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A theoretical approach to model photoacoustic (PA) signals from mixtures of melanoma cells

(MCs) and red blood cells (RBCs) is discussed. The PA signal from a cell approximated as a fluid

sphere was evaluated using a frequency domain method. The tiny signals from individual cells

were summed up obtaining the resultant PA signal. The local signal to noise ratio for a MC was

about 5.32 and 5.40 for 639 and 822 nm illuminations, respectively. The PA amplitude exhibited a

monotonic rise with increasing number of MCs for each incident radiation. The power spectral lines

also demonstrated similar variations over a large frequency range (5–200 MHz). For instance, spec-

tral intensity was observed to be 5.5 and 4.0 dB greater at 7.5 MHz for a diseased sample containing

1 MC and 22 952 RBCs than a normal sample composed of 22 958 RBCs at those irradiations,

respectively. The envelope histograms generated from PA signals for mixtures of small numbers of

MCs and large numbers of RBCs seemed to obey pre-Rayleigh statistics. The generalized gamma

distribution found to facilitate better fits to the histograms than the Rayleigh and Nakagami distri-

butions. The model provides a means to study PAs from mixtures of different populations of

absorbers. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4894794]

PACS number(s): 43.80.Qf, 43.35.Ud, 43.80.Cs [MDV] Pages: 2039–2049

I. INTRODUCTION

Metastasis is a complex process that involves spread of

a tumor or cancer from its original site to distant parts of the

body.1,2 The cancer cells are prone to metastasize because

they generally grow very rapidly in an unregulated manner

and lose their ability to adhere to one another.3 As a result of

that, the cells can easily move from one place to another

place through our lymphatic or blood circulatory systems.

The tumor cells that are flowing with the blood stream are

known as circulating tumor cells (CTCs). The detection, iso-

lation, and characterization of CTCs are of enormous impor-

tance to diagnose and stage the disease and eventually to

direct preventive treatments. CTCs exist within the blood

stream in an extraordinarily low number (approximately one

CTC in one ml of blood).4 That makes it extremely difficult

to isolate a CTC from billions of red blood cells (RBCs)

with the available technologies. Consequently, these cells

have not been characterized fully yet.1

Several methods have been developed to detect CTCs in

the blood stream.1 For example, nucleic acid-based techni-

ques have been explored; CTCs have also been distinguished

from normal blood corpuscles based on their physical prop-

erties. In addition to that, efforts have been made to detect

CTCs by exploiting photoacoustic (PA) effect (i.e., the gen-

eration of sound due to absorption of light).5–8 In the last 10

years, PA technique has developed a lot and found important

applications in biomedical imaging. By detecting optically

induced ultrasonic waves, better resolution and depths of

more than �1 mm are easily achieved due to weaker

scattering of sound waves than that of light in tissue (scatter-

ing of acoustic waves in tissue is 2 to 3 orders of magnitude

less than that of light).9 Wang et al. capitalized functional

imaging capacity of this technique with a great success.5–8

For instance, cerebral hemodynamics of rat brain in response

to one-sided whisker stimulation was mapped using PA to-

mography.5 Additionally, exquisite images of vasculature of

human palm and skin were produced by this group.6 They

also performed in vivo imaging of a subcutaneously inocu-

lated B16-melanoma in an immunocompromised nude

mouse at 584 and 764 nm. A combined image revealed the

3D morphology of both the melanoma and the surrounding

vasculature.6 Melanoma cells (MCs) are generally rich in

melanin and that causes a MC to be a much stronger PA

source than a RBC at certain bands of incident laser radia-

tion. For example, optical absorption coefficient for melanin

contained within melanosome in human skin specimens is

about 125 cm�1 at 800 nm,10,11 but the same quantity at that

wavelength for hemoglobin (Hb) is approximately 4 cm�1 at

a concentration of 150 g Hb/liter.11 This fact essentially

leads to the believe that it would be possible to detect MCs

in blood stream with PAs.

Viator and his colleagues detected the PA signals from

human malignant MC line HTB-67 SK-MEL-l suspended in

a saline solution using a circulatory system designed and

developed by them.3,12 The solution was circulated at a rate

of 0.15 ml/s and was illuminated with a 450 nm laser beam.

On the basis of experimental results, they concluded that the

PA detection mechanism has the ability to detect small num-

bers of malanotic MCs in the test solution in vitro. Zharov

group13 has recently reported the development of a time

resolved PA flow cytometry setup. They performed rigorous

experiments with HTB-65 and MALME-3M human MCs
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and B16F10 mouse MCs under in vitro and in vivo condi-

tions. According to their data, PA system is capable of

detecting single CTC in the presence of approximately 1000

RBCs in the irradiated volume at 850 nm. Solano et al.14

measured the PA signals from a series of monolayers of dif-

ferent cell lines in vitro. They observed that the MC line

HS936 produced a detectable PA signal in which the PA am-

plitude was dependent on the number of cells. They also

computed the PA signals from monolayers using a time do-

main approach. The simulated PA amplitude was found to

be correlated with the number of cells in the monolayer as

noticed in the experiment.

Recently a theoretical framework has been developed to

express the PA signal generated by a collection of cells.15 In

this model, cells were treated as fluid spheres packaging

chromophores and a frequency domain approach was used to

evaluate the PA signal from each sphere. The underlying

assumption is that the optical absorption takes place at the

molecular level but acoustic emission takes place at the cel-

lular level. The tiny signals emitted by the individual spheres

were linearly superimposed to obtain the resultant PA signal.

This model has been successfully explored in the framework

of forward problem formulation. For example, it was utilized

to examine the effect of RBC aggregation on the PA signals.

It predicted that the PA amplitude would increase with

increasing aggregation.15 The validity of the prediction was

confirmed by conducting in vitro experiments with human

and porcine RBCs.16,17 The framework was also used to

investigate the PAs of mixtures of oxygenated and deoxy-

genated RBCs and provided results consistent with that of

experiments.18 The possibility of using the PA technique to

differentiate intraerythrocytic stages of malarial parasite was

examined using this theoretical tool.19 It was shown that it

would be possible to stage intraerythrocytic development of

malarial parasite with the PA technique if appropriate optical

illuminations are used to excite the cells. PAs of cancer cells

with endocytosed gold nanoparticles was studied as well.20

It was illustrated that the PA signal amplitude increased

monotonically with cell concentration, which is in accord-

ance with experimental findings.21

It may be emphasized that the theoretical framework

models tissue as a collection of discrete absorbers and

reveals that ultrasonic spectral domain features of PA signals

depend on the properties of tissue microstructures. For

example, spatial organization, size distribution, concentra-

tion, biophysical, and biochemical states of the absorbers are

the intrinsic factors that control spectral power distribution

of PA signals. Recent experimental studies also reported that

these parameters can influence PA spectral characteris-

tics.17,22–24 These theoretical and experimental findings

essentially opened up a possibility that tissue characteriza-

tion might be feasible with PAs. Wang et al. accurately

assessed the dimensions of microparticles hidden in turbid

phantoms using a spatial auto-correlation function to per-

form PA spectral analysis.25 This study also concluded that

PA spectral analysis could be a potential tool for characteriz-

ing microstructures in biological samples. Note that ultra-

sonic tissue characterization is an established technique.26,27

Various correlation functions, such as fluid sphere, spherical

shell, and the Gaussian models, have been used in that con-

text to analyze radio frequency echo signal power spectrum

to quantify average physical properties of tissue

microstructures.

The focus of the paper is to explore the theoretical

model in the forward problem formulation to examine PAs

of samples composed of different populations of absorbers

with size dispersity and different physical properties.

Essentially, the PA signals from mixtures of MCs and RBCs

were investigated. The framework has never been used to

study PAs of a polydisperse system. Previous studies dealt

with monodisperse absorbers.15,18,19 The spatially random

distributions of cells in 3D were generated by employing a

Monte Carlo method. The simulated signals were analyzed

to extract time and frequency domain properties as a func-

tion of number of MCs present within the irradiated blood

volume. The statistics of the PA signals from different mix-

tures of MCs and RBCs were also investigated. The capabil-

ity of the Rayleigh, Nakagami, and generalized gamma

distribution functions to model envelope histograms were

examined and to the best of our knowledge, that has never

been reported in literature. It was shown that the theoretical

model provided physically meaningful results. Further, suffi-

cient insights about the PAs of mixtures of light absorbing

cells can be gained from this study.

The organization of the paper is as follows. Section II

discusses the theoretical framework. The computational

steps are described in Sec. III. Various probability distribu-

tion functions (pdfs) are also elaborated in this section.

In Sec. IV, the computational results are presented. The

modeling approach and the results of this work are eluci-

dated in Sec. V in the light of reported theoretical and exper-

imental results. The conclusions of this study are also drawn

in Sec. V.

II. THEORETICAL FOUNDATION

The theoretical formulation was reported in detail in

some recent publications.15–19 However, for the sake of com-

pleteness, the fundamentals are given below. The time de-

pendent wave equation for the PA field can be derived using

the linearized equations of fluid dynamics.28 The condition

of thermal confinement is imposed during the derivation of

such a wave equation. It implies that the acoustic pulse is

launched before significant thermal conduction takes place.

The wave equation can be solved using Green’s function

method for both regular as well as irregular shapes of

absorbing regions.29

On the other hand, the wave equation can be solved in

frequency domain for a spherical absorber and the exact

solution can be obtained by employing the boundary condi-

tions (i.e., continuity of the pressure field and the normal

component of the particle velocity at the spherical bound-

ary). The expression for the PA field generated by a uni-

formly illuminated absorbing fluid sphere mimicking a cell

surrounded by a nonabsorbing fluid medium can be cast as28

~psingle r; xð Þ ¼
ilabI0vsa

2

CP
/

eikf r

r
; (1)
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where

/ ¼ j1 ksað Þe�ikf a

1� q̂sð Þ sin ksað Þ
ksa

� cos ksað Þ þ iq̂sv̂s sin ksað Þ
� � ;

q̂s ¼ qs=qf ; v̂s ¼ vs=vf ; kf ¼ x=vf ; ks ¼ x=vs:

(2)

Here, j1 is the spherical Bessel function of first kind of

order unity, x is the modulation frequency of the optical

beam with intensity I0, and a is the radius of the spherical

absorber. The notations la, b, and CP represent the light

absorption coefficient, thermal expansion coefficient, and

isobaric heat capacity per unit mass for the absorbing me-

dium, respectively. Further, qs and vs refer to as the density

and speed of sound for the absorbing medium, respectively.

The same quantities for the surrounding medium are

denoted by qf and vf , respectively. The wave numbers for

the absorbing and the fluid medium are indicated by ks and

kf , respectively. The superscript single is used to state that

only one PA source is considered.

Consider an ensemble of absorbing fluid spheres sus-

pended in a nonabsorbing fluid medium. The PA field gener-

ated by the suspension due to uniform illumination of the

absorbers can be expressed as a linear superposition of tiny

fields produced by the individual absorbers.15–19 This is

known as the single particle approach. This approach works

well for sparse medium and has been successfully utilized in

optical and ultrasonic scattering problems to interpret experi-

mental results.30,31 It has also been explored recently to

explain PA experimental results qualitatively.16,17 If the sus-

pension contains a binary mixture of absorbing fluid spheres

mimicking RBCs and MCs, the PA field in the far field in

this framework can be cast as,18

~pmany r; xð Þ �
�

ilaebeI0vea2
e

CPe
/e

XNe

l¼1

e�ikf �rel

þ ilambmI0vma2
m

CPm
/m

XNm

n¼1

e�ikf �rmn

�
eikf r

r
;

(3)

where

/e ¼
j1 keaeð Þe�ikf ae

1� q̂eð Þ sin keaeð Þ
keae

� cos keaeð Þþ iq̂ev̂e sin keaeð Þ
� � ;

q̂e ¼ qe=qf ; v̂e ¼ ve=vf ; ke ¼x=ve;

(4)

and

/m ¼
j1 kmamð Þe�ikf am

1�q̂mð Þsin kmamð Þ
kmam

�cos kmamð Þþiq̂mv̂msin kmamð Þ
� �;

q̂m¼qm=qf ; v̂m¼vm=vf ; km¼x=vm:

(5)

The subscripts e and m in Eq. (3) denote erythrocyte and

melanocyte, respectively. Further, lae, be, CPe, qe, ve, and

ke are the light absorption coefficient, thermal expansion

coefficient, isobaric heat capacity per unit mass, density,

speed of sound, and wave number for erythrocytes, respec-

tively. The same quantities for MCs are represented by

using the subscript m. In Eq. (3), ae denotes the radius of

an equivalent sphere of a RBC and am refers to the same

for a MC. Moreover, Ne and Nm are the numbers of RBCs

and MCs, respectively, that are present within the illumi-

nated region. The wave vector kf defines the direction of

observation, rel is the position vector for the lth RBC, and

rmn is the position vector for the nth MC. The correspond-

ing geometry is shown in Fig. 1. The superscript, many

states that the PA field is generated by a collection of sour-

ces. It can be noted that the contributions from erythro-

cytes and melanocytes are added in Eq. (3) to obtain the

resultant PA field. Furthermore, multiple scattering of light

and sound waves were ignored in this derivation.

The time dependent PA field for a delta function heating

pulse can be obtained by taking the Fourier transformation

of Eq. (3) and that yields

pmany r; tð Þ �
iF

2p

ð1
�1

dx

�
laebevea2

e

CPe
/e

XNe

l¼1

e�ikf �rel

þ lambmvma2
m

CPm
/m

XNm

n¼1

e�ikf �rmn

�
eikf r�vf tð Þ

r
;

(6)

where F is the fluence of the incident optical beam. Equation

(6) represents an analytic signal for which imaginary part is

the Hilbert transform of real part. Equation (6) was com-

puted in this work for different mixtures of RBCs and MCs

to examine how the presence of melanocytes in the blood

stream alters the PA signal properties.

III. COMPUTATIONAL APPROACH

A. Simulation of tissue realizations in 3D

The shape of an erythrocyte is biconcave under normal

physiological conditions. However, each RBC in this study

was approximated as a fluid sphere. It may be a valid

FIG. 1. A schematic diagram elaborating the PA geometry. The illuminated

region is represented by the dashed circle. The small filled circles denote

RBCs and big filled circles indicate MCs.
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approximation in the diagnostic ultrasonic frequency range

because in this range, wavelengths of the acoustic waves are

much longer than the size of a RBC. The fluid spheres repre-

senting RBCs were suspended in saline water to simulate a

blood sample. RBCs encapsulate hemoglobin molecules as

chromophores and they are also much more numerous than

other particles such as white blood cells and platelets (98% of

blood particles are RBCs). Hence, they are the dominant light

absorbing corpuscles in blood for the incident optical wave-

lengths that are generally used for PA experiments.7

Moreover, the PA signals emitted by white blood cells and

platelets were not considered in this study because their intrin-

sic light absorption is much smaller than RBCs and conse-

quently, produce negligibly weak signals.32,33 MCs also

contribute to the PA signal when they are present within the

illuminated volume [also referred to as the region of interest

(ROI) in the text]. MCs were modeled as fluid spheres in

some previous investigations.13,14 This study, as well, treats

MCs as fluid spheres. Melanocytes enclose melanin, which is,

in general, a dark pigment and a strong absorber of light. The

most common type of melanin is referred to as eumelanin,

which is available in human skin and eyes. It appears as black

to dark brown. It is an insoluble heterogeneous biopolymer.34

On the other hand, another variety of melanin known as pheo-

melanin, looks yellow to reddish brown. It is an alkali-soluble

material and can typically be found in mammalian hair and

chicken feathers.35 The third form of melanin is termed as

neuromelanin, which is produced in specific populations of

catecholaminergic neurons in the brain.36

Blood tissue was simulated by placing MCs and RBCs

randomly within the ROI. The size of the ROI was fixed to

500� 100� 100 lm3. This volume was filled by cells to

achieve a 40% packing fraction. This packing fraction was

chosen because the fractional volume occupied by RBCs is

close to 0.4 in human blood. A Monte Carlo algorithm

known as the random sequential adsorption technique was

employed to generate random locations of nonoverlapping

particles.37 The largest particles (i.e., MCs) were placed first

within the ROI followed by the positioning of the smaller

particles (i.e., RBCs). This is the procedure that is generally

followed to generate configurations for spatially random dis-

tribution of spheres with size dispersity.38,39 In order to gen-

erate the position coordinates of RBCs, entire ROI was

divided into a number of sub-blocks of equal size

(500� 10� 10 lm3) and each sub-block was packed sepa-

rately with RBCs. Each RBC attached to a sub-block did not

overlap with other particles belonging to the same sub-

block. RBCs locating at the boundaries of a sub-block addi-

tionally maintained nonoverlapping condition with RBCs

belonging to the neighboring sub-blocks. RBCs also did not

overlap with MCs. This simulation approach was adapted to

construct a sufficiently big tissue volume within a realistic

time frame. The procedure is described in detail in a recent

publication.19

B. Quantitative values for various physical parameters

The volume of an equivalent sphere of a RBC was taken

as 87 lm3 with radius ae ¼ 2:75 lm. The density and speed

of sound for a RBC were taken as qe ¼ 1092 kg/m3 and

ve ¼ 1639 m/s, respectively.40 The thermal expansion coeffi-

cient and heat capacity per unit mass for an erythrocyte were

assumed to be be ¼ 1:5� 10�4 K�1 and CPe ¼ 3:23� 103

J kg�1K�1, respectively.41 The optical absorption coefficient

for the medium inside a RBC was estimated to be lae

¼ 1771:8 and 1071.4 m�1 for 639 and 822 nm incident radi-

ations, respectively. The PA signals generated at these two

wavelengths were examined in this study. Note that similar

wavelengths were employed in practice for in vivo detection

of MCs with PAs.13 The optical absorption coefficient for an

erythrocyte was estimated by evaluating the relationship

lae ¼ CHbO2
�HbO2

þ CHb�Hb, where CHbO2
and �HbO2

are the

molar concentration and the molar extinction coefficient for

oxyhemoglobin molecules, respectively.42 Analogous quan-

tities for deoxyhemoglobin molecules are denoted by CHb

and �Hb, respectively. The molar extinction coefficients for

oxyhemoglobin and deoxyhemoglobin molecules could be

found over a wide range of optical wavelengths in Ref. 11.

On the other hand, an erythrocyte typically encloses

280� 106 hemoglobin molecules and therefore, molar con-

centration can easily be computed to be 5.34 moles/l.43 It

was also assumed that blood oxygen saturation vis-�a-vis

RBC oxygen saturation remained to be 75% (i.e., similar to

that of venous blood) for all samples investigated in this

work. It might be noted that for such a level of oxygen satu-

ration 75% of the hemoglobin molecules were oxygenated

and 25% of them were deoxygenated.

The radius of a MC was taken as am ¼ 5:0 lm.14 The

density and heat capacity per unit mass were assumed to be

qm ¼ 1150 kg/ m3 and CPm ¼ 2:81� 103 J kg�1K�1, respec-

tively.10 The optical absorption coefficient was considered as

lam ¼ 29852:2 and 11 979.4 m�1 for 639 and 822 nm optical

illuminations, respectively.10 The speed of sound and thermal

expansion coefficient for MCs were not available in the litera-

ture and thus, were fixed similar to that of RBCs, i.e., vm ¼
1639 m/s and bm ¼ 1:5� 10�4 K�1, respectively. The density

and speed of sound for the ambient medium were set to qf ¼
1005 kg/m3 and vf ¼ 1498 m/s, respectively. Table I summa-

rizes the numerical values considered for these parameters.

C. Generation of the PA signals

In this work, Eq. (6) was evaluated numerically to com-

pute complex pressure for a mixture of RBCs and MCs at a

distance 6000 lm from the center of the ROI and in the back-

ward direction. The contributions from a wide range of fre-

quencies (MHz to GHz) were summed up. The time series

pressure data were generated at a sampling frequency of

4 GHz. The real parts of the time series data provided the ra-

dio frequency (RF) line. The signal amplitude at each time

point was calculated from the square root of the sum of

squares of the real and imaginary parts. The PA signals were

simulated for various samples with increasing number of

MCs. For each sample, 150 RF lines were computed from

150 different tissue configurations. The average power spec-

trum computed from 150 PA traces was obtained using cen-

tral part of the signals for each sample to examine how the

presence of MCs alters spectral features. The variation of
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mean amplitude with MC concentration was also investigated

in this work. A C code was developed for this purpose and ex-

ecuted in a personal computer [OS: Ubuntu 12.10; Processor:

Intel(R) Core(TM) i3–2130 CPU, 3.40 GHz; RAM: 4 GB].

The execution time was about 8 h generating 150 lines. The

simulated data were processed in MATLAB R2009b.

D. Statistics of the PA signals

The statistics of the PA signals generated by different

mixtures of MCs and RBCs have also been studied in this

work. The suitability of three different pdfs, namely, the

Rayleigh, Nakagami, and generalized gamma to model the

statistics of the envelope data have been examined.44,45 The

Rayleigh pdf is expressed as44,46

f Að Þ ¼ A

r2
exp � A2

2r2

� �
; A � 0; r > 0; (7)

where r is the scale parameter. It is a single parameter pdf.

In the context of ultrasonic tissue characterization, it has

been successfully explored to describe envelope statistics of

ultrasonic backscatter signals from an ensemble of large

number of scatterers randomly located in space.

The Nakagami pdf is given by44,46

f Að Þ ¼ 2nnA2n�1

C nð ÞXn exp � nA2

X

� �
; A � 0; n; X > 0;

(8)

where C is the gamma function; X and n are the scale and

shape parameters, respectively. It is a two-parameter pdf and

applicable to model envelope statistics of many situations,

ranging from pre-Rayleigh to Rayleigh to post-Rayleigh,

encountered in medical ultrasonics. It has been found to be

useful to classify tumors in the breast as benign or malig-

nant.46 The Rayleigh pdf is a special case of the Nakagami

pdf (n ¼ 1).

The generalized gamma pdf can be cast as44,47

f Að Þ ¼ cAcu�1

acuC uð Þ
exp �Ac

ac

� �
; A � 0; a; c; u � 0;

(9)

where a is the scale parameter; c and u are the shape parame-

ters. It is a three-parameter function and has the ability to

describe the statistics of ultrasonic backscatter signals from

tissue in a much superior manner than any other distributions

do.44 Both the Rayleigh and Nakagami pdfs can be derived

from the generalized gamma function. For example, Eq. (7)

can be obtained by setting c ¼ 2 and u ¼ 1. Further, for

c ¼ 2, Eq. (9) reduces to Eq. (8). Raju et al.44 studied the

statistics of high frequency ultrasonic backscatter signals

from in vivo normal human dermis and subcutaneous fat.

The generalized gamma parameters showed significant dif-

ferences between the dermis at the forearm and fingertip

regions. Tunis et al.47 investigated the use of signal envelope

statistics to monitor and quantify structural changes during

cell death and demonstrated that the generalized gamma fit

parameters exhibited sensitivity to structural changes in

the cells.

In this work, envelope histograms generated from wide

bandwidth PA signals [computed from Eq. (6)] were fitted

with these distribution functions. For each sample, central

parts of 150 different PA lines simulated from 150 different

configurations were used to calculate the average histogram.

The best fit curves and thus the fitting parameters were

obtained using a MATLAB optimization routine (fminsearch).

These pdfs were also utilized to model the envelope his-

tograms constructed from band-limited (BL) signals. The en-

velope statistics of BL signals have been included in this

work because PA signals are detected using a finite band-

width transducer in practice. The BL signal can be calculated

by convolving the wide bandwidth signal [Eq. (6)] with a

Gaussian function mimicking the frequency response of a

detector yielding19

pBLðr; tÞ ¼ Re½pmanyðr; tÞ� 	 hðtÞ; (10)

where hðtÞ ¼ ðs=
ffiffiffiffiffiffi
2p
p
Þe�ðs2t2=2Þ cosðx0tÞ and 	 represents the

convolution operation. The center frequency and �6 dB

bandwidth of the transducer are represented by x0 and s,

respectively. The BL signals were calculated for a 40 MHz

transducer with 80% as the �6 dB bandwidth.

IV. COMPUTATIONAL RESULTS

Figure 2(a) shows a representative PA RF line (solid

line) generated by a blood sample containing only one MC

and 22952 RBCs, when illuminated by 639 nm optical beam.

The associated signal envelope (dashed line) is also shown

in the same figure. It can be observed that signal envelope

fluctuates very rapidly and that is due to the presence of high

frequency components. Very strong PA signals have been

generated at each boundary due to coherent addition of tiny

signals emitted by the individual cells situated adjacent to

each boundary. Nevertheless, incoherent addition of acoustic

waves produced by the randomly placed cells results in great

reduction of signal amplitude at the central region. It can be

noticed that there is a sudden increase in the signal ampli-

tude at around 3950 ns. It has been originated from the MC.

Two vertical lines have been used to highlight the signal pro-

duced by the MC and its neighboring RBCs. This portion is

further elaborated in the inset for clarity. The signal to noise

ratio (abbreviated as SNR and defined as peak amplitude/

TABLE I. Quantitative values for various mechanical, thermal, and optical

parameters.

qf (kg=m3) 1005

vf (m/s) 1498

ae, am (lm) 2.75, 5.0

qe, qm (kg=m3) 1092, 1150

ve, vm (m/s) 1639, 1639

be, bm (K�1) 1.5 �10�4, 1.5 �10�4

CPe, CPm (J kg�1K�1) 3.23 �103, 2.81 �103

lae, lam (m�1) 1771.8, 29 852.2 (at 639 nm)

lae, lam (m�1) 1071.4, 11 979.4 (at 822 nm)

F (J m�2) 1
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std3) for this region is approximately 5.32. The plots of

power spectrum, averaged over 150 RF lines for each, are

shown in Fig. 2(b) for a series of blood samples with increas-

ing MCs. The solid line corresponding to Nm ¼ 0 displays

the power spectrum for a sample composed of RBCs only.

The first minimum for this curve appears nearly at 426 MHz

and that can be linked to the size of RBC. The spectral curve

for Nm ¼ 1 looks to be well separated from Nm ¼ 0 line up

to about 150 MHz. For example, the spectral intensity for

Nm ¼ 1 line is about 5.5 dB more than that of Nm ¼ 0 line at

7.5 MHz. The contrast of MC with respect to RBCs is very

high at this illumination, leading to two distinguishable lines

up to 150 MHz. It is interesting to note that for curves with

Nm > 1, the first minimum occurs approximately at

234 MHz. This minimum can be attributed to the size of

MC. Additionally, as the number of MCs increases the spec-

tral intensity also increases at each frequency up to the first

maximum (� at 150 MHz). For instance, it is about 23 dB

higher for Nm ¼ 100 line than Nm ¼ 0 curve at each fre-

quency up to 150 MHz. The variation of the PA amplitude is

illustrated in Fig. 2(c) as a function of number of MCs pres-

ent in a blood sample. It can be seen that the PA amplitude

varies linearly with the number of MCs. Galanzha et al. also

experimentally demonstrated linear variation of the PA am-

plitude with the number of MCs in the detected volume (Fig.

5(c) of Ref. 13).

A typical simulated trace of a PA RF line (solid line) is

displayed in Fig. 3(a) when 822 nm laser source uniformly

irradiates a mixture of MCs and RBCs (Nm ¼ 1 and

Ne ¼ 22952). The amplitude variation is also demonstrated

by the dashed line in the same figure. The RF line seems

similar to that of Fig. 2(a). However, the PA amplitude is

weaker in this case than that of 639 nm beam [see Fig. 2(a)].

This is because absorption of light by both types of cells

(i.e., MCs and RBCs) is less at this wavelength in compari-

son to the other wavelength. The signal associated with the

MC is marked by the two vertical lines and is also expanded

in the inset. The signal to noise ratio is about 5.40 in this

case. Figure 3(b) illustrates power spectrum curves for dif-

ferent mixtures of MCs and RBCs. In general, the spectral

intensity increases as the number of MCs within a sample

increases. For example, the spectral intensity for Nm ¼ 1 line

is 4 dB higher than that of Nm ¼ 0 line nearly at 7.5 MHz.

Furthermore, it is about 19.6 dB greater for Nm ¼ 100 curve

than Nm ¼ 0 line at the same ultrasonic frequency. Figure

3(c) displays that the PA amplitude increases as the number

of MCs exist in a blood sample increases. The variation

looks similar to that of Fig. 2(c).

Figure 4 displays envelope histograms for various sam-

ples and best fit curves for the Rayleigh, Nakagami, and gen-

eralized gamma distribution functions. These functions

provide excellent fits to the histogram shown in Fig. 4(a).

The generalized gamma pdf facilitates best fit to the histo-

gram illustrated in Fig. 4(b) compared to the Rayleigh and

Nakagami pdfs. The Nakagami and generalized gamma

curves exhibit better agreement with the histogram data

FIG. 2. (a) A representative PA RF line (solid line) and its envelope (dashed line) when 639 nm optical radiation is used to excite the sample containing only

one MC and many RBCs. The gated region corresponds to the signal generated by the MC and its neighboring RBCs. It is further highlighted in the inset. The

sudden increase in the PA amplitude is due to the MC. (b) The variations of power spectrum curves (averaged over 150 RF lines) over a wide range of frequen-

cies (MHz to GHz) for various samples with increasing number of MCs. (c) The plot of the mean PA amplitude (evaluated from 150 RF lines) as a function of

number of MCs present within a sample.

FIG. 3. A simulated PA RF line for 822 nm optical illumination when only one MC is present within the blood sample. The dashed line outlines the signal en-

velope. The signal from the MC and its neighboring RBCs is denoted by the two vertical lines and is further illustrated in the inset. (b) The plots of power

spectrum curves (averaged over 150 RF lines for each) over a wide range of frequencies (MHz to GHz) for a series of blood samples with increasing MCs. (c)

The variation of the mean PA amplitude (evaluated from 150 RF lines) as a function of MCs exist within the illuminated volume.
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demonstrated in Fig. 4(c) than the Rayleigh curve. Table II

presents quantitative analysis for these pdfs. Note that for

clarity of the figures, bin size was arbitrarily chosen.

However, bin size remained constant while the fitting param-

eters were estimated. The SNR for the first sample containing

RBCs positioned at random locations in 3D is close to 1.91

and therefore it follows the Rayleigh statistics. The histo-

grams appear as pre-Rayleigh as MCs in small numbers are

mixed with large numbers of RBCs and associated numerical

values for the SNR become less than 1.91. This deviation is

maximum for the fourth sample and accordingly fitting error

is maximum. The histogram is moved to a Rayleigh-like dis-

tribution as the number of MCs increases and hence fitting

error is less with respect to the previous case (see rows five

and six of Table II). The scale parameter (r) of the Rayleigh

distribution increases with increasing MCs in blood. The

shape parameter (n) of the Nakagami distribution remains

close to 1 for Rayleigh-like histograms and for pre-Rayleigh

histograms n < 1. The variation of X looks similar to that of

r. It is expected, since X ¼ 2r2. The histograms are always

better fitted with the Nakagami distribution compared to the

Rayleigh distribution (DN < DR for each sample). For the

generalized gamma pdf, a and c parameters decrease with the

introduction of MCs within the irradiating volume, reach at

minimal values for the fourth sample, and after that they

increase. One of the shape parameters (u) of the generalized

gamma pdf initially increases with increasing MCs, becomes

maximum for the fourth sample, but after that it decreases. It

is also clear from Table II that fitting error for this pdf is gen-

erally less than other pdfs for each sample.

Some representative plots of the BL signals are shown

in Figs. 5(a)–5(c). Associated histograms and fitted curves

are elucidated in Figs. 5(d)–5(f). Figure 5(a) presents the BL

version of Fig. 2(a) and therefore, a hump appears at the

same location for a MC in both the figures. Moreover, high

frequency components are filtered out producing a smoother

trace as shown in Fig. 5(a) relative to that of Fig. 2(a).

Owing to destructive interference of tiny signals emitted by

cells, signal amplitude at the central region is greatly

reduced [see Fig. 5(a)] and that can also be seen in Fig. 5(d).

Consequently, strong boundary buildups can be seen in this

case. Figures 5(b) and 5(c) demonstrate that as the number

of MCs increases, the signals originating from them occur

more frequently in the RF line resulting in enhancement of

signal strength in the central region. Similar observation can

also be made from Figs. 5(e)–5(f). The peak of the histogram

is gradually shifted from lower amplitude to higher ampli-

tude as the concentration of MCs increases. The estimated

values of various fitting parameters are presented in

Table III. It can be noticed that post-Rayleigh statistics are

followed by the first, fifth, and sixth samples (SNR >1:91).

However, other samples obey pre-Rayleigh statistics. The

Rayleigh parameter increases as the signal amplitude in the

central region increases and this function provides good fits

to the histograms for the fifth and sixth samples. The

Nakagami shape parameter further confirms that third and

fourth samples follow pre-Rayleigh statistics (n < 1).

Similar to r, X also increases with increasing MCs within

the region of interest. As observed earlier, this distribution

fits the histograms more accurately than the Rayleigh distri-

bution. The generalized gamma parameters vary over a large

range for the samples studied in this work (particularly a pa-

rameter demonstrates variation over several orders of magni-

tude). However, no definite trend has been observed. As

expected, this pdf produces less fitting error almost in all

cases confirming its flexibility to model various histograms

related to diverse physical situations.

FIG. 4. (a) Average envelope histogram computed from 150 PA traces for a sample with Nm ¼ 1 and Ne ¼ 22952 and for 639 nm incident optical beam. The

Rayleigh (R), Nakagami (N) and generalized gamma (GG) distribution curves are also shown in the same figure. (b) Same as (a) but for Nm ¼ 18 and

Ne ¼ 22850. (c) Same as (a) but for Nm ¼ 100 and Ne ¼ 22357.

TABLE II. The estimates of the Rayleigh (R), Nakagami (N) and general-

ized gamma (GG) parameters for wide bandwidth signals generated at

639 nm irradiation. Fitting error [D ¼
P100

i¼1 ðoi � eiÞ2, oi; and ei represent

observed and estimated frequency, respectively] of each curve is also

presented.

No. of cells SNR

R pdf N pdf GG pdf

r
(e-4) DR n

X
(e-6) DN

a
(e-4) c u DGG

Nm ¼ 0 1.95 9.8 4.35 1.00 1.9 4.35 14.3 2.07 0.95 4.14

Ne ¼ 22958

Nm ¼ 1 1.77 9.9 8.71 0.96 1.9 5.94 14.2 1.98 0.97 5.93

Ne ¼ 22952

Nm ¼ 5 1.49 10.6 26.13 0.89 2.3 20.18 9.6 1.30 1.73 15.73

Ne ¼ 22928

Nm ¼ 18 1.39 13.5 59.60 0.69 4.4 39.00 0.04 0.39 10.96 16.30

Ne ¼ 22850

Nm ¼ 50 1.56 24.6 38.00 0.71 13.2 13.85 22.3 1.15 1.62 7.50

Ne ¼ 22657

Nm ¼ 100 1.75 35.6 13.83 0.86 26.2 6.23 42.2 1.53 1.29 3.56

Ne ¼ 22357
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V. DISCUSSION AND CONCLUSIONS

A recently developed theoretical model has been

employed in this study to simulate PA signals from bidis-

perse samples (i.e., mixtures of MCs and RBCs). The model

considers each cell as a PA source and tiny signals emitted

by such sources are summed up to obtain the resultant PA

signal. The signal strength for a source depends upon its me-

chanical, thermal and optical properties. The size of the

source dictates the dominant frequency content of the signal.

Therefore, the model inherently incorporates the effects of

physical properties and size dependence of the individual

absorbers on PA signal. In other words, the model provides a

framework to examine how the size, biophysical, and bio-

chemical properties of each light absorbing object affect the

PA signal.

Recently, Solano et al.14 computed PA signals from

hexagonally packed MCs using a time domain approach and

compared simulation results with experimental findings.

However, they treated each MC as a point source and the

simulations were performed in 2D. The current study reports

simulation results for an ensemble of spherical absorbers dis-

tributed in 3D. The 3D simulations better mimic experimen-

tal situations and may provide a means to interpret

experimental data in a straightforward manner.

Another interesting result of this study is that the first

minimum of power spectrum curves occurs at lower fre-

quency for samples with MCs than that of samples with

RBCs only [see Figs. 2(b) and 3(b)]. This is expected

because the frequency spectrum carries size information of

the absorbers. In this case, the ROI is composed of two pop-

ulations of PA sources and the first two minima are linked to

those sizes. Note that the oscillatory pattern exhibited by the

power spectrum is due to the spherical Bessel function. For

such a function, the first three minima appear when its argu-

ment becomes 4.49, 7.72, and 10.90, respectively48 and the

frequency corresponding to the first minimum can be esti-

mated as f ¼ 4:49 	 vs=ð2paÞ. Thus minima locations for

MC and RBC could easily be estimated and it has been

found that calculated and observed positions are in good

agreement. It is known both theoretically and experimentally

in the context of ultrasound backscattering that the ultra-

sound backscatter coefficient passes through several minima

for intermixed scattering structures with different character-

istic dimensions. For instance, such a variation of

FIG. 5. (a) A typical simulated BL PA trace for a sample containing Nm ¼ 1 and Ne ¼ 22952 and for 639 nm illuminating radiation. The BL signal was gener-

ated for a 40 MHz transducer having 80% as the �6 dB bandwidth. (b) Same as (a) but for Nm ¼ 18 and Ne ¼ 22850. (c) Same as (a) but for Nm ¼ 100 and

Ne ¼ 22357. (d) Average envelope histogram corresponding to (a) and fitted with the Rayleigh (R), Nakagami (N) and generalized gamma (GG) distribution

curves. (e), (f) Same as (d) but corresponding to (b) and (c), respectively.

TABLE III. The fitting parameters for the Rayleigh (R), Nakagami (N) and

generalized gamma (GG) for BL signals simulated at 639 nm irradiation.

The BL signals correspond to a transducer with 40 MHz center frequency

and 80% as the �6 dB bandwidth. Fitting error [D ¼
P100

i¼1 ðoi � eiÞ2, oi;

and ei are the observed and estimated frequency, respectively] of each curve

is also presented.

No. of cells SNR

R pdf N pdf GG pdf

r
(e-5) DR n

X
(e-9) DN

a
(e-6) c u DGG

Nm ¼ 0 2.22 1.4 142.41 1.52 0.5 1.94 4.99 1.40 10.31 2.52

Ne ¼ 22958

Nm ¼ 1 1.13 1.5 50.61 1.10 0.5 38.22 6.65e-2 0.49 15.86 35.53

Ne ¼ 22952

Nm ¼ 5 1.13 2.3 265.60 0.35 0.5 131.23 5.17e-5 0.22 17.41 112.86

Ne ¼ 22928

Nm ¼ 18 1.76 15.5 53.51 0.66 52.1 24.17 322.6 2.72 0.43 21.99

Ne ¼ 22850

Nm ¼ 50 2.07 25.4 9.69 0.94 131.2 7.65 317.1 1.69 1.22 6.56

Ne ¼ 22657

Nm ¼ 100 2.13 36.2 7.75 0.98 263.2 7.54 478.6 1.83 1.12 7.35

Ne ¼ 22357
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backscatter coefficient was demonstrated by Roberjot et al.49

experimentally for two distinct intermixed scatterer-size

populations and consequently, they proved the validity of

the theoretical prediction.

Absorption coefficient for MCs in this study was assumed

to be the same of that of melanin. Although similar assump-

tion was made previously by Solano et al.,14 this seems to be

an overestimation of the absorption coefficient for a MC. The

melanin within a MC forms clusters occupying a small vol-

ume fraction of the cell. Therefore, it is expected that the

actual absorption coefficient for a MC would be less than

what was considered here. As a result of that signal strength

for MCs would decrease with respect to the background signal

arising from randomly located RBCs (i.e., contrast would be

less). It would be interesting in future to appropriately esti-

mate the absorption coefficient for MCs and then compare

simulation and experimental results. Another interesting work

would be to estimate the midband fit and spectral slope of var-

ious curves at different frequency bandwidths. It might be

mentioned here that these parameters were found to be useful

in characterizing tissue with PAs. For example, Kumon et al.
quantified that mean PA midband fit corresponding to signals

from cancerous tumor was about 9 dB higher than that of sur-

rounding normal tissue.22 Yang et al. reported that spectral

slope for an artificial tumor was significantly greater than that

of surrounding tissue (tumor phantom was made of agar with

embedded polymer beads with 49lm as the diameter).23 In

contrast, the mean slope greatly decreased for another artifi-

cial tumor containing 199 lm beads. Both the studies con-

cluded that PA spectral analysis might be valuable for

distinguishing tumor from normal tissue.

Simulated wide bandwidth RF lines were sampled at a

very high frequency in order to illustrate sharp changes of

the RF lines due to MCs [see Figs. 2(a), 3(a), and 5(a)–5(c)].

Associated SNR was computed to be around 5. It appears

that MCs can be detected when high frequency signals at

low amplitudes are captured at a very high sampling rate.

This procedure poses a major challenge to the detection of

MCs in practice. Experimental investigations also seemed to

encounter similar problems. Galazha et al. labeled MCs with

gold nanoparticles to increase SNR and thereafter detected

PA signals using low frequency transducers (e.g., center fre-

quencies at 3.5 and 20 MHz).13 Solano et al. measured PA

signals employing a 500 MHz transducer.14 This paper, in

the framework of forward problem formulation, demon-

strates that PA spectral intensity increases significantly even

in the low frequency range (<10 MHz) as the number of

MCs increases. Consequently, it may be speculated that a

frequency domain method analyzing low bandwidth signals

may offer an alternative method to provide quantitative in-

formation on the average size and strength of the absorbers

characterizing mixtures of MCs and RBCs. Nevertheless,

further investigations are required to examine applicability

of such an approach. The spectral domain analysis of PA sig-

nals may also seem to be helpful to distinguish MCs from

RBC aggregates. It has been experimentally revealed that

they facilitate similar contribution to the characteristics of

PA signals providing additional complexity for identifying

MCs in circulation.33

This paper also includes the statistics of the PA signals

from samples composed of MCs and RBCs. The envelope

histogram corresponding to PA signals generated by a large

number of RBCs distributed randomly in 3D was found to

follow the Rayleigh statistics. However, the envelope histo-

grams were shifted to pre-Rayleigh regime once MCs

(strong absorbers for the irradiating beam) in small num-

bers were mixed with large numbers of RBCs (weak

absorbers at the chosen illumination). The introduction of

occasional MCs resulted in a wider variation in amplitudes

leading to larger standard deviation and hence, the SNR

decreased. It might be mentioned here that in the context of

ultrasonic tissue characterization the envelope histogram

also appeared as pre-Rayleigh when strong but sparse scat-

terers were present in tissue.50 Additionally, the SNRs for

BL signals were computed to be more than the correspond-

ing wide bandwidth signals and such a change could be

attributed to the effect of filtering of signals. The standard

deviation of a BL signal decreased due to its flat appearance

causing the SNR to increase. This is consistent with the ul-

trasonic literature as well. For example, Tuthill50 revealed

that SNR for signal from dense scatterers shifted to a high

value when low-pass filtering was performed. Additionally,

it has been noticed that the generalized gamma pdf pro-

vided best fits to the histograms presented in Figs. 4 and 5.

As discussed in Ref. 44, it is not surprising because it is a

three-parameter function and that makes it more flexible to

fit the histograms. In general, it has the ability to better fit

the upper and lower tails of the histograms independently

with two-shape parameters than the Rayleigh and

Nakagami distributions.44

In conclusion, a theoretical framework to simulate PA

signals from mixtures of MCs and RBCs is reported. A

Monte Carlo algorithm was employed to generate random

locations of impenetrable MCs and RBCs in 3D. The volume

fraction occupied by the cells was about 0.4. These cells

were treated as fluid spheres and were suspended in saline

water. The PA signal from each cell was obtained using a

frequency domain approach. Such signals were added to

compute the resultant PA signal. The SNR for a MC was

about 5.32 at 639 nm illumination. It allowed us to detect a

MC in the RF line. Similarly, for 822 nm incident radiation

the SNR was computed to be 5.40. It was found that the PA

amplitude increased linearly as the number of MCs increased

within the irradiated volume for those input beams. This is

in qualitative agreement with experimental findings. The

spectral intensity increased up to 150 MHz as the number of

MCs increased. It was observed for the both incident optical

radiations. For example, it was about 5.5 and 4.0 dB more at

7.5 MHz for a diseased blood sample consisting of 1 MC and

22952 RBCs in comparison to a normal blood sample with

22958 RBCs at those laser beams, respectively. This work

demonstrates that histogram of envelope data generated

from a sample with randomly positioned RBCs in 3D fol-

lows the Rayleigh distribution. However, histogram is

shifted to pre-Rayleigh regime once MCs in small number

are mixed with a large number of RBCs. Moreover, the gen-

eralized gamma distribution provides more accurate fits to

the envelope histograms, generated from the samples
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investigated in this work, than the Rayleigh and Nakagami

distributions. The model offers a theoretical framework to

study how the presence of MCs in blood alters the PA signal

features. Sufficient insights regarding spectral and statistical

characteristics of the PA signals from polydisperse systems

can be gained from this study. Moreover, simulations results

suggest that PA tissue characterization technique may be

explored to analyze PA signals from MCs embedded in

blood to quantify various physical parameters.
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