEMTSFM matches

well the simulated BSCsim, especially for the amplitude and

the frequency occurrence of the first two peaks and dips,

whatever the aggregate size considered in this work. In Fig.

5(b) are shown simulated and theoretical BSCs for three

aggregate compactnesses /i ¼ 10%, 25%, and 40%, at a

lower / ¼ 4%, and a fixed aggregate radius of rag=a ¼ 7.

Note that for the study of the aggregate compactness varia-

tion, we limit the total cell volume fraction to / ¼ 4% and

the lower aggregate compactness to /i ¼ 10% (correspond-

ing to a value /ag ¼ 40%), because the maximum volume

fraction of aggregates achievable in computer simulation is

approximately 40% using the method described Sec. III.

V. DISCUSSION

A. On the use of simple spatial distribution of cells

The method used in this study to obtain the cell spatial

distribution was not based on a generic physical model of

interactions between cells. Rather, we used a simple and fast

method to generate hundreds of simulated media with a large

scale ratio between the cell size (2.75 lm) and the whole

medium size (4803lm3). The purpose was to build a con-

trolled medium containing non-overlapping spherical aggre-

gates, all aggregates having the same radius and compactness

with a unique cell spatial distribution defined by a structure

factor. The main advantage of this method was the possibility

to have various aggregate compactnesses with the same size

of aggregates, which allowed to demonstrate the role of the

FIG. 4. (Color online) (a) Relative errors for the various theoretical rag as a function of krag [relative error¼ðrag;theo � rag;simÞ=rag;sim]. This example shows a

radius rag=a ¼ 6 and aggregate compactnesses /i ¼ 30%, as in Fig. 2. (b), (c) Averaged krag, as a function of the aggregate size ranging for rag=a ¼ 5–9, for

two compactnesses /i ¼ 10% (b) and /i ¼ 40% (c). The solid lines correspond to the limits of rag;coh computed using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ (crosses) and using FðragÞ

(squares). The dotted lines correspond to the limits of rag (diamonds) and rag;G (circles), both computed using the modification of the radius in Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ.

Note that the curves marked with crosses and diamonds are superimposed in (c).

FIG. 5. (Color online) Frequency

dependent backscatter coefficients for

various aggregate sizes and compact-

nesses. Symbols represent simulation

results and lines represent theoretical

BSCs computed using Eq. (17). (a)

The volume fraction occupied by the

cells in the medium is / ¼ 16% and

the aggregate compactness is fixed to

/i ¼ 40%. Radii of aggregates vary

from rag=a ¼ 5 to rag=a ¼ 9. (b) The

volume fraction occupied by the cells

in the medium is / ¼ 4% and the

aggregate size is fixed to rag=a ¼ 7.

Aggregate compactnesses vary from

/i ¼ 10% to /i ¼ 40%.
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incoherent scattering component on the BSC frequency

dependence at high frequencies. Indeed, the rag;sim curves

had well pronounced peaks and dips for the higher aggregate

compactnesses, whereas the first peak was well enhanced and

the first dip was smooth for the lower aggregate compactness

(see Fig. 3). Theoretical predictions of the rag based on the

structure factor for the incoherent component proposed in Eq.

(15) agreed well with the simulations and validated the pro-

posed theoretical modeling.

In the 3D computer simulations of this study, we had to

limit the total volume fraction of cells to a maximum of

16%. Indeed, the procedure we chose to distribute the cells

within aggregates allowed reaching a maximum aggregate

compactness /i;max of 40%. The upper limit of 40% is easily

understandable because placing non-deformable identical

spheres randomly enough inside a larger sphere without

overlapping is not straightforward. In comparison, a standard

method using a random sequential absorption19 would give a

compactness close to 30%. The maximum aggregate volume

fraction /ag;max was thus also fixed to 40%. As a conse-

quence, the maximum value of the total volume fraction

/max was limited to /max ¼ /i;max/ag;max ¼ ð40%Þ2 ¼ 16%.

B. Variation of the spectral slope

It is interesting to note that, when considering the same

aggregate size rag=a¼ 7 and aggregate compactness /i¼ 40%

with different volume fractions of /¼ 16% [see the blue

curve in Fig. 5(a)] and /¼ 4% [see the red curve in Fig. 5(b)],

the frequency dependence of the BSC curves is very different.

More specifically, we consider the spectral slope (i.e., the lin-

ear slope of the BSC as a function of frequency in a log-log

scale) of the BSCsim curves before the first peak occurrence.

For the aggregating conditions / ¼ 4%; /i ¼ 40% (corre-

sponding to /ag ¼ /=/i ¼ 10%) [see the red curve in Fig.

5(b)], the BSCsim curve shows a fourth power frequency-

dependence (i.e., a spectral slope of 4). However, the spectral

slope increases above 4 for the BSCsim curves with aggregat-

ing conditions /¼ 16%, /i ¼ 40% (corresponding to /ag

¼ /=/i ¼ 40%) presented in Fig. 5(a) and with aggregating

conditions / ¼ 4%; /i ¼ 10% (corresponding to /ag ¼ /=/i

¼ 40%) [see the green curve in Fig. 5(b)]. Considering the

theoretical modeling with the EMTSFM, the structure factor

Sag causes this increase in the spectral slope, since it models

the spectral behavior of the effective scatterer spatial distribu-

tions. Indeed, for the product ka< 1.5, the structure factor Sag

increases with frequency, and the more the aggregate concen-

tration /ag increases, the larger is the increase in the structure

factor (see examples of structure factor curves for different

volume fractions in Fig. 14 of Ref. 21). The increase in spec-

tral slope with an increase in volume fraction, which could be

observed in the current study, is consistent with an earlier 2D

numerical study.10 In this 2D study, the spectral slope was

equal to 3 for disaggregated RBCs, as expected using Rayleigh

theory in 2D, and when RBCs were aggregated, the spectral

slope increased above 3 for volume fractions of 20% and 30%,

corresponding to an aggregate with a volume fraction /ag

greater than 33% (see Fig. 8 in Ref. 10). Moreover, in vitro
Couette flow experiments performed by Yu and Cloutier9

showed spectral slopes that were greater than 4 (at frequencies

ranging between 9 and 15 MHz) for shear rates of 2 and 10 s–1

at a cell volume fraction of 40% [see Fig. 4(b) in Ref. 9].

C. The benefit of considering the incoherent
component

A new theoretical modeling of the differential backscat-

tering cross section from a single cell aggregate was devel-

oped in this work and consisted in taking into account a

coherent component and an incoherent component in the

expression of rag. This modeling was compared to numerical

simulations based on the SFM. Concerning the coherent

component, a slight modification of the rag;coh expression

using Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ was proposed and allowed the EMT

model to better match the frequency occurrences of the first

peak and dip observed in simulations [namely, the krag limit

increased from 1 to 1.6 when considering Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ—see

Fig. 4]. Concerning the incoherent component, two expres-

sions of rag;inc based on the structure factor and on a

Gaussian direct correlation function proposed by Morse and

Ingard12 were compared. The numerical study demonstrated

the superiority of the formulation using the structure factor

over that with the Gaussian direct correlation function,

regarding the krag study of Fig. 4. The consideration of the

incoherent component rag;inc based on the structure factor

allowed to approximate the simulations satisfactorily for an

average krag around 2 (on average over all the simulations

performed), against a krag around 1 with the former model

considering only the coherent component.

In previous works,13,20 a decomposition of the differen-

tial scattering cross-section into coherent and incoherent

terms was presented (pp. 100, 101 in Ref. 13), which is

consistent with the one presented here. However, in these

works,13,20 only the case where scatterers are randomly and

independently distributed and the coherent term is negligible

was considered. In the present study, the coherent component

was not negligible, nor was the incoherent one at higher fre-

quencies. Moreover, the proposed model takes into account

spatial organization of cells within aggregates, as well as spa-

tial organization of aggregates within surrounding medium.

It is interesting to observe that the simulated rag;sim curves

showed a fourth power frequency dependence (Rayleigh scat-

tering) before the first peak occurrence (see Figs. 2 and 3).

When the aggregate compactness varied (Fig. 3), the rag;sim

frequency dependence differed mainly at high frequencies

after the first peak. To better understand this high frequency

behavior, we analyzed the theoretical respective influence of

each scattering component (coherent and incoherent) on the

rag behavior, while varying the aggregate compactness.

According to Eqs. (11) and (15), the rag frequency depen-

dence is mainly determined by the fluid-sphere form factor

from an effective sphere Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ that intervenes in the

coherent component, and the structure factor Sða;/iÞ that

intervenes in the incoherent component. As shown in Fig.

6(a), an increase in compactness induced a decrease in the

structure factor amplitude Sðk; a;/iÞ in the studied frequency

bandwidth of 1–100 MHz, and a slight shift toward lower

frequencies of the form factor Fðk; r0agÞ peaks and dips. In
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Fig. 6(b) [or Fig. 6(c), respectively] are plotted the theoretical

backscattering cross sections (solid lines), the corresponding

coherent component rag;coh (dashed lines), and incoherent

component rag;inc (dotted lines) as defined in Eq. (5), for the

same aggregating condition with rag=a ¼ 6 and /i ¼ 10%

(or /i ¼ 40%, respectively). The relative influence of the

incoherent component is more important for lower aggregate

compactnesses, giving rise to smoother peaks and dips. Also,

the frequency shift of the peaks and dips observed in the sim-

ulations can be explained theoretically by a dependence of

the form factor Fð
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ on the aggregate compactness.

Indeed, the gyration radius value depends on the aggregate

compactness as mentioned in Sec. III A. In the framework of

an inverse problem approach, it would be useful to approxi-

mate the gyration radius as a function of the radius rag of the

aggregate envelope and the aggregate compactness /i. Based

on the 3D building of isotropic aggregates using the method

described in Sec. III A, the relationship between Rg, rag, and

/i was empirically determined as follows:

Rg �
ffiffiffiffiffiffiffiffi
3=5

p
ðrag þ 4:10� 10�6/i � 2:34� 10�6Þ: (22)

This approximation, obtained from a linear regression analy-

sis, shows less than 5% relative error for all tested radii rag=a
(varying from 4 to 9) and compactnesses (varying from 5%

to 40%). The estimated R-squared value and p-value were

0.999 and 1:61� 10�129 respectively.

D. Assumptions and uses of the EMT

The present work allowed a fundamental study to

improve modeling of differential backscattering cross-section

of one aggregate (or BSC) and to progress in the understand-

ing of the influence of aggregate compactness and size on the

BSC. One can question the practical value of this model that

assumes spherical aggregates for in vivo estimation. In the

case of human blood, the assumption of spherical aggregates

in the EMT modeling is valid as far as pathological cases are

considered. Indeed, as the binding energy between RBCs

increases with inflammation,22 RBC aggregates form clump

structures such as in diabetes mellitus.6,7 However,

aggregates of cells may form irregular shapes like ellipsoids

(especially for normal blood). In the case of randomly ori-

ented monodisperse ellipsoids, the frequency occurrence of

peaks and dips of rag from such structure would likely be in

good agreement with those obtained from spheres using the

EMT model. To confirm this hypothesis, Fig. 7 shows exam-

ples of theoretical form factors for randomly oriented mono-

disperse ellipsoids (characterized by three radii a, b, and c) as

a function of the product ka (a being the characteristic size of

the object). The form factors were computed theoretically as

in Ref. 23. In Fig. 7, solid lines represent form factors for

prolate ellipsoids [radii a, b ¼ ð3=4Þa; c ¼ ð3=4Þa] and

oblate ellipsoids [radii a, b ¼ ð4=3Þa; c ¼ ð4=3Þa], and

dashed lines represent the corresponding form factors for

fluid spheres having the same volume as the ellipsoids (and

characterized by a radius rs). For these ellipsoid dimensions,

FIG. 6. (Color online) (a) Theoretical form factor Fðk;
ffiffiffiffiffiffiffiffi
5=3

p
RgÞ and structure factor Sðk; a;/iÞ computed as a function of the frequency for two compact-

nesses / ¼ 10% and /i ¼ 40% and aggregate size rag=a ¼ 6. (b), (c) Theoretical differential backscattering cross sections of one cell aggregate rag, its coher-

ent component rag;coh, and incoherent component rag;inc, as a function of frequency.

FIG. 7. (Color online) Theoretical form factors of ellipsoids characterized

by three radii a, b, and c (solid lines), and spheres (of radius rs) having the

same volume as the ellipsoids (dashed lines) as a function of the product ka
(a being characteristic size of the object).
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the frequency occurrence of peaks and dips of the form factor

from ellipsoids is in good agreement with those obtained

from spheres having the same volume. However, the magni-

tude of the dips of the equivalent sphere form factor is

smaller. In the case of ellipsoids oriented in the same direc-

tion (such as in the case of normal human rouleaux of RBCs

oriented in the blood flow), if the EMT is directly applied to

estimate structural parameters such as the aggregate compact-

ness and size, the assumption of spherical shapes would prob-

ably create a bias against the parameter estimation.

Finally, QUS techniques for determining tissue micro-

structure parameters are often based on scattering models

(such as the SFM or the EMTSFM studied here) assuming

absence of multiple scattering (Born approximation). This is

valid in the case of blood scattering because of the low con-

trast in density and compressibility between RBCs and the

surrounding plasma. Nevertheless, one could question the

impact of ignoring multiple scattering. Doyle et al.24 simu-

lated multiple scattering between cells for uniform and

aggregated cell distributions. Comparison between multiple

and simple scattering simulations from the same tissues

demonstrated that multiple scattering became significant on

the ultrasound backscatter spectra above 60 MHz for uniform

cell distributions and above 45 MHz for aggregated cell

distributions (see Fig. 13 in Ref. 24). Franceschini et al.25

simulated ultrasonic propagation through RBCs using a

time-domain numerical method that has the advantages of

requiring no physical approximation (i.e., automatically

accounting for multiple scattering). Excellent agreements

were obtained between the backscattering responses com-

puted with the time-domain numerical method and with the

theoretical SFM in the frequency bandwidth ranging from 10

to 40 MHz (see Fig. 4 in Ref. 25; in this paper,25 the term

“particle theory approach” was used instead of the term

“SFM”). Note that the SFM is based on the Born approxima-

tion and allows to model the presence of densely packed

scattering sources that introduce correlation between the

phases of individually scattered waves. In future work, it

would be interesting to determine the accuracy of the SFM

on wider ranges of frequency bandwidth and of acoustic

parameters for the cells.

VI. CONCLUSION

The EMT was further developed to decompose the dif-

ferential backscattering cross section of a single cell aggre-

gate into coherent and incoherent components. The coherent

component, corresponding to the squared norm of the aver-

age wave emerging from the effective scatterer, whose

radius depends on the gyration radius of the cell aggregate.

An important contribution of this new EMT is the taking

into account of the incoherent component based on the struc-

ture factor, which allowed to approximate the computer

simulations satisfactorily for a product krag up to 2.

The EMTSFM assumes that all cells are aggregated and

that aggregates are identical and isotropic. Therefore, the

BSC behavior obtained in all simulations showed a pro-

nounced first peak. In experimental conditions when insonify-

ing aggregated RBCs surrounding by plasma9 or aggregates

of tumor cells surrounding by extracellular matrix,26 the BSC

behavior was smoother and the peaks were less pronounced.

The reason behind this might be that real tissues contain sev-

eral sizes of aggregates, and since the location of BSC peaks

are different for different aggregate populations, a relatively

smoother BSC curve can be obtained. Therefore, future

improvements should consider incorporating polydispersity in

aggregate size and compactness to provide an optimal

EMTSFM for the inversion of experimental data.
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APPENDIX A

The model underlying Eq. (1) is equivalent to the

following expression for the tissue function:

cjðr0Þ � cqðr0Þ ¼ ðcj � cqÞ
XN

j¼1

vðr0 � rjÞ; (A1)

where vðr0Þ ¼ 1 inside a sphere Va of radius a centered at

the origin, and 0 elsewhere.

We then compute based on Eq. (A1),ð
Vag

½cjðr0Þ � cqðr0Þ�e2ikn0�r0 d3r0

¼
XN

j¼1

ðcj � cqÞ
ð

Vag

vðr0 � rjÞe2ikn0�r0 d3r0:

Next, considering the change of variable r00 ¼ r0 � rj, one

obtainsð
Vag

vðr0 � rjÞe2ikn0�r0 d3r0 ¼
ð

Va

e2ikn0�ðr00þrjÞ d3r00:

Last, since e2ikn0�ðr00þrjÞ ¼e2ikn0�r00 e2ikn0�rj , one concludes

that ð
Vag

½cjðr0Þ � cqðr0Þ�e2ikn0�r0 d3r0

¼ ðcj � cqÞ
ð

Va

e2ikn0�r00 d3r00

� �XN

j¼1

e2ikn0�rj

¼ ðcj � cqÞVc V�1
c

ð
Va

e2ikn0�r00 d3r00

� �XN

j¼1

e2ikn0�rj :
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APPENDIX B

This appendix gives the computation steps to obtain the

low frequency approximation of F cohðkÞ ¼ F0ðk; aÞ1=
N
PN

j¼1he2ikn0�rji:
First, by assuming centrosymmetric aggregates, one has

1

N

XN

j¼1

he2ikn0�rji ¼ 1

N

XN

j¼1

hcos 2k n0 � rjð Þi

¼ 1

N

XN

j¼1

sin 2k jrjj
� �
2k jrjj


 �

� 1� 2

3
k2 1

N

XN

j¼1

jrjj2
* +

;

where the last approximation corresponds to the second

order Taylor expansion of the expression. An equivalent

approach can be found in Ref. 27, pp. 7 and 8. A second

order Taylor expansion of F cohðkÞ thus gives

F coh kð Þ � 1� 2

3
k2 3

5
a2 þ 1

N

XN

j¼1

jrjj2
* +0

@
1
A

¼ 1� 2

3
k2R2

g;

by using the definition of Rg given in Eq. (9), and the Taylor

expansion of F0ðk; aÞð�1� 2
5

k2a2Þ. Last, since for the

equivalent full sphere of radius r0; F0ðk; r0Þ � 1� 2
5

k2r02, we

need r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð5=3Þ

p
Rg in order to match the low frequency

approximations of the form factors F cohðkÞ and F0ðk; r0Þ.

APPENDIX C

This appendix gives the computation steps to obtain the

incoherent component of the differential backscattering

cross-section rag;inc;G based on a Gaussian direct correlation

function as proposed by Morse and Ingard.12

First, one has

cj;agðr0Þ � cq;agðr0Þ ¼ vðr0Þðcj � cqÞ;

where v is the characteristic function of the cells: vðr0Þ ¼ 1

inside cells and vðr0Þ ¼ 0, otherwise. Moreover, we use the

following approximation:

hcj;agðr0Þ � cq;agðr0Þi � /iðcj � cqÞ:

From there, one obtains the expression

Uag;inc kð Þ ¼ Uag kagð Þ � hUag kagð Þi

�
k2

ag

4p

ð
Vag

cj � cqð Þ v r0ð Þ � /i

� �
e2ikagn0�r0 d3r0:

Note that the function ðcj � cqÞðvðr0Þ � /iÞ corresponds to

the function d modified from Ref. 12 [Eq. (8.2.24)].

Therefore, the incoherent component of the differential

backscattering cross-section can be computed using the

direct correlation function ! of the compressibility and den-

sity fluctuations as follows:

rag;inc kð Þ ¼ hjUag;inc kð Þj2i

�
k4

ag cj � cqð Þ2

16p2
Vag

ð
Vag

! Drð Þe2ikagn0�Dr d3Dr;

(C1)

where

! Drð Þ¼ 1

Vag

ð
Vag

v r0ð Þ�/i

� �
v r0þDrð Þ�/i

� �
d3r0

* +
:

The function ! depends only on Dr ¼ jDrj and must have

the following properties: the mean value of !ðDrÞ is zero

and limjDrj!1!ðDrÞ ¼ 0. Under the postulate of a Gaussian

model, the expression of the direct correlation function ! is

given by Morse and Ingard,12 Eq. (8.2.26),

! Drð Þ � ! 0ð Þ 1� Dr2

3d2

� �
e�Dr2= 2d2ð Þ

;

where !ð0Þ ¼ /ið1� /iÞ, and the correlation distance d is

related to the cell radius a as d ¼ ð21=6=31=3p1=6Þa
� 0:643092� a as defined by Insana and Brown,13 Eq. (81),

p. 107. Performing the integral in Eq. (C1), one then obtains

the Gaussian incoherent component expressed in Eq. (16).
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