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A Simulation Study on the Quantitative 
Assessment of Tissue Microstructure  

With Photoacoustics
ratan K. saha

Abstract—A detailed derivation of a quantity, defined as the 
acoustic power per unit solid angle far from the illuminated 
volume divided by the intensity of the incident light beam and 
termed as differential photoacoustic (PA) cross section, is pre-
sented. The expression for the differential PA cross section per 
unit absorbing volume retains two terms, namely, the coherent 
and the incoherent parts. The second part based on a correla-
tion model can be employed to analyze the PA signal power 
spectrum for tissue characterization. The performances of the 
fluid sphere, Gaussian, and exponential correlation models in 
assessing the mean size and the variance in the optical absorp-
tion coefficients of absorbers were investigated by performing 
in silico  experiments. It was possible to evaluate diameters of 
solid spherical absorbers with radii ≥ µ20 m  with an accuracy 
of 10% for an analysis bandwidth of 5 to 50 MHz using the first 
two correlation models. The accuracy of estimation was about 
22% for fluid spheres mimicking erythrocytes for the third cor-
relation model for an analysis bandwidth of 5 to 100 MHz. The 
extracted values of average variance in the optical absorption 
coefficients demonstrated good correlation with the nominal 
values. This study suggests that the method presented here 
may be developed as a potential tissue characterization tool.

I. Introduction

a vast body of biomedical ultrasound literature deals 
with ultrasonic tissue characterization [1]–[5]. It aims 

to develop a highly sensitive method to detect and quan-
tify small changes in tissue structure by utilizing informa-
tion contained in the ultrasonic backscatter signals [3]. It 
has been shown that tissue structural properties such as 
the average scatterer size and the average acoustic con-
centration (i.e., the product of scatterer number density 
and the square of relative impedance mismatch between 
scatterers and the surrounding medium) can be assessed 
by analyzing the radio frequency (rF) echo signal power 
spectrum [5]. This is accomplished by fitting the mea-
sured power spectrum with a suitable theoretical scatter-
ing model based on a correlation function. a calibration 
spectrum is also required to normalize the power spectrum 
of the test material to remove system effects as well as 
for unbiased estimation of scatterer properties. The fluid 
sphere, spherical shell, Gaussian, and exponential cor-

relation functions have been used in this context. This 
method has been exploited to characterize sparse biologi-
cal media such as eye and prostate [6], [7]. quantitative 
ultrasound images have also been generated by mapping 
estimates of physical properties of tissue microstructures 
[8]. yu and cloutier employed a similar method to deter-
mine mean size of red blood cell (rBc) aggregates [9]. 
Vlad et al. monitored cell death induced by radiotherapy/
anticancer drugs by measuring changes in the ultrasonic 
spectral parameters [10]. cancerous lesions have also been 
characterized using quantitative ultrasound [11], [12].

researchers believe that similar analysis can be per-
formed on photoacoustic (Pa) signals and thus quantita-
tive information on tissue microstructure can be extracted. 
obviously, in this case, properties of light-absorbing ob-
jects distributed within the region of interest (roI) are 
expected to be evaluated. such information may become 
invaluable from the perspective of clinical diagnosis. some 
efforts have already been made in this direction. For ex-
ample, Kumon et al. conducted an in vivo study with a 
prostate cancer murine model and reported that Pa spec-
tral parameters have the ability to differentiate cancerous 
tumors from normal tissue [13]. The dependence of Pa 
spectral features on the size of microspheres have also been 
examined in detail [14], [15]. Wang et al. demonstrated 
that dimensions of microparticles (radius ≈ 50–200 µm) 
hidden in turbid medium can be measured accurately with 
this technique [16]. It may be noted that Pa technique 
has evolved as a potential biomedical imaging modality 
over the past two decades. Excellent images of small ani-
mal organs have been generated by exploiting this effect 
[17]–[19]. contrast of a Pa image is generally very high 
because Pa signals are only produced by light-absorbing 
sites and nonabsorbing tissue components do not present 
any background. desired resolution can be achieved either 
by choosing appropriate ultrasonic transducer or by ma-
nipulating the laser beam diameter. It can provide images 
at greater depths compared with conventional optical mo-
dalities because scattering of sound is two to three orders 
of magnitude less than that of light. In essence, it combines 
the most compelling features of optics and ultrasonics.

recently, a theoretical model has been developed to 
study Pas from an ensemble of cells [20]. It assumes 
that light absorption takes place in the molecular level 
but acoustic emission takes place in the cellular level. It 
is based on the single particle approach. Essentially, Pa 
field for a cell, approximated as a fluid sphere immersed 

Manuscript received January 19, 2015; accepted February 23, 2015. 
The author thanks the council of scientific and Industrial research 
(csIr), new delhi, India, for financial assistance.

The author is with the surface Physics and Material science divi-
sion, saha Institute of nuclear Physics, Kolkata-700 064, India (e-mail: 
ratank.saha@saha.ac.in).

doI http://dx.doi.org/10.1109/TUFFc.2015.006993



IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 62, no. 5, May 2015882

in another nonabsorbing fluid, is obtained by applying a 
frequency domain method [21]. Pa field for many cells is 
derived by summing those tiny fields emitted by the in-
dividual cells. The single particle approach has been suc-
cessfully used to interpret experimental data in ultrasonic 
and light scattering problems [1], [22]. The model devel-
oped for Pas has been widely explored in the framework 
of forward problem formulation. For example, effects of 
rBc aggregation and oxygenation on Pa emission have 
been examined [20], [23]–[25]. Pas of malaria-infected 
rBcs and cancer cells with endocytosed gold nanaoparti-
cles have also been investigated exploiting this model [26], 
[27]. Moreover, spectral and statistical properties of Pa 
signals from mixtures of melanoma cells (Mcs) and rBcs 
have been probed employing this model [28]. This model 
in general provides intuitively expected results, which are 
consistent with experimental findings. These studies clear-
ly demonstrate that Pa signal power spectrum exhibits 
dependence on tissue microstructure. However, these stud-
ies have not been designed to solve inverse problems. In 
other words, average physical properties of tissue micro-
structures (i.e., the average size and the average variance 
in the optical absorption coefficients of absorbers) have 
not been extracted in these works by analyzing a simu-
lated Pa power spectrum.

The objective of the paper is to present an inverse 
problem framework to yield quantitative information on 
tissue microstructure. It is developed by drawing an anal-
ogy with ultrasonic scattering problems. The notion of 
differential Pa cross section, defined as the acoustic power 
per unit solid angle far away from the absorbers divided 
by the intensity of the optical beam, is introduced, and 
accordingly, its analytical expression is deduced. Further, 
it is shown that the differential Pa cross section per unit 
volume for a collection of absorbers can be decomposed 
into two components, namely, the coherent and the inco-
herent parts. The first component is associated with the 
boundary signal, whereas the second component belongs 
to the central segment of the signal originating from that 
assembly of absorbers. The analytical forms for the sec-
ond part are derived for some correlation functions. Each 
theoretical spectrum is used to fit the measured Pa sig-
nal power spectrum for evaluating tissue parameters. The 
performance of the fluid sphere, Gaussian, and exponen-
tial correlation functions are examined in this work using 
simulated Pa signals. such signals were generated from 
various types of tissue-mimicking samples consisting of 
monodisperse, bidisperse, and polydisperse suspensions of 
spherical absorbers. a Monte carlo algorithm was imple-
mented to construct 3-d tissue realizations. It is found 
that the dimensions of solid light-absorbing particles with 
radii ≥20 µm can be assessed with good accuracy (<10%). 
The average size of fluid spheres imitating rBcs is esti-
mated with an accuracy of about 22%. The variance in 
the optical absorption coefficients of absorbers estimates 
demonstrates good correlation with the nominal values.

The organization of the paper is as follows. The inverse 
problem framework is derived in detail in section II. sec-

tion III describes the simulation methodology including 
the spectral analysis procedure. simulation results are il-
lustrated in section IV. Finally, discussion and conclu-
sions from this study are presented in section V.

II. Inverse Problem Framework

A. Differential PA Cross Section

The time dependent wave equation for the pressure 
field generated due to absorption of light by a region can 
be obtained using the linearized equations of fluid dynam-
ics and is given by [16]:
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where Γ, µ, and c are the Grüneisen parameter, light ab-
sorption coefficient, and speed of sound for the absorbing 
region, respectively; hl is the temporal envelope of the 
laser beam. It is assumed in deriving (1) that no heat con-
duction takes place before the acoustic pulse is launched. 
The time-independent wave equation can readily be de-
rived by substituting the Fourier transforms p(r, t) = 
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into (1) and that yields [16],
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where f is the frequency and k = 2πf/c is the wavenum-
ber. The term on the right side of (2) is referred to as the 
source term, which arises due to an optical inhomogeneity. 
The acoustic properties of this region are similar to that 
of the surrounding medium. The solution to (2) in the 
far field for a uniformly illuminated light-absorbing fluid 
region suspended in a nonabsorbing fluid medium can be 
written as [16],
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where e ik
' '| | 4r r r r− −/( π| |) is the free-space Green’s func-
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The differential Pa cross section (i.e., as defined earlier, 
the acoustic power received into a solid angle in the as-
ymptotic region divided by the intensity of the incident 
optical radiation) can be expressed as
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( )
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2

k
M
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where ρ is the density of the surrounding medium. The 
total Pa cross section, which represents a hypothetical 
area, can be computed by integrating the differential Pa 
cross section over the whole solid angle. It can be thought 
by drawing an analogy with a scattering cross section that 
energy corresponding to this area of the incident light 
beam converts into acoustic energy due to the Pa effect.

For a homogeneous light-absorbing sphere, the integra-
tion in (4) can be carried out analytically, yielding

 σ
ρ
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( )
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where a is the radius of the sphere and j1 is the spherical 
Bessel function of first kind of order unity. Eq. (6) states 
that σ(k) is omnidirectional. In the small particle limit, 
i.e., ka → 0, the Bessel function j1(ka) → ka/3, (6) simpli-
fies into
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It can be noticed from (7) that Pa cross section exhibits 
k2 dependence, whereas light or acoustic scattering cross 
section shows k4 dependence in the rayleigh particle limit. 
Moreover, the former linearly depends upon the intensity 
of the incident flux; however, the latter is independent of 
the intensity of the incident radiation.

For an optically inhomogeneous medium, the differen-
tial Pa cross section per unit absorbing volume can be 
written as
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where V is the absorbing volume and the notation 〈 〉 de-
notes the ensemble average (i.e., measurements need to be 
carried out over many different possible configurations of 
absorbers and the average value is determined from those 

measured values). The relevant geometry is shown in Fig. 
1. Eq. (8) is obtained by drawing an analogy with ultra-
sonic scattering from tissue. Moreover, the same quantity 
when measured in the backward direction is referred to 
as the backscatter coefficient, which has been extensively 
used for ultrasonic tissue characterization [1]. Eq. (8), af-
ter some simple mathematical manipulations, reduces to 
[5],
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where Δr denotes the difference of coordinates, i.e., Δr = 
r r1 2
' '− . Eq. (9) has two parts. The first part is the coherent 

component, which arises from in phase addition of tiny 
signals by Pa sources. It is known that coherent addition 
of signals takes place at boundary of a cloud of Pa sourc-
es resulting in strong boundary buildup [26], [29]. on oth-
er hand, incoherent addition of signals from randomly lo-
cated Pa sources gives rise to the second part. The middle 
segment of a Pa trace corresponding to the central region 
of the cloud represents such a signal [26], [29]. Pa power 
from individual sources adds up independently for this 
part. Here, bµ(Δr) is the correlation coefficient and can be 
expressed as

 b
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It depends on the structure of the medium and varies from 
bµ(0) = 1 to bµ(∞) = 0. Further, for a statistically isotro-
pic medium, bµ(Δr) can be replaced with bµ(Δr) (i.e., the 
correlation coefficient only depends on the magnitude of 
Δr but not on its direction). Therefore, for a statistically 
isotropic medium, angular coordinates may be integrated 
over, leading to a simple form for the second part of (9):
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In the present work, it has been illustrated how the struc-
tural properties of uniformly illuminated optically inho-
mogeneous medium can be characterized from the inco-
herent component of the differential Pa cross section per 
unit volume.

B. Correlation Models

Three correlation models, namely the fluid sphere, 
Gaussian, and exponential functions, are considered in 
this study to assess tissue microstructure. These are sim-
ple mathematical functions and can provide simple closed 
form analytical expressions for the differential Pa cross 

Fig. 1. schematic diagram displaying the relevant geometry.
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section per unit volume for a statistically isotropic medi-
um. These functions were originally suggested in the con-
text of scattering of electromagnetic and acoustic waves 
in the ocean and atmosphere [30]. These have also been 
successfully utilized to evaluate structural parameters of 
tissue using ultrasound scatter data [4], [5], [31], [32]. In 
the first model, the irradiated volume is assumed to con-
tain fluidlike absorbing spheres with radius ϱ1, and these 
particles are suspended in a nonabsorbing fluid medium. 
The three dimensional correlation coefficient for a fluid 
sphere is [1], [5], [33],
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The differential Pa cross section per unit absorbing vol-
ume in this model can easily be calculated by substituting 
(12) into (11) and is equal to
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the fluid particle; µ var  = 〈|µ − 〈µ〉|2〉. For a small Pa 
source or in the long wavelength limit [i.e., kϱ1 → 0 and 
then j1(kϱ1) → kϱ1/3], (13) becomes
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From (13) and (14), we can define Pa intensity form fac-
tor as the ratio of differential Pa cross section per unit 
volume for a test material with finite absorber size to the 
same quantity for a similar light-absorbing region contain-
ing point absorbers and is given by
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The form factor depicts how χ1 depends on the geometry 
of the absorber. The variation of F̂1 with kϱ is displayed in 
Fig. 2. It shows that F̂1 ≈ 1 when kϱ ≪ 1 and for kϱ ≤ 1, 
F̂1 is a decreasing function [5]. However, F̂1 exhibits com-
plicated variation for kϱ ≥ 1 [5]. It may be noted that 
acoustic scattering intensity form factor, an analog of 
(15), can be found in literature and that has been used in 
many studies to characterize tissue microstructure [5], [8].

In the second model, Pa sources are assumed to be 
random continua (i.e., continuously varying fluctuations 
in the optical absorption coefficients), which can be de-
scribed by
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µ( ) = ,

2
2
22∆ − ∆[( )/( )]�  (16)

where characteristic dimension ϱ2 represents the radius of 
Pa source. The expression for differential Pa cross section 
per unit volume for the Gaussian correlation model can be 
derived by substituting (16) into (11), yielding
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be shown by equating (17) and (13) in the small particle 
limit that ϱ2 = (2/(9π))1/6ϱ1. The Pa form factor for this 
correlation model can be recognized as
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The variation of F̂2 with kϱ is illustrated in Fig. 2.
In the third model, the illuminated medium is hy-

pothesized to be composed of randomly distributed con-
tinuously varying fluctuations in the optical absorption 
coefficients, which may be mimicked by an exponential 
function, such as

 b r e r
µ( ) = ,3∆ −∆( )/�  (19)

where ϱ3 denotes the characteristic dimension of Pa 
source. The corresponding formula for differential Pa 

Fig. 2. Plots of form factors for various correlation functions.
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cross section per unit volume for the exponential correla-
tion model is
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ϱ3 = (1/6)1/3 ϱ1. The simple expression for the form factor 
may be found as
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The plot of F̂3 with kϱ is demonstrated in Fig. 2. note 
that the derivative of the Gaussian function is zero at Δr 
= 0. However, the derivative of the exponential function 
differs from zero at Δr = 0; this is possible if the absorp-
tion coefficient is a discontinuous function at Δr = 0. This 
may not represent a physical situation, and therefore, a 
modified version was suggested to overcome this limita-
tion [30].

III. Materials and Methods

A. Numerical Phantoms

The performance of correlation models presented above 
have been assessed by conducting in silico experiments. For 
this purpose, various types of phantoms were constructed. 
In case of the first type of samples, spherical monodisperse 
polystyrene beads were randomly positioned under non-
overlapping conditions within the irradiated volume using 
a Monte carlo method known as random sequential ad-
sorption (rsa) technique [34]. The size of roI was taken 
as 4000 × 750 × 750 µm3, which was occupied by beads 
with identical optical absorption coefficients at a volume 
fraction of 0.05. This phantom was designed to mimic an 
experimental work [16]. The laser beam propagated along 
the x-direction and acoustic waves propagated along the 
−x-direction were collected in the far field regime using a 
point receiver. The backward mode was preferred because 
it is suitable for in vivo applications. The second type of 
samples were prepared with polydisperse spherical beads 
via the rsa approach. However, in this case, beads with 
the largest size were placed first and coordinates of smaller 
particles were generated sequentially thereafter [35]. The 
size distribution of beads followed a Gaussian distribu-

tion in each sample having a standard deviation ≈10% of 
the mean radius. The motivation to investigate this set of 
samples was to examine how size dispersity of absorbers 
would affect accuracy of these models in estimating tissue 
parameters.

The Pa technique has been applied extensively to 
study blood because it produces strong Pa signals at 
certain optical wavelengths owing to the presence of he-
moglobin as an endogenous chromophore. For example, 
blood vessels have been imaged with great details using 
Pa tomography [17]–[19]; total hemoglobin concentration 
and blood oxygen saturation have also been quantified 
with Pas [36], [37]. a natural question is how the inverse 
problem framework would work for characterizing blood 
samples. To address this question, samples containing 
monodisperse and polydisperse rBcs with the same µ 
values were investigated. The size of the irradiated vol-
ume was fixed at 4000 × 100 × 100 µm3. Each cell was 
approximated as a fluid sphere. The same rsa technique 
was employed in these cases to obtain spatial locations of 
nonoverlapping rBcs. a series of samples with hemato-
crits 1, 2, 3, 4, 5, and 10% were investigated. It might be 
mentioned here that normal level of hematocrit in human 
whole blood is close to 40%. Finally, several samples con-
sisting of mixtures of rBcs and Mcs were tested. In this 
case, number of Mcs was gradually increased but that 
of rBcs was decreased so that cellular volume fraction 
remained fixed at 0.05 for all samples. Tissue configura-
tions were simulated using the rsa method by placing 
Mcs followed by positioning of rBcs within the 3-d vol-
ume [28]. such samples were probed in this work to study 
whether we could develop a method for detecting Mcs 
in blood exploiting Pa tissue characterization technique. 
note that attempts have been made by many groups to 
detect Mcs in circulation with Pas [38]–[40]. The de-
tection of circulating tumor cells is extremely helpful to 
diagnose, stage, and treat cancer.

B. PA Signal Simulation

The detailed derivation of Pa field generated by a 
spherical absorber can be found in literature [21], [41]. It 
essentially solves time-independent wave equations inside 
and outside the absorber in spherical polar coordinates 
and the expression for Pa field is obtained by matching 
boundary conditions (namely, continuity of the pressure 
and the normal component of the particle velocity) on the 
surface of Pa source. The expressions for Pa fields per-
taining to various situations are invoked in this study and 
presented below in brief.

1) PA Signal From Polystyrene Beads: Exact analytical 
expression for Pa field generated by a solid sphere under 
the uniform illumination by an intensity-modulated laser 
beam is given in [41]. such a solution can be extended 
through the use of the linear superposition principle in de-
riving Pa field produced by an ensemble of spheres in the 
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asymptotic region as in (22), see above, where subscripts 
b and f indicate polystyrene bead and ambient fluid me-
dium, respectively; abn is the radius of the nth sphere; Kb, 
βb, CPb, and µb are the bulk modulus, thermal expansion 
coefficient, heat capacity, and light absorption coefficient 
for the solid medium, respectively; I0 is the intensity of 
the laser beam; and Nb is the total number of beads pres-
ent within roI. Here, ρb, vlb, and vtb denote the density, 
longitudinal, and transverse sound speeds for the solid me-
dium, respectively; and ρf and vf represent the density and 
speed of sound for the surrounding medium, respectively. 
Further, kf defines the direction of measurement. The time 
domain Pa response for a delta function deposition of 
heat can easily be determined using the Fourier transform 
as in (23), see above, where F is the optical fluence. Eq. 
(23) was evaluated numerically to obtain complex pres-
sure data for a collection of polystyrene beads. The real 
part of that provided the Pa signal.

2) PA Signal From RBCs: similarly, the expression of a 
Pa field emitted by a fluid sphere, when uniformly irradi-
ated by an optical radiation, is available in the literature 
[21]. The Pa field emitted by a collection of rBcs ap-
proximated as fluid spheres can be cast in terms of the 
single particle solution as [20],

 

�p f
i I v
C r

a
j q e

n

N

n
n
ik r a n

( , )

( )

(1 )

0

=1

2 1
( )

r ≈

−
∑

−

β µ

ρ

e e e

Pe

e
e 

e f e

×
ˆ

ˆ
ssin ˆ

ˆ
cos ˆ ˆˆsin ˆ

ˆ

q

q n n

i

n n

n

n

n

q i v q
e

q fa v

e

e

f e

e e

e e e/

− +

− ⋅

ρ

π

k r ,

= 2 , ˆ̂ ˆρ ρ ρ= , = ,e f e f/ /v v v

 

  (24)

where subscript e indicates erythrocyte and ren is the po-
sition vector of the nth rBc. Here, aen, ρe, and ve cor-
respond to radius of the nth rBc, density, and speed of 
sound for rBc, respectively. associated time-dependent 
pressure for a delta function heating pulse becomes
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Time series of Pa pressure for many rBcs were acquired 
in this work by performing numerical integration.

3) PA Signal From a Mixture of RBCs and MCs: The 
Pa field generated by a mixture of rBcs and Mcs can be 
expressed as [28],
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where
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and
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where subscript m is used to refer melanocyte; and rms 
represents the position vector for the sth Mc. Here, am, 
ρm, and vm specify the radius, density, and speed of sound 
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for Mc, respectively. Time-dependent pressure field for 
uniform illumination of cells by a delta function laser 
pulse can be cast as [28],
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Eq. (29) was computed in this study to obtain rF lines for 
mixtures of rBcs and Mcs.

C. Choice of the Simulation Parameters

The Pa signal from a collection of beads was obtained 
by calculating (23). The contributions from a wide range 
of frequencies (0.001 to 1000 MHz with a step of 0.125 
MHz) were summed up and the pressure signal was sam-
pled at a frequency of 2 GHz. The density, longitudinal 
sound speed, and transverse sound speed for the solid were 
considered to be ρb = 1050 kg/m3, vlb = 2350 m/s, and 
vtb = 1120 m/s, respectively [42]. The density and speed 
of sound for the ambient medium were taken as ρf = 1005 
kg/m3 and vf = 1540 m/s, respectively. The parameters 
Kb, βb, CPb, µb, and F scale the magnitude of Pa signal, 
but do not modify its frequency dependence. Therefore, 
they were treated as constants in this study. numeri-
cal values of simulation parameters are summarized in  
Table I.

The Pa signals from suspensions of monodisperse and 
polydisperse rBcs were simulated by computing (25). on 
the other hand, (29) was calculated yielding Pa signals 
from mixtures of rBcs and Mcs. The density and speed 
of sound for rBcs were assumed to be ρe = 1092 kg/m3 
and ve = 1639 m/s, respectively, and for Mcs were taken 
as ρm = 1150 kg/m3 and vm = 1639 m/s, respectively [28]. 
It might be noted that cellular light absorption coefficient 
for rBc could be estimated to be µe = 1771.8 m−1 at 639 
nm for 75% oxygen saturation [28]. It could be obtained 
from literature for Mc as µm = 29 852.2 m−1 at the same 
irradiating wavelength [28]. It could be thought that Pa 
signals were generated at 639 nm incident radiation from 
diluted blood samples at 75% oxygen saturation resem-
bling Mcs suspended in diluted venous blood. This was 

chosen because some veins are easily accessible (such as 
superficial dorsal veins in the hand) and may thus be suit-
able for in vivo applications. numerical values of various 
cell parameters are displayed in Table II.

D. Parameter Estimation

as discussed above, average variance in the optical 
absorption coefficients and average particle size of a test 
sample could be estimated by analyzing Pa spectral data. 
However, to achieve these, measurement from a known 
sample was required. The spectral analysis procedure was 
similar to that of [16]. at first average power spectrum for 
a test sample was obtained by taking the Fourier trans-
form of simulated signals, such as

 S k N P k
n

N

n( ) =
1

( )
=1

2∑  (30)

where N indicates the number of measurements. signal 
segment associated with the central part of the sample 
was chosen because for this portion incoherent addition 
took place. a representative plot of Pa signal is illustrated 
in Fig. 3(a). The simulated signal was generated by an 
ensemble of monodisperse polystyrene beads of radius 10 
µm when they filled 5% of the total illuminated volume. 
To improve the clarity of the figure, the rF line is sampled 
at 40 MHz (however, spectral analysis was performed us-
ing raw signals sampled at 2 GHz). The sample length is 
denoted by the two vertical bars (solid lines). The power 
spectrum has been calculated using the segment enclosed 
by the rectangle as shown in the figure. In this portion, 
tiny signals from spherical sources randomly distributed 
in 3-d space add up in random phase varying from 0 to 
2π. Pa signals emitted by sources positioned within two 
vertical bars (solid and dashed lines, which are separated 
by 154 µm) in each boundary are partially correlated and 
contribute to boundary buildup [26], [27], [29]. as an ex-
ample in this case, we consider constructive interference of 
5-MHz acoustic waves only. The lengths over which sourc-
es are partially correlated are smaller for higher frequency 

TaBlE I. Physical Properties of Polystyrene Beads Used  
in simulations.

ρf (kg/m3) 1005
vf (m/s) 1540
ρb (kg/m3) 1050
vlb (m/s) 2350
vtb (m/s) 1120
Kb (kg∙m−1s−2) 1.0
CPb (J∙kg−1∙K−1) 1.0
βb (K−1) 1.0
µb (m−1) 10.0
F (J∙m−2) 1.0

TaBlE II. Physical Properties of rBcs and Mcs Used  
in simulations.

ae (µm) 2.75
am (µm) 5.0
ρf (kg/m3) 1005
vf (m/s) 1540
ρe (kg/m3) 1092
ve (m/s) 1639
ρm (kg/m3) 1150
vm (m/s) 1639
CPe (J∙kg−1∙K−1) 1.0
CPm (J∙kg−1∙K−1) 0.87
βe (K−1) 1.0
βm (K−1) 1.0
µe (m−1) 1771.8
µm (m−1) 29 852.2
F (J∙m−2) 1.0



IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 62, no. 5, May 2015888

waves and longer for lower frequency waves. Further, am-
plitude of the boundary signal is comparable with that of 
the central region because concentration of Pa sources is 
small in this case. However, it could become very strong at 
higher concentration of sources as was observed in earlier 
studies [26], [27], [29]. an analogous signal from rBcs at 
5% hematocrit is displayed in Fig. 3(b). The volume of the 
central segment considered for spectral analysis is ≈3154 
× 750 × 750 µm3 for the bead samples and ≈3154 × 100 
× 100 µm3 for the blood samples.

The average power spectrum as given by (30) was ob-
tained for the test material and also for the calibration 
medium. The difference spectrum thereafter calculated by 
dividing St(k) with Sc(k):

 S k
S k
S kdiff

t

c
( ) =

( )
( ) . (31)

where subscripts t and c denote test and calibration spec-
trum, respectively; the subscript diff indicates difference 
spectrum. The difference spectrum was further normalized 
by its maximum and the average absorber size of the test 
sample was estimated by minimizing the following equa-
tion within the desired bandwidth with respect to ϱt as
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where ϱc is the average particle size of the reference me-
dium. For each set of samples, the first sample acted as 
the reference medium. The calibration spectrum was de-
rived from this medium. To estimate the average size of 
absorbers of the test medium, ϱt was varied between 0.2 
to 30 ϱc at a step of 0.05, and at each step, the sum of the 
squares of the errors over the analysis bandwidth obtained 
from (32) was stored. The size corresponding to the lowest 
error was accepted as the estimated size. This procedure 
was followed for each form factor model.

once the average size of the absorbers for the test sam-
ple was estimated, its value was utilized to estimate µvar 
by conducting the following minimization,
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where χt and χc state differential Pa cross section per unit 
volume for the test and the known samples, respectively, 
and the optimization was carried out within the same 

Fig. 3. (a) Plot of a simulated rF line generated by a collection of monodisperse polystyrene beads of radius 10 µm (0.05 being the volume fraction 
occupied by beads). rF line is sampled at 40 MHz for clarity of the figure (however, spectral analysis was performed on raw signals sampled at 2 
GHz). The outermost vertical bars outline the sample length. The distance between two vertical bars (solid and dashed lines) at each boundary is 
about 154 µm and Pa sources within this region are partially correlated with respect to the acoustic wave of frequency 5 MHz. The signal segment 
within the rectangular box was utilized for spectrum analysis. (b) similar to (a) but for a sample with monodisperse rBcs at 5% hematocrit.

Fig. 4. (a) Pa spectral lines for different samples composed of monodisperse polystyrene beads. (b) Plot of difference spectrum for a sample contain-
ing beads with size ab = 20 µm. The calibration spectrum was obtained from the sample containing 10-µm beads. Broken lines represent fitted curves 
for the three correlation models. (c) same as (a) but for ab = 40 µm.
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bandwidth employed in the previous optimization. Essen-
tially, µvar was known for the reference medium but was 
not known for a test medium. Therefore, µvar,t was gradu-
ally changed from 0.00002 to 100 µvar,c with an increment 
of 0.25 (µvar,t and µvar,c denote µvar of the test and the 
reference media, respectively), and at each increment, sum 
of the squares of the errors over the bandwidth of interest 
provided by (33) was recorded. Thereafter, µvar estimate 
for the test material was chosen from those µvar,t values for 
which error was the minimum. These steps were repeated 
for each correlation model.

For the first two types of samples, the lower limit of 
the analysis bandwidth was set to 5 MHz so that the 
gated signal length becomes around 10 wavelengths with 
respect to this frequency. It is reported in the literature 
that estimations become independent of gate length if it 
is more than 10 wavelengths of the center frequency of 
the transducer used [11], [43]. The frequency correspond-
ing to the first maximum of the power spectrum curve 
[Fig. 3(a)], for each sample to be analyzed, was taken as 
the upper limit. This bandwidth was sufficient to provide 
good size estimates for samples containing solid particles. 
For the blood samples, the optimization was performed 
approximately between 5 to 100 MHz. This was chosen 

because a similar spectral region was analyzed for char-
acterization of cell pellet biophantoms and tumors using 
ultrasonic backscatter signals in a recent study [44]. For 
each sample, an average power spectrum was obtained 
from 100 rF lines by performing frequency domain aver-
aging. Those rF lines were computed from 100 different 
tissue realizations. The average power spectrum curve was 
used for spectral analysis. In addition to that, for samples 
with polystyrene beads, raw spectral data were used for 
the analysis. nevertheless, for the other samples, spectral 
data were processed using the “smooth” function of Mat-
lab (The MathWorks Inc., natick, Ma, Usa) over a span 
of 21 points to improve accuracy of estimation.

IV. simulation results

Plots of average Pa spectra for different samples with 
monodisperse polystyrene beads are demonstrated in Fig. 
4(a). Each power spectrum curve was obtained from 100 
rF lines. The well-known peak and dip pattern can be 
seen for each line from this figure. The first minimum 
appears at lower frequency for larger particles and vice 
versa. note that the position of first minimum is a signa-
ture of particle size. The spectral power increases with in-

Fig. 6. chart displaying the estimated values with respect to the veridi-
cal values for polydisperse beads: (a) for mean radius of absorbers, and 
(b) for mean variance in the optical absorption coefficients.

Fig. 5. (a) a comparative study between the nominal and the estimated 
radii for samples composed of light-absorbing monodisperse polystyrene 
beads suspended in agarose medium. (b) Bar diagram for extracted val-
ues of the mean variance in the optical absorption coefficients.

TaBlE III. The nominal and the Estimated Values of the Mean size and the Variance in the 
optical absorption coefficients for suspensions of Monodisperse Polystyrene Beads.

nominal

Frequency band 
(MHz)

Fluid sphere Gaussian Exponential

ϱ 
(µm)

µvar 
(m−2) ϱ (µm)

µvar 
(m−2) Err ϱ (µm)

µvar 
(m−2) Err ϱ (µm)

µvar 
(m−2) Err

10.0 4.75 4.9–86.9 10.0 4.75 0 10.0 4.75 0 10.0 4.75 0
20.0 4.75 4.9–47.9 20.9 4.25 8.1 21.7 4.00 8.0 17.6 7.50 7.3
30.0 4.75 4.9–28.3 30.4 4.00 2.4 31.0 4.00 2.4 22.4 10.50 2.3
40.0 4.75 4.9–23.4 40.4 4.00 1.6 41.4 3.75 1.6 29.4 10.75 1.4
50.0 4.75 4.9–18.6 47.4 4.25 0.8 48.3 4.00 0.8 33.1 12.75 0.8

The volume fraction occupied by beads is about 0.05. The sum of the relative residual norms (Err = Σi|(oi − 
ei)|/|ei|, where oi and ei indicate observed and expected values, respectively) examining goodness of fitting of 
each correlation model is also presented.
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creasing bead size. This trend can be seen up to ≈20 MHz 
and after that power spectrum curves overlap. The differ-
ence spectrum (normalized by its maximum) for a sample 
consisting of particles with ab = 20 µm is shown in Fig. 
4(b). The same curve for another sample (ab = 40 µm) is 
displayed in Fig. 4(c). The curve corresponding to ab = 
10 µm has been treated as the calibration spectrum. The 
fitted lines for various correlation models are also drawn 
in each figure. The estimated values of the mean size and 
the variance in the optical absorption coefficients are sum-
marized in Table III. The frequency bandwidth considered 
during analysis is also given for each case. The nominal 
and the estimated sphere diameters agree within 5, 3, and 
34% for the fluid sphere, Gaussian, and exponential mod-
els, respectively. The variances of the optical absorption 
coefficients for various samples are underestimated by the 
first two models. The estimates agree within 16 and 21% 
in these cases. However, the extracted values are overesti-
mated by the third model and differ greatly with respect 
to the nominal values. Irrespective of the accuracy of the 
estimated parameters, the correlation models provide ex-
cellent fits to the simulated spectrum [Figs. 4(b) and 4(c)]. 
The sum of the relative residual norms assessing goodness 
of a fit is displayed in Table III. The correlation models 
produce similar errors while fitting a simulated spectrum. 
The evaluated parameters are also presented in Fig. 5 for 
better visualization. The nominal values are given in the 
same figure for comparison. For the exponential model, 
estimated mean absorber sizes are smaller but the evalu-
ated variances in the optical absorption coefficients are 
higher compared with the actual values; however, the fits 
remain good.

similar results for polydisperse polystyrene beads em-
bedded in agarose medium are presented in Table IV, and 
the estimates are portrayed in Fig. 6. It is clear from Table 
IV that the first model provides marginally better size 
estimates than the second model. The third model be-
comes inferior compared with the others for particles with 
mean radius >20 µm. as in the previous case, µvar esti-
mates are underestimated by the first two models but 
overestimated by the third model. similar observation can 
also be made from Fig. 6. The fitting errors of the three 
models are comparable (see columns 6, 9, and 12 of Table 
IV). For the both monodisperse and polydisperse cases, 
the fluid sphere correlation model is better than the other 
models.

some representative power spectrum curves for diluted 
blood samples are illustrated in Fig. 7(a). The lines are 
well separated and spectral intensity at each frequency 
increases as the hematocrit increases. The difference spec-
trum for 2% hematocrit is shown in Fig. 7(b) and that for 
4% hematocrit is illustrated in Fig. 7(c). The calibration 
spectrum has been determined from the sample with 1% 
hematocrit. The difference spectrum curves are drawn 
over a large frequency range. Figs. 7(b) and 7(c) also dis-
play the fitted lines for the three correlation functions. In 
general, the correlation models do not provide good fits to 
the simulated power spectral lines. numerical values for 
the mean size and average variance in the optical absorp-
tion coefficients are given in Tables V and VI for monodis-
perse and polydisperse suspensions of rBcs, respectively. 
Both the nominal and the estimated values are presented. 
The same quantities are also plotted in Figs. 8 and 9, re-
spectively, for those samples. It is evident from Table V 

TaBlE IV. The Extracted Parameters From samples With Polydisperse Polystyrene Beads 
Filling approximately 5% of the Irradiated Volume.

nominal Frequency 
band 

(MHz)

Fluid sphere Gaussian Exponential

ϱ  
(µm)

µvar 
(m−2) ϱ (µm)

µvar 
(m−2) Err ϱ (µm)

µvar 
(m−2) Err ϱ (µm)

µvar 
(m−2) Err

10.0 ± 1.0 4.88 4.9–86.9 10.0 5.00 0 10.0 5.00 0 10.0 5.00 0
20.0 ± 2.0 4.87 4.9–47.9 23.2 3.50 12.3 24.3 3.00 12.0 20.1 5.75 10.9
30.0 ± 2.9 4.83 4.9–28.4 34.9 3.25 3.1 36.0 3.00 3.0 26.6 7.50 2.5
40.0 ± 3.8 4.73 4.9–23.4 42.0 3.50 1.6 43.2 3.25 1.6 30.9 9.25 1.5
50.0 ± 4.5 4.60 4.9–18.6 53.3 3.25 0.9 54.8 3.00 0.9 38.2 9.25 0.9

Err = Σi|(oi − ei)|/|ei| defines the fitting error for a correlation model (where oi and ei state observed and 
expected values, respectively).

TaBlE V. numerical Values of several Parameters obtained From diluted Blood samples consisting of Monodiperse rBcs 
at 1, 2, 3, 4, 5, and 10% Hematocrits.

nominal

Frequency band 
(MHz)

Fluid sphere Gaussian Exponential

ϱ  
(µm)

µvar 
(104 m−2) ϱ (µm)

µvar 
(104 m−2) Err ϱ (µm)

µvar 
(104 m−2) Err ϱ (µm)

µvar 
(104 m−2) Err

2.75 3.11 4.9–96.7 2.75 3.00 0 2.75 3.00 0 2.75 3.00 0
2.75 6.15 4.9–96.7 3.35 3.25 14.4 3.35 3.25 14.4 3.05 4.50 16.8
2.75 9.14 4.9–96.7 3.30 5.00 11.5 3.35 4.75 11.6 3.05 6.25 11.7
2.75 12.05 4.9–96.7 3.35 5.75 9.0 3.35 5.75 9.0 3.05 7.75 9.3
2.75 14.91 4.9–96.7 3.45 6.25 11.6 3.45 6.25 11.6 3.10 8.75 12.1
2.75 28.25 4.9–96.7 3.85 6.25 15.4 3.90 6.00 15.5 3.35 9.75 16.3

Fitting error (Err = Σi|(oi − ei)|/|ei|, where oi and ei denote observed and expected values, respectively) is also displayed.
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that for each correlation model, size estimate increases 
when hematocrit level is gradually raised. The first two 
models facilitate comparable size estimates. The exponen-
tial model works better than the former models. For in-
stance, associated error is about 22% for the exponential 
model and 42% for the others. The other extracted param-
eter µvar exhibits a monotonic rise with increasing hema-
tocrit. It also follows the same trend as that of the actual 
quantity (see column 2 of Table V). similar variations can 
be seen in Table VI. The numerical values of errors exam-
ining goodness of fits are similar for all three models (see 
columns 6, 9, and 12 of Tables V and VI).

Fig. 10(a) displays some spectral lines computed from 
different mixtures of Mcs and rBcs. These cells occupy a 
volume fraction of 0.05 in each case. For comparison, spec-
tral line corresponding to the monodisperse sample with 
5% hematocrit is also shown in the same figure. Besides, 
this medium has acted as a reference medium. The first 
minimum for the monodisperse sample appears nearly at 
426 MHz and can be linked to the size of rBc [28]. For 
other lines, the first minimum occurs approximately at 
234 MHz and can be attributed to the size of Mc [28]. 
The spectral power at each frequency increases with in-
creasing number of Mcs. Typical difference spectra in-
cluding the fitted lines by the three correlation functions 
are given in Figs. 10(b) and 10(c). Tissue characterization 
parameters are quantified in Table VII for several samples 
for the three correlation models and also displayed in Fig. 
11 for better presentation. Table VII illustrates that aver-
age size increases slowly but µvar increases rapidly with 

growing number of Mcs in blood. It seems that Mcs play 
a dominant role in this case because of their strong light 
absorption property. It is clear from Table VII and Fig. 11 
that the first two models provide similar estimates for ρ 
and µvar. The estimated average absorber size remains al-
most constant and is significantly higher than the nominal 
value for each mixture. The other extracted parameter 
shows excellent agreement with the actual value for all 
samples (error is approximately within 6.5%). For the 
third model, the estimated size is smaller in comparison 
with that of the first two models but µvar is overestimated. 
These models facilitate good fits to the difference spec-
trum curves. The sum of the relative residual norms is 
small for each sample. For each case, µvar increases as the 
number of Mcs within the irradiated volume increases 
and demonstrate good correlation with the nominal pa-
rameter.

V. discussion and conclusions

an inverse problem framework characterizing optical-
ly heterogeneous media is discussed. Various correlation 
functions are used to analyze incoherent Pa signals. The 
mean size and the average variance in the optical absorp-
tion coefficients of absorbing particles are estimated. The 
approach described in this paper relies on the spectral 
matching technique to determine average particle size. 
This is a very reliable technique and the accuracy of this 
method does not depend on the experimental condition 

Fig. 7. (a) Pa spectral lines for a series of diluted blood samples composed of monodisperse rBcs. Blood hematocrit is given in the legend. (b)-(c) 
Plots of difference spectra for 2 and 4% hematocrits, respectively. Fitted lines by the three correlation models are also presented in the same graphs. 
The power spectrum corresponding to 1% hematocrit acted as the calibration spectrum.

TaBlE VI. a comparison Between the Veridical and the Estimated Values for suspensions of Polydisperse rBcs at 1, 2, 3, 4, 5, 
and 10% Hematocrits.

nominal

Frequency band 
(MHz)

Fluid sphere Gaussian Exponential

ϱ  
(µm)

µvar 
(104 m−2)

ϱ 
(µm)

µvar 
(104 m−2) Err ϱ (µm)

µvar 
(104 m−2) Err ϱ (µm)

µvar 
(104 m−2) Err

2.75 ± 0.27 3.19 4.9–96.7 2.75 3.25 0 2.75 3.25 0 2.75 3.25 0
2.75 ± 0.27 6.32 4.9–96.7 3.35 3.50 12.1 3.35 3.50 12.0 3.05 4.50 9.7
2.75 ± 0.27 9.39 4.9–96.7 3.25 5.25 11.4 3.25 5.25 11.4 3.00 6.75 12.0
2.75 ± 0.27 12.38 4.9–96.7 3.40 5.75 9.3 3.45 5.50 9.4 3.05 8.00 9.3
2.75 ± 0.27 15.32 4.9–96.7 3.30 7.25 8.5 3.30 7.25 8.5 3.00 9.75 8.7
2.75 ± 0.27 28.97 4.9–96.7 3.85 6.50 16.1 3.90 6.25 16.3 3.35 10.00 16.7

The accuracy of fitting is also quantified (Err = Σi|(oi − ei)|/|ei|, where oi and ei denote observed and expected values, respectively).
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(such as temperature). nevertheless, it works at its best if 
the spectral slope varies significantly within the analysis 
bandwidth. For example, for polystyrene beads, spectral 
slopes change a lot within the analysis bandwidth, and 
hence, accurate size information is yielded [see Tables III 
and IV and Figs. 4(b), 4(c), 5(a), and 6(a)]. Figs. 7(b) 
and 7(c) demonstrate that spectral slopes almost remain 
flat over the analysis bandwidth because blood samples 
are composed of spherical absorbers of identical/similar 
size (identical size for monodisperse samples and similar 
size for polydisperse cases). consequently, the methods 
presented here become less sensitive and provide relatively 
inferior size estimates compared with the case of beads. 
For the case of mixtures of rBcs and Mcs, spectral slopes 
vary in a similar way for all samples because they contain 
bidisperse spheres at different proportions. as a result 
of that, size estimates do not differ appreciably for each 
model [e.g., see column 4 of Table VII and Fig. 11(a)]. 
Moreover, these models interpret that average particle size 
increases greatly as Mcs are introduced in the illuminated 
volume. Even an addition of a small number of Mcs to 
blood can have a significant impact on the estimated size 
(see row 2 in Table VII). This is in accordance with the 
ultrasonic literature [45]. Tuthill et al. [45] revealed that 

strong but occasional scatterers embedded in tissue great-
ly altered ultrasonic backscatter signal properties.

The estimates of average variance in the optical absorp-
tion coefficients for bead samples have not been assessed 
as accurately as the size estimates. It may be speculated 
that for solid particles the speed of sound and density are 
very different with respect to the ambient medium and 
they may have contributed to errors. This is also observed 
in quantitative ultrasound [5]. The product of scatterer 
number density and the square of relative impedance mis-
match between scatterers and the surrounding medium 
could not be extracted accurately [5]. The evaluated val-
ues of µvar for the diluted blood samples differ signifi-
cantly in comparison with the nominal values, particularly 
at higher hematocrits. nevertheless, they are generally ac-
curate in relative terms (see Tables V and VI). This is 
always true for the exponential model. For instance, µvar 
attains the lowest values, for the both nominal and esti-
mated, for 1% hematocrit, whereas it becomes highest at 
10% hematocrit (see column 11 of Tables V and VI). It 
may be noted that small errors in the size estimate trans-
late into large errors in the optical absorption coefficient 
variance assessment [5]. This may be the reason why esti-
mated µvar differs from the actual one. For mixtures of 
rBcs and Mcs, predicted and actual values show excel-

Fig. 10. (a) Pa spectral lines for different mixtures of rBcs and Mcs. (b)-(c) Plots of difference spectrum for 2.75 ± 0.09 and 2.79 ± 0.31, respec-
tively. Fitted lines for the three correlation functions are also displayed (broken lines). The first sample behaved as the reference medium (i.e., the 
monodisperse sample).

Fig. 8. diagrams displaying assessed tissue parameters from diluted 
blood samples with monodisperse rBcs [mean size of absorbers in (a) 
and average variance in the optical absorption coefficients of Pa sources 
in (b)].

Fig. 9. (a) a comparison between the nominal and the estimated radii of 
absorbers for samples composed of polydisperse rBcs. (b) similar to (a) 
but for the variance in the optical absorption coefficients.
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lent agreement for the first two models [Table VII and Fig. 
11(a)].

The performances of the models presented in this work 
have been tested on diluted samples as it is known from 
ultrasonic literature that such an approach works faith-
fully for sparse media. For such media, the boundary 
buildup is not strong (Fig. 3) and also Pa power from in-
dividual sources add up independently. It turns out to be 
that the entire signal length may be used for the frequency 
domain analysis. However, for dense media, boundary 
buildup is very strong (as it appears from the literature 
[26], [27], [29]), and therefore, the spectral analysis should 
be conducted using central segment of rF line (Fig. 3). In 
the future, it would be of interest to investigate the valid-
ity of these models for characterizing dense media (e.g., 
blood). It may further be noted that in ultrasonic tissue 
characterization the variance in the acoustic impedance 
mismatch (γ) is decomposed as |〈γ2〉 − 〈γ〉2| = nVsγ0

2, 
where n, Vs, and γ0

2 are the number of scatterers per unit 

volume, average volume of scatterers, and mean square 
acoustic impedance mismatch per particle, respectively. 
such a factorization is possible because γ is assumed to be 
a zero mean random variable (i.e., 〈γ〉 = 0) [5], [29]. With 
this simplification, it may be possible to determine n  and 
γ0

2 for a tissue medium. However, the average variance in 
the optical absorption coefficients cannot be decomposed 
in a similar fashion because 〈µ〉 ≠ 0, and in fact, it is a 
random variable with a positive mean [29].

It may be emphasized that the spectral analysis for 
diluted blood samples has been performed in this study 
over a large bandwidth (5–100 MHz). as stated earlier, 
similar frequency range was utilized by Han et al. for char-
acterizing cell pellet biophantoms and tumors ex vivo [44]. 
However, high-frequency acoustic waves cannot propagate 
much in tissue due to strong attenuation originating from 
scattering of waves by medium inhomogeneities. For ex-
ample, the penetration depth in tissue is about 3 mm for a 
50-MHz wave [16] so that it may not be feasible to detect 
high-frequency waves in practice associated with in vivo 
procedures. The present method will be most useful if it 
can provide quantitative information on tissue microstruc-
ture at low frequency range, where medical transducers 
work (<15 MHz) and also absorbers are not resolvable. 
Therefore, further investigations are required to examine 
the sensitivity of the models utilizing low bandwidth sig-
nals affected by scattering of light and acoustic waves and 
corrupted by electronic noise.

In this study, the calibration spectrum has been ob-
tained from a medium that is similar to the test material. 
The same approach was also adopted by other groups [16], 
[46]. nevertheless, Kumon et al. normalized their Pa data 
by a spectrum generated from a hair fiber with a diam-
eter of 30 µm [13]. Pa signal emitted by a 200-nm gold 
film was considered as a reference signal by Hysi et al. 
[42]. Further efforts should be directed to select a suitable 
protocol for obtaining reference spectrum facilitating ac-
curate estimates.

TaBlE VII. a comparison Between the actual and the Extracted Values of the Mean cell size and the Variance in the 
optical absorption coefficients for samples composed of Mixtures of rBcs and Mcs occupying a Volume Fraction of 5% 

for all samples.

nominal

Frequency band 
(MHz)

Fluid sphere Gaussian Exponential

ϱ  
(µm)

µvar 
(104 m−2)

ϱ 
(µm)

µvar 
(104 m−2) Err

ϱ 
(µm)

µvar 
(104 m−2) Err

ϱ  
(µm)

µvar 
(104 m−2) Err

2.75 ± 0 14.91 4.9–96.7 2.75 15.00 0 2.75 15.00 0 2.75 15.00 0
(22 958, 0)
2.75 ± 0.07 38.02 4.9–96.7 5.60 28.75 2.6 5.65 28.00 2.4 4.35 62.00 1.4
(22 838, 20)
2.75 ± 0.09 61.13 4.9–96.7 5.40 60.50 2.1 5.50 57.75 1.9 4.25 126.50 1.4
(22 718, 40)
2.76 ± 0.15 130.37 4.9–96.7 5.65 131.50 1.5 5.70 128.25 1.3 4.40 282.50 0.7
(22 357, 100)
2.78 ± 0.24 303.04 4.9–96.7 5.70 312.25 1.4 5.75 304.50 1.3 4.45 667.75 0.9
(21 456, 250)
2.79 ± 0.31 475.11 4.9–96.7 5.65 506.00 1.5 5.70 493.50 1.4 4.40 1087.75 1.0
(20 554, 400)

The numbers of rBcs and Mcs in each sample are provided within the parentheses (first column). Err = Σi|(oi − ei)|/|ei| is related to the quality 
of a fitting (oi and ei denote observed and expected values, respectively).

Fig. 11. (a) numerical values of estimated radii of Pa sources for diluted 
blood samples containing mixtures of rBcs and Mcs. The true values 
are also provided for comparison. (b) same as (a) but for the variance in 
the optical absorption coefficients.
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In conclusion, a method to quantify parameters of opti-
cally inhomogeneous media is discussed. The correspond-
ing inverse problem framework is deduced in detail. an 
analogous framework is extensively used in quantitative 
ultrasound. It is demonstrated that the mean size of solid 
beads can be estimated with good accuracy (error <10%) 
using the fluid sphere and Gaussian correlation models 
if the particle radius lies in the range ≥20 µm. The av-
erage size of fluid spheres approximating rBcs can be 
assessed by the exponential model with an accuracy of 
22%. These results suggest that the method presented in 
this paper may have the ability to measure dimensions 
of tissue microstructures having size of tens of microns. 
The estimates for average variance in the optical absorp-
tion coefficients of particles exhibit good correlation with 
the nominal values. These two parameters together may 
have the ability to classify tissue types, and therefore, the 
technique discussed here may help to design a new tissue 
characterization strategy.
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