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Effects of Cell Spatial Organization and Size 
Distribution on Ultrasound Backscattering

Ratan K. Saha and Michael C. Kolios

Abstract—In ultrasound tissue characterization dealing 
with cellular aggregates (such as tumors), it can be hypoth-
esized that cell microstructure and spatial distribution domi-
nate the backscatter signal. Effects of spatial organization and 
size distribution of nuclei in cell aggregates on ultrasound 
backscatter are examined in this work using 2-D computer 
simulations. The nuclei embedded in cytoplasm were assumed 
to be weak scatterers of incident ultrasound waves, and there-
fore multiple scattering could be neglected. The fluid sphere 
model was employed to obtain the scattering amplitude for 
each nucleus and the backscatter echo was generated by sum-
ming scattered signals originating from many nuclei. A Monte 
Carlo algorithm was implemented to generate realizations of 
cell aggregates. It was found that the integrated backscatter-
ing coefficient (IBSC) computed between 10 and 30 MHz in-
creased by about 27 dB for a spatially random distribution of 
mono-disperse nuclei (radius = 4.5 μm) compared with that of 
a sample of periodically positioned mono-disperse nuclei. The 
IBSC also increased by nearly 7 dB (between 10 and 30 MHz) 
for a spatially random distribution of poly-disperse nuclei 
(mean radius ± SD = 4.5 ± 1.54 μm) compared with that of a 
spatially random distribution of mono-disperse nuclei. Two dif-
ferent Gaussian pulses with center frequencies 5 and 25 MHz 
were employed to study the backscatter envelope statistics. An 
80% bandwidth was chosen for each case with approximately 
0.32 mm as the full-width at half-maximum (FWHM) for the 
first pulse and 0.06 mm for the second. The incident beam 
was approximated as a Gaussian beam (FWHM = 2.11 and 
1.05 mm for those pulses, respectively). The backscatter signal 
envelope histograms generally followed the Rayleigh distribu-
tion for mono-disperse and poly-disperse samples. However, 
for samples with partially ordered nuclei, if the irradiating 
pulse contained a frequency for which ultrasound wavelength 
and scatter periodicity became comparable (d ~ λ/2), then the 
histograms were better fitted by the Nakagami distribution. 
This study suggests that the shape of an envelope histogram 
depends upon the periodicity in the spatial organization of 
scatterers and bandwidth of the ultrasound pulse.

I. Introduction

Studies carried out mostly over the last few years used 
high-frequency (10 to 60 MHz) ultrasound to investi-

gate backscattering properties of cell aggregates, which 
were used as simplified models of tumors [1]–[3]. In this 
regime, wavelengths (25 to 150 μm) approach the size (10 
to 20 μm) of the cells or nuclei and exhibit much more 

sensitivity to cell structure and changes in cell structure 
during cell death compared with the lower interrogating 
frequency range (<10 MHz) available with conventional 
ultrasound imagers [2]. This observation suggests that the 
high-frequency ultrasound backscattering technique can 
be used to detect cell apoptosis and also to monitor effi-
cacy of cancer treatments [4], [5]. Although there are other 
more established methods that are used to detect apop-
tosis [for example, single photon emission CT (SPECT) 
and Positron emission tomography (PET)], ultrasonic de-
tection of apoptosis has several distinct advantages. The 
ultrasound imaging method is nonionizing, less expensive 
(compared with SPECT, PET, etc.), easy to implement, 
and generally free from injection of foreign particles into 
the body before the exposure [6].

Kolios et al. [1] used an ultrasound spectral analysis 
method developed by Lizzi et al. [7] to analyze measured 
ultrasound signals from cell ensembles treated with che-
motherapeutics and also from aggregates of healthy cells. 
They found that ultrasound backscatter intensity and 
spectral slope increased because of treatment and that 
was interpreted as a consequence of the decrease in ef-
fective scatterer size. Similarly, Vlad et al. [2] experi-
mentally investigated how backscattering properties for 
several cell lines vary with time after radiotherapy, and 
consequently examined the potential of this technique to 
differentiate various types of cell death. Tunis et al. [3] 
studied the envelope statistics of ultrasound backscatter 
signals from cisplatin-treated aggregated acute myeloid 
leukemia (AML) cells and evaluated the applicability of 
various statistical distribution functions to model the en-
velope histograms. They reported that shape parameters 
of the generalized gamma distribution function were sen-
sitive to the structural changes within cells induced by 
the drug. Oelze et al. [8] also used high-frequency ul-
trasound to differentiate and characterize rat mammary 
fibroadenomas and 4T1 mouse carcinomas. They gen-
erated quantitative ultrasound (QUS) images based on 
the estimated scatterer properties (e.g., average scatterer 
diameter, acoustic concentration, etc.). These properties 
were obtained by analyzing backscatter signals in the 
spectral domain and by employing a Gaussian form fac-
tor model [9]. They showed that QUS images are capable 
of distinguishing two types of tumors. In another investi-
gation [10], the same group examined carcinoma and sar-
coma in mouse models using QUS. It was observed that 
the estimated parameters extracted from the frequency 
band 10 to 25 MHz cannot distinguish between the two 
kinds of tumors, but those of 16 to 25 MHz can clearly 
show some differences.
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Simulation studies have also been conducted to pro-
vide some insights into the interactions of waves with a 
collection of scatterers (cells or nuclei) and to examine 
the effects of spatial organization of scatterers and apop-
totic changes in cell structure (caused by the nucleus con-
densation, fragmentation, and digestion) on ultrasound 
backscattering. For example, in a study, Hunt et al. [11] 
modeled each cell as a reflector located in its center and 
the resultant signal was calculated by using the linear 
superposition principle for the reflected signals from all 
the cells. Accordingly, the effects of the randomization of 
the spatial organization of cells on ultrasound backscatter 
were examined. The same group, to mimic nuclear con-
densation and fragmentation, assumed that each nucleus 
could be modeled as an ensemble of mini-scatterers and 
consequently the backscatter echo was constructed by fol-
lowing the same principle [12]. These studies showed that 
backscatter signal amplitude increased because of the ran-
domization and condensation of nuclei. Thus, they were 
in agreement, qualitatively, with the experimental obser-
vations. However, the actual size, shape, and scattering 
aspects of particles were not taken into account. More-
over, no analysis was done to examine the effects of these 
parameters on the backscatter spectral characteristics or 
the envelope statistics.

The objective of the paper is to present a 2-D simulation 
study on the ultrasound backscattering properties of cell 
aggregates. This work uses a modified version of a theo-
retical model which has been extensively used to describe 
ultrasound backscattering by red blood cells [13]–[16]. In 
this work, nuclei embedded in cytoplasm were considered 
as weak scatterers of incident ultrasound waves (thus, mul-
tiple scattering was neglected). The scattering pattern was 
assumed to be given by the fluid sphere model for each 
nucleus and the resultant backscatter echo was generated 
by using linear superposition of scattered waves which orig-
inated from those nuclei. This model was recently employed 
by our group to compute ultrasound integrated backscatter 
for different cell lines treated with radiation therapy, as well 
as chemotherapy, and compared with those of viable cells 
[17]. A good correlation between the measured and simu-
lated data was observed. The model has been used here to 
study the effects of the spatial organization and size dis-
tribution of scatterers on ultrasound backscatter for AML 
cell aggregates. A Monte Carlo simulation algorithm was 
employed to generate 2-D tissue realizations and, accord-
ingly, both frequency-dependent backscattering coefficients 
and signal statistics were investigated. The Rayleigh and 
Nakagami distribution functions [18]–[20] were used to fit 
the envelope histograms, and consequently the distribution 
parameters were computed. Our results show that back-
scattering coefficient (BSC) generally increases with greater 
randomization of positions of scatterers as well as when the 
size dispersity increases. The backscatter signal envelope 
histograms generally follow the Rayleigh distribution. How-
ever, the Nakagami distribution provides good fits to the 
histograms when coherent components are present in the 
backscatter signals.

The next section describes the theoretical model. In 
Section III, we illustrate the computer implementation 
scheme. The results obtained are presented in Section IV. 
The performance of the model presented here compared 
with other models and experimental results are discussed 
in Section V. Finally, we summarize our work in Sec-
tion VI.

II. Theoretical Model

A. Derivation of the Backscattering Coefficient

The scattered field at a large distance r in the backscat-
tering direction from the center of the scattering region 
comprising a collection of scatterers can be obtained by 
taking the linear superposition of scattered signals origi-
nating from the scatterers, and can be given by [9]
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In this case, each scatterer produces a spherical wave be-
cause of its interaction with an incident plane wave and 
contributions from N scatterers distributed in the scatter-
ing region are summed up to obtain the resultant back-
scatter field in the asymptotic region. Eq. (1) is similar to 
[9, Eq. (4)]. Eq. (1) is based on the single-particle scat-
tering theory, which is well established in the literature 
and has been used extensively to model ultrasound signals 
from various tissue samples [7], [9], [13]. Further, it is valid 
when scatterers are weak, and therefore multiple scatter-
ing can be neglected. In (1), ϕb represents the backscatter-
ing amplitude of an incident plane wave with wave vector 
k by the qth spherical scatterer with radius aq and position 
vector rq. A scattering diagram is displayed in Fig. 1 to 
clarify the geometry and the notations. The subscripts b 
and s correspond to the backscattering and the scattered 
wave, respectively. Further, the superscript (1) indicates 
scattering of an incident plane wave. The exact analytical 

Fig. 1. Scattering diagram (top view). Here, rq is the position vector of 
the qth scatterer with radius aq and θ is the scattering angle. For back-
scattering, θ = π.
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solution (expression appears in [21, Eq. (8.2.15)]) for the 
backscattering amplitude of an incident plane wave with 
an amplitude equal to unity scattered by a fluid sphere 
can be written as [21]
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with x = ka, y = nx, n = ke/k = c/ce, α = nρ/ρe. Here, 
k and c are the wave number and speed of sound in the 
ambient medium; ke and ce are the same quantities for 
the scatterer. The notations jl and hl denote the spherical 
Bessel and Hankel functions of the order l, and prime in-
dicates differentiation with respect to the argument. Fur-
ther, Pl is a Legendre polynomial, which is a polynomial 
of degree l. The density of the surrounding medium and 
scatterer are designated by ρ and ρe, respectively. Note 
that both media (inside and outside the scatterer) have 
been considered as linear media. Thus, the frequency of 
the scattered wave is the same as that of the incident 
wave and that imposes the condition ck = ceke. In general, 
ϕb is a complex quantity and, therefore, it retains the in-
formation of phase change associated with the scattering 
process. Moreover, this solution is valid over the entire 
frequency range (assuming no multiple scattering).

The differential backscattering cross-section per unit 
volume, or the BSC, is defined as the scattered power per 
unit solid angle per unit volume divided by the intensity of 
the incident wave, can be readily derived by using (1) as
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which is a general expression and can be used to compute 
the BSC for a poly-disperse system. Here, m is the number 
density of scatterers. The symbol 〈〉 denotes the ensemble 
average. It means that for a random system, quantitative 
estimation of an observable has to be made over many 
possible realizations to obtain a converging result. For a 
mono-disperse system, (4) simplifies to
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The number density can be obtained by using the rela-
tionship m = H/Vs, where H is the packing fraction of 
scatterers and Vs is the volume of a spherical scatterer. 
Here, S(−2k) is the structure factor of the medium and 
dictates how backscattering would vary with spatial orga-
nization of mono-disperse scatterers. It can be written in 
terms of the Fourier transformation as [14], [16]
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and referred to as the microscopic density function [14], 
[16]. An analog of (5) can be found in the literature deal-
ing with ultrasound backscattering by red blood cells [13]–
[16]. In the case of red blood cells, the Born approxima-
tion was used to determine the single-particle scattering 
amplitude and it worked accurately because the condition 
ka < 1 was always satisfied for incident waves with fre-
quencies <40 MHz impinging on the red blood cells. How-
ever, the exact solution is valid over the entire frequency 
range and thus can be used even for situations where ka 
> 1. In this paper, we have computed (5) for different tis-
sue samples and examined how backscattering would vary 
with the spatial organization of cells. We also computed 
(4) to study the effects of poly-dispersity on ultrasound 
backscattering.

In the low-frequency range, the structure factor can be 
approximated by the packing factor (W) of the suspension 
and thus, with this substitution, (5) reduces to

	 χ φb b| |( 2 ) = ( , ) ,2− k mW k a 	 (8)

and W is known as the Percus-Yevick packing factor [22], 
[23]. This theoretical model works well in the low-frequen-
cy range, where ka < π/10 (i.e., for Rayleigh scatterers) 
[13] and also for a spatially random distribution of non-
overlapping scatterers with uniform size. In 2-D, for hard 
disks with equal radii, randomly distributed in space, W is 
related to the packing fraction as W = (1 − H)3/(1 + H). 
In 3-D, for spatially random distributions of impenetrable 
spheres with uniform size, W can be written as W = (1 − 
H)4/(1 + 2H)2. The frequency-dependent BSC predicted 
by (8) is calculated in this paper to compare with our 
simulation results and it is referred as PYPT (Percus-
Yevick packing theory) in the following sections.

B. Derivation of the Backscatter Signal

The pressure field profile for a transducer with circular 
aperture in the far field regime can be approximated as
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where σx is related to the pulse width of the input pres-
sure pulse and σy, σz define the beam widths along two 
lateral directions. The center frequency (f0) of the pulse 
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is related to k0 as 2πf0 = ck0. It models a Gaussian beam 
and also a Gaussian modulated pulse propagating along 
the positive x-axis. This modeling approach has been used 
previously in the context of ultrasound backscattering by 
a tissue medium [12], [24], [25]. In general, because of 
the frequency-dependent diffraction, the incident pressure 
field amplitude profiles along the transverse directions 
of wave propagation would differ for different frequency 
waves emitted by a transducer. This has not been con-
sidered in (9), meaning that the beam widths along the 
lateral directions would be same for all frequencies that 
are contained in the pulse. However, this simple model is 
useful because essential aspects of a backscatter signal are 
greatly defined by the interference of backscatter waves 
generated by a collection of scatters distributed in space. 
At t = 0, the incident pulse can be written as
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which means that the pulse is centered at x = 0. The spa-
tial Fourier transformation of (10) provides the frequency 
content of the incident pulse, and thus one obtains
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and σk = 1/σx. The backscatter pressure in the asymptotic 
(r → ∞) region for 3-D spatial distributions of scatterers 
can be obtained by using the linear superposition of scat-
tered waves, and hence it becomes [26]
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and for 2-D spatial distributions of scatterers, it can be 
written as
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Note that in this case, the function ϕb is properly weight-
ed by the magnitudes of incident pressure field at the posi-
tions of the scatterers. Eq. (13) has been derived from [26, 

Eq. (7)] by incorporating scattering of an incident Gauss-
ian pulse with a Gaussian beam profile by many particles. 
The superscript (2) indicates scattering of a pulse. These 
expressions can be used to obtain the backscatter pres-
sure at each time point at the position of observation for 
a tissue sample when insonified by a pulse of interest. 
Note that the corresponding backscatter pressure would 
be a complex quantity. However, the backscatter signal 
(referred to as the RF signal in the later sections) can 
be generated from the real parts of backscatter pressure 
time-series data and the signal envelope can be deter-
mined accordingly from the magnitudes.

The SNR, defined as the mean divided by the standard 
deviation of an envelope, can be determined from the en-
velope of an RF signal’s time-series data. The RF enve-
lope histograms can be fitted with different probability 
distribution functions such as the Rayleigh and Nakagami 
probability distributions [18]–[20] to characterize a tissue 
sample. The Rayleigh probability density function is given 
by [18]
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where σ is the scale parameter and 2σ2 is the mean in-
tensity of the Rayleigh distribution. The Rayleigh distri-
bution arises when the scattering region contains a large 
number of randomly distributed identical scatterers with 
no coherent signal component [19], [20]. The Nakagami 
probability density function is expressed as [18]–[20]
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Here, Ω and β are the scale and shape parameters, respec-
tively, and Γ is the gamma function. Further, Ω and β  
are the mean intensity and intensity SNR of the Nakagami 
distribution, respectively. Note that the symbol β is used 
here to denote the letter m of [18, Eq. (4)]. The Rayleigh 
distribution is a special case of the Nakagami distribution 
(with β = 1). The Nakagami distribution is a simple two-
parameter distribution function [18]. It is applicable to 
describe the statistics of the backscatter echo envelopes 
for tissues containing a collection of scatterers with vary-
ing number densities, varying scattering strengths, and in 
the absence or presence of coherent signals [18].

Another distribution, namely the generalized gamma 
distribution, was also employed to characterize ultrasound 
backscatter signals [3], [19]. It may also be noted that 
the generalized gamma distribution has been introduced 
independently in the equivalent form of the generalized 
Nakagami distribution in [27]. Recently, an improved pa-
rameter estimation algorithm for the homodyned K-distri-
bution was developed and tissue parameters (e.g., number 
of scatterers per resolution cell and ratio of coherent to 
incoherent backscatter signal energy) were obtained sub-
sequently using those estimates [28]. However, the gener-
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alized gamma and homodyned K-distributions were not 
used in this study because the simpler Nakagami distribu-
tion provided good fits to the envelope histograms. For 
comparison with a widely used distribution, the Rayleigh 
distribution results were also included.

III. Simulation Methods

A. Choice of the Scattering Region

A 2-D simulation study was performed to investigate 
the effects of cell spatial organization and size distribution 
on ultrasound backscattering. 2-D simulations are compu-
tationally less expensive than 3-D simulations. However, 
sufficient insights can be gained regarding the interactions 
of ultrasound waves with a collection of densely packed 
scatterers (e.g., present in a cell aggregate) [14], [17]. In 
addition to that, physically meaningful results can be ob-
tained by executing 2-D simulations [17], [25]. It can also 
be noted that 2-D sections can provide quantitative infor-
mation of 3-D structure if the basic isotropy conditions 
are satisfied and that has been showed in detail in [29]. 
Therefore, in this study, (4) and (5) were computed for 
2-D simulated realizations and compared with that of (8) 
using the 2-D packing factor. Similarly, backscatter signals 
were simulated for 2-D samples by implementing (14).

In this study, we fixed our region of interest (scattering 
region) as 1000 × 1000 μm. It is hypothesized that a re-
gion completely filled with cells mimics the tight cell pack-
ing that is the characteristic of many xenograft tumors. In 
such an aggregate, it is hypothesized that the cytoplasm 
[30] acts as the ambient medium and the nuclei behave 
as main scattering centers because their acoustic proper-
ties are different from those of cytoplasm. The nucleus-
to-cell volume ratio for AML cells has been measured to 
be ≈55% [30] and therefore nuclei would occupy ≈55% of 
the total volume in an AML cell aggregate (3-D sample). 
This packing fraction may not be attained sometimes in 
2-D because the maximum possible area packing in 2-D by 
discs with equal radii is 0.5472 ± 0.0002 for random loose 
pack configurations [31]. In this study, we used a 50.36% 
packing fraction by the nuclei.

B. Scatterer Properties

The radius of a nucleus was taken as a = 4.5 μm [30]. 
Accordingly, the total number of nuclei in this simulation 
was 7921 (= 89 × 89). The density and sound velocity 
within the nucleus were chosen as ρe = 1180 kg/m3 and 
ce = 1523 m/s, respectively [32]. These numerical values 
are close to the estimated values for the OCI-AML-5 cells 
presented in a recent paper by our group [33]. In these 
studies [32], [33], cell acoustic properties were estimated 
by optimizing the experimental backscatter spectral data 
and the theoretical model presented in (2). Corresponding 
quantities of the surrounding medium (saline water) were 
taken as ρ = 1000 kg/m3 and c = 1483 m/s, respectively 

[32]. These values were used to compute the single-particle 
backscattering amplitude [see (2)].

C. Computation of the Backscattering Coefficient

To study the effect of spatial organization on the back-
scattering, we considered four different tissue samples. 
In case of the first tissue sample (denoted Regular), the 
scatterers were placed at regular positions with a separa-
tion of d = 11.23 μm, forming a perfect lattice structure 
[Fig. 2(a)]. The separation became fixed from the fact that 
scatterers were placed regularly within the region of inter-
est forming a square lattice under the periodic boundary 
conditions. The frequency dependent BSC was determined 
subsequently. For the second sample (denoted Mixture1), 
a mixture of regularly placed nuclei (51.71% of the total 
number of nuclei) and randomly placed nuclei (48.29% 
of the total number of nuclei) was used [Fig. 2(b)]. This 
particular numerical value (51.71%) was chosen for regu-
larly aligned nuclei because that provided a square num-
ber (4096 = 64 × 64) for the scatterers allowing the gen-
eration of a square lattice under the periodic boundary 
conditions within the region of interest. The random posi-
tions of scatterers were generated by using the random se-
quential adsorption (RSA) algorithm [34]. In this method, 
coordinates for a particle were proposed and accepted if 
the particle did not overlap with already situated par-
ticles under periodic boundary conditions. Otherwise the 
trial move was canceled and a new move was initiated. 
The same procedure was repeated for all other particles 
to assign their coordinates. Once the initial arrangement 
was achieved, the tissue sample was evolved (using ran-
dom shuffling of randomly positioned particles) to simu-
late new configurations to obtain the ensemble average 
of the BSC. This strategy was also followed to generate 
the spatial organization of the nuclei for the third sample 
[denoted Mixture2, Fig. 2(c)]. In this case, 25.64% nuclei 
were periodically placed and the remaining nuclei occu-
pied random positions. For the fourth sample (denoted 
Random), all of the nuclei were positioned randomly in 
the region of interest by using the RSA technique [Fig. 
2(d)]. Consequently, the ensemble average of BSC was de-
termined over a large number of realizations. For each 
tissue sample, 20 simulations were executed in a remote 
computer cluster to obtain the mean BSC. In addition, 
to characterize the spatial distributions of nuclei of these 
samples, we computed the pair correlation function g(r) 
[35]. In two dimensions, it is defined as the number of par-
ticles within an annular area between r and r + dr from 
the center of the reference particle divided by the product 
of total number of particles, area of the annular region, 
and the average number of particles per unit area. The 
pair correlation function can provide a measure of struc-
ture that is present in a collection of particles.

The effects of size dispersity on ultrasound backscat-
tering were also studied in this work. In this case, we 
considered three different tissue samples. The first pro-
totype contains randomly placed mono-disperse nuclei 
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and defined as mono-disperse in the text [Fig. 3(a)]. This 
is exactly the same as the sample Random in the previ-
ous case. The second [denoted Poly-disperse1, Fig. 3(b)] 
and third [denoted Poly-disperse2, Fig. 3(c)] samples con-
tained scatterers with different size distributions. In both 
cases, it was assumed that the total area occupied by the 
nuclei (therefore, the packing fraction) remained similar 
to that of the mono-disperse sample. The size distribu-
tion of the nuclei followed a Gaussian distribution for 
each poly-disperse sample. The mean radius was the same 
(4.5 μm) for both cases. The numerical values of standard 
deviation of the particle size distribution were chosen as 
0.99 and 1.54 μm for Poly-disperse1 and Poly-disperse2, 
respectively. The spatial distributions of nuclei were gen-
erated by using the RSA method. However, in these cases, 
the nuclei positioning algorithm started with the largest 
nuclei and all the nuclei with largest size were placed first. 
The smaller nuclei were chosen subsequently and the same 
procedure was repeated [36]. For these two new samples, 
mean BSCs were computed and compared with the first 
sample. This allowed the examination of the effect of dif-
ferent size distributions on ultrasound backscattering.

D. Computation of the Backscatter Signal

To investigate how the backscattering signal envelope 
statistics depend on the spatial organization and size dis-

tribution of scatterers, a Gaussian pulse was employed. 
Two different pulses were considered. The center frequen-
cy of the first pulse was 5 MHz and that of the second 
pulse was 25 MHz. The first pulse was chosen to match 
the frequency of clinical transducers, which usually oper-
ate in this range. The second one was chosen because in 
many experiments from our group, the 10 to 30 MHz fre-
quency range was used to achieve better resolution and 
sensitivity (to capture subtle cellular structural changes 
induced by the therapies). An 80% bandwidth was used 
for both pulses. Accordingly, the numerical value of σx was 
calculated to be 0.137 mm for the first pulse and 0.027 mm 
for the second. The corresponding numerical values for the 
full-width at half-maximum (FWHM) could be computed 
to be nearly 0.322 and 0.065 mm, respectively. The beam 
widths of those pulses were chosen to be fixed as σy = 0.89 
and 0.45 mm, respectively. That provided the FWHMs as 
2.11 and 1.05 mm for those incident beams, respectively. 
Similar values could be found for some commercially avail-
able transducers (e.g., the Panametrics Videoscan series 
[37]). The size of the resolution cell using these FWHM 
values could be estimated to be approximately 0.679 mm2 
and 0.068 mm2 for two cases, respectively. Therefore, the 
scatterer density became nearly 5375 scatterers/resolution 
cell for the first pulse (for the mono-disperse nuclei with a 
= 4.5 μm and 50.36% area packing fraction). This value 
for the same sample was about 538 scatterers/resolution 

Fig. 2. (a) A tissue sample with regularly spaced nuclei. (b) and (c) Tissue samples with mixtures of regularly (dark circles) and randomly placed nu-
clei (gray circles). (d) A configuration of randomly packed nuclei. (e)–(h) Plot of pair correlation function for (a)–(d), respectively. (i)–(l) Frequency-
dependent BSC for (a)–(d), respectively. 
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cell for the second pulse. For this study, we chose a bigger 
region of interest, 4000 × 4000 μm. Therefore, for a mono-
disperse sample, the number of particles became N = 
126 736. We followed the same steps as those previously 
described to achieve a configuration with a non-overlap-
ping spatial distribution of scatterers. A bigger region of 
interest provided a sufficiently long RF line and was long 
enough to perform meaningful envelope statistics analysis. 
Further, it would increase the resolution in the frequency 
domain and that was required for accurate estimation of a 
scattered signal through numerical integration as given in 
(14). For regularly packed cells, a single RF line was gen-
erated, and subsequently the histogram of the signal was 
obtained. It did not contain randomly located particles, so 
only one characteristic RF line could be obtained. On the 
other hand, for the other tissue samples, 100 different lines 
were generated to study the envelope statistics for those 
signals. Similarly, signal statistics were also studied for 
each poly-disperse tissue sample. The SNR (defined previ-
ously as the ratio of mean to standard deviation of the RF 
envelope) and the envelope histogram were obtained for 
each tissue sample from those 100 RF lines. The Rayleigh 
and Nakagami probability distribution functions were em-
ployed to fit an envelope histogram and the fit parameters 
were estimated using different-order moments of the enve-
lope data as given in [18]–[20]. The error associated with 
the best fit was also computed to evaluate the perfor-
mance of a distribution function. The error (Δ) was esti-
mated by defining Δ = i i io e=1

31 2( )∑ − , where oi and ei are 

observed and expected values. The index i ran from 1 to 
31 because a bin size of 31 was used in this study.

IV. Simulation Results

A. Analysis of the Backscattering Coefficient

1) The Effect of Spatial Organization: An arrangement 
of nuclei at regular positions is shown in Fig. 2(a). For clar-
ity, we have presented a smaller portion (250 × 250 μm) of 
the whole region of interest (1000 × 1000 μm). Figs. 2(b) 
and (c) represent tissue realizations for mixtures of peri-
odically (dark circles) and randomly located nuclei (gray 
circles). Fig. 2(d) illustrates a completely random packing 
of nuclei. The variation of g(r) is shown in the second row 
of Fig. 2 for those tissue samples. The spikes in the pair 
correlation function plot in Fig. 2(e) illustrate that there 
is a large amount of order in the system. Particles can 
only be found at some distinct separations, as given by 
the locations of the peaks on the x-axis. Fig. 2(f) demon-
strates that the medium (Mixture1) is composed of peri-
odic and random distributions of particles. The decrease 
in the height of the sharp spikes indicates that there is 
still some degree of orderliness in the system. However, 
nonzero values of g(r) for all other separations confirm 
that the system contains randomly distributed nuclei too. 
Fig. 2(g) (for Mixture2) is similar to Fig. 2(f) but the 
heights of the peaks have further decreased in this case. 

Fig. 3. (a) A random arrangement of mono-disperse nuclei. (b) and (c) are the same as (a) but for poly-disperse nuclei. (d) Variations of number of 
nuclei with radius for mono-disperse (solid line, right axis) and poly-disperse samples (broken lines, left axis). The mean (±1 standard deviation) values 
are given in the legends. (e) Plots of pair correlation function for three samples. (f) Variations of frequency-dependent BSCs for those samples. 
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Moreover, the probability of finding particles separated by 
other distances has increased and oscillates around 1. Fig. 
2(h) shows that at a large distance, r > 5a, g(r) becomes 
1. This indicates that there is a uniform probability of 
finding other particles at large distances from the center 
of the reference particle. Therefore, no specific structure 
lies in the system for r > 5a.

In Fig. 2(i), the variation of BSC with frequency is 
plotted for the ordered tissue. For comparison, BSC pre-
dictions by the Perucs-Yevick packing theory are also in-
cluded in the same graph (solid line). The variation of 
the size parameter (ka) in this frequency range is also 
shown along the top axis in the same figure. The BSC is 
generally significantly lower than that of the PYPT be-
cause the PYPT is valid for spatially random distribution 
of non-overlapping particles with uniform size. However, 
sharp peaks are observed when the scatterer separation 
d becomes integer multiples of λ/2. Here, d (11.23 μm) 
denotes the nearest neighbor distance and λ refers to the 
incident wavelength. For these conditions, scattered sig-
nals interfere constructively, leading to strong backscat-
ter echoes. Fig. 2(j) shows the variation of BSC with fre-
quency for Mixture1. The backscatter curve retains sharp 
spikes because of the periodicity of some particles. The 
randomization of the other particles causes an increase in 
the BSC in the low-frequency range. However, differences 
between simulated results and that of PYPT arise from 
the fact that some of the particles are regularly positioned 
for this sample and, hence, it is not a spatially random 
distribution of scatterers. Similar observations can also 
be made from Fig. 2(k), which plots the variation of BSC 
for Mixture2. In this case, the BSC has increased even 
more in the low-frequency range and has become almost 
comparable to the Percus-Yevick line. In Fig. 2(l), the 
plot illustrates how backscattering varies with frequency 
when the sample contains randomly distributed nuclei. 
The simulation results exactly match the PYPT results up 
to 16 MHz, where ka < π/10 and the PYPT assumptions 
remain valid. This agreement in the low-frequency range 
also validates the computer code developed for this work. 
The curves separate after 16 MHz and become greater, 
with the greatest differences at the positions of maxima 
because the PYPT is not valid when ka > π/10.

The integrated backscattering coefficient (IBSC), de-
fined by

	 IBSC db=
1

( ) ( ) ,
2 1 1

2

k k k k
k

k

− ∫ χ 	 (17)

and spectral slope have also been computed between 10 
and 30 MHz, before the spikes in the BSC occur. Note 
that spectral slope is related to the frequency dependence 
of the BSC. It can be determined from the slope of a 
BSC curve, where it exhibits linear variation with inci-
dent frequency in a log-log scale. The estimated values 
are presented in Table I. As the randomization increased, 
the IBSC also increased and is maximal for the Random 
system. The IBSC for the sample Regular is about 27 dB 
less than that of the Random. The variation of spectral 
slopes is also shown in Table I. The spectral slope de-
creased from 4.36 for Regular to 4.17 for Random, show-
ing that the spectral slope is not strongly dependent on 
spatial positioning of scatterers. It may also be noted that 
the spectral slope for the sample Random is about 4 (data 
not shown) up to 16 MHz, where the scatterers behave as 
the Rayleigh scatterers. However, the spectral slope for 
the same sample in the frequency range 10 to 30 MHz 
is greater than 4, because in this case scatterers cannot 
be considered as Rayleigh scatterers and backscattering is 
described by (2) for fluid spheres.

2) The Effect of Size Distribution: Three representa-
tive configurations of randomly placed nuclei with vary-
ing size distributions are shown in Figs. 3(a)–3(c). The 
corresponding size distribution histograms are plotted in 
Fig. 3(d). The Mono-disperse sample is composed of scat-
terers (number of scatterers = 7921) with uniform size 
[the Mono-disperse population is represented by the solid 
line and the right y-axis in Fig. 3(d)] but the size distribu-
tions for Poly-disperse1 and Poly-disperse2 follow Gauss-
ian distributions [broken lines and left y-axis in Fig. 3(d)]. 
The mean radius (4.5 μm) and the total area occupied by 
the nuclei remained constant for all samples. The varia-
tions of pair correlation functions are given in Fig. 3(e). 
No two particles were found at a separation <9 μm for 
the Mono-disperse sample. However, for the poly-disperse 
samples, particles can be found at a separation <9 μm 
because of the presence of smaller particles in the samples. 
Moreover, at a distance >25 μm, the structural proper-
ties of all samples become similar. Frequency-dependent 
BSCs are plotted in Fig. 3(f). In this figure, simulation 
results for the sample Mono-disperse show excellent agree-
ment with that of PYPT up to 16 MHz, where ka < π/10. 
However, simulated BSC curves for Poly-disperse1 and 
Poly-disperse2 would not match with that of the PYPT 
because they contain scatterers with size distributions. It 
is evident from this figure that the BSC increased as the 

TABLE I. Variations of the Integrated Backscattering Coefficient (IBSC) and Spectral Slope 
(SS) for Different Tissue Samples. 

Regular Mixture1 Mixture2
Random/ 

Mono-disperse Poly-disperse1 Poly-disperse2

IBSC (m−1·Sr−1) 0.0020 0.5957 0.7597 0.9685 2.0675 4.8471
IBSC (dB) −26.82 −2.11 −1.05 0 3.29 6.99
SS 4.36 4.38 4.20 4.17 4.26 4.47

The IBSC and SS were determined between 10 and 30 MHz for each sample.



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 10, October 20112126

standard deviation of size distribution increased. The in-
crease in BSC is distinctively clear up to 30 MHz but after 
that, differences between the curves become less obvious. 
Moreover, at higher frequencies (>80 MHz), instead of os-
cillatory patterns in the frequency dependence, smoother 
variations of BSCs are obtained for the poly-disperse me-
dia. This is because the positions of spectral resonances 
are different for different nuclear sizes, and that results in 
smaller fluctuations. The numerical values of IBSCs and 
spectral slopes are tabulated in the last three columns of 
Table I. Both IBSC and spectral slope increased as the 
dispersity increased. The IBSC increased by about 3 dB 
and 7 dB for the Poly-disperse1 and Poly-disperse2 sam-
ples, respectively, when compared with the Mono-disperse 
sample. The spectral slope increased from 4.17 to 4.47.

B. Analysis of the Backscatter Signal

1) The Effect of Spatial Organization: The scattered sig-
nals were obtained by evaluating (14) for different pulses 
and tissue samples. The backscatter signal from the regu-
larly arranged nuclei is given in Fig. 4(a) for an incident 
pulse with 5 MHz center frequency. Apart from the two 
edges, the signal amplitude is small in the central region 
and this is due to destructive interference of scattered sig-
nals. The signal amplitude gradually increases as the orga-
nization of nuclei becomes more random, as shown in Figs. 
4(b) and 4(c). It reaches the maximum for a completely 
random packing of nuclei, as displayed in Fig. 4(d). The 
corresponding histograms generated from envelopes of 
the signals are shown in Figs. 4(e)–4(h). The histograms 
were generated from 100 RF lines obtained from 100 dif-
ferent realizations and accordingly fitted with the Ray-
leigh and Nakagami distribution functions. The numerical 

values of the SNR of the echo envelopes and estimations 
of parameters of these two distributions are presented in 
Table II. The SNR for the first sample is smaller than 
1.91, denoting a pre-Rayleigh regime. The histogram was 
more accurately fitted by the Nakagami distribution and 
the error was comparatively small [Fig. 4(e) and Table 
II]. For other samples, the SNR varied between 1.73 to 
1.93, as given in Table II. The Rayleigh distribution func-
tion provided reasonably good fits to the histograms but 
the Nakagami distribution was marginally better for each 
case. The error associated with the Nakagami fitting was 
smaller than that of the Rayleigh for each sample (Table 
II). It is also clear from Table II and from Figs. 4(e)–4(h) 
that the Rayleigh fit parameter σ increased gradually as 
the sample moved from completely ordered packing to dis-
ordered packing. The Nakagami parameter Ω also showed 
the same trend. This is not surprising because 2σ 2 of the 
Rayleigh distribution corresponds to Ω of the Nakagami 
distribution because both represent the mean intensity. 
The β parameter of this distribution remained close to 
1 (reconfirming why the Rayleigh distribution provided 
good fits to the histograms).

The signal statistics for a pulse with a 25 MHz center 
frequency have been studied and estimates of the param-
eters are displayed in Table III. The backscatter signal 
from the first sample (Regular) looked similar to that of 
the 5-MHz pulse [Fig. 4(a)]. The backscatter signal enve-
lope histograms for Mixture1 and Random also followed 
the Rayleigh distribution for this input pulse. The differ-
ence of σ for Mixture1 and Random is not significant, as 
it was in case of the 5-MHz pulse. The Nakagami distri-
bution also provided similar fits to the histograms and 
corresponding numerical values of the Nakagami shape 
parameter (β) found to be close to 1. The fitting errors of 

TABLE II. Variations of the SNR, Rayleigh (R) and Nakagami (N) Parameters for Different Tissue Samples for an Incident 
Pulse With 5 MHz Center Frequency. 

Regular Mixture1 Mixture2
Random/ 

Mono-disperse Poly-disperse1 Poly-disperse2

SNR 0.26 1.93 1.73 1.73 1.85 1.94
R fitting σ 9.83e−8 1.94e−6 2.28e−6 2.60e−6 3.59e−6 5.31e−6

ΔR 758.93 36.46 60.55 65.07 36.69 41.93
N fitting Ω 5.89e−15 7.58e−12 1.05e−11 1.36e−11 2.58e−11 5.67e−11

β 0.46 0.97 0.96 0.96 0.98 0.98
ΔN 83.79 33.03 53.77 56.40 35.03 40.04

Associated error (Δ) of each fitted curve is also presented. The subscripts R and N indicate the Rayleigh and Nakagami distributions, respectively.

TABLE III. Variations of the SNR, Rayleigh (R) and Nakagami (N) Parameters for Different Tissue Samples for an Incident 
Pulse With 25 MHz Center Frequency. 

Regular Mixture1 Mixture2
Random/ 

Mono-disperse Poly-disperse1 Poly-disperse2

SNR 0.13 1.85 3.08 1.82 1.89 1.90
R fitting σ 3.77e−6 5.13e−5 1.06e−4 4.98e−5 8.41e−5 12.81e−5

ΔR 639.42 22.44 519.00 16.17 15.34 16.40
N fitting Ω 7.91e−12 5.25e−9 2.02e−8 4.96e−9 1.42e−8 3.29e−8

β 0.54 1.02 2.71 0.99 0.99 0.98
ΔN 16.37 16.17 56.89 16.08 14.76 13.54

Associated error (Δ) of each fitted curve is also presented. The subscripts R and N indicate the Rayleigh and Nakagami distributions, respectively.
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Fig. 4. (a)–(d) Representative signals from four different tissue samples. (e)–(h) Corresponding histograms for 100 RF lines and fitted with Rayleigh 
(R) and Nakagami (N) distribution functions. 
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these distributions are comparable (Table III). Mixture2 
contained some regularly placed nuclei with periodicity d 
= 22.22 μm, and at the same time the incident pulse con-
tained a frequency (33.37 MHz) for which the condition d 
~ λ/2 was satisfied. For this case, the histogram did not 
follow the Rayleigh distribution [see Fig. 5(f)] and the 
corresponding fitting error was also large (see Table III). 
The SNR is larger than 1.91, indicating a post-Rayleigh 
regime. The Nakagami distribution function exhibited 
much better fit to the histogram [see Fig. 5(f)] and the as-
sociated fitting error was small (see Table III). The shape 
parameter of this distribution also showed large variation 
compared with other samples meaning that the Rayleigh 
distribution would not be able to capture the envelope 
characteristics for that sample when probed with such a 
pulse.

To study the effect of periodicity of scattering struc-
tures on the signal statistics in detail, along with Mix-
ture2, we also considered two more cases. In the first case, 
we insonified Mixture1 with a 50-MHz pulse. In the sec-
ond case, we generated another sample (Mixture1.5, for 
which 31.56% of the particles were regularly placed and 
the remaining nuclei were randomly positioned) and ir-
radiated by a 25-MHz pulse. In both cases, it was ensured 
that there was a frequency within the bandwidth of the 
pulse for which the wavelength was on the order of the nu-
clei periodicity. Representative RF lines for such samples 
are displayed in Figs. 5(a)–5(c). For clarity of the figure, 
a smaller portion is presented for each sample. It can be 

seen that signal envelope amplitude increased and its fluc-
tuation reduced significantly (compared with those of Fig. 
4) because of the presence of coherent signals generated 
from periodically aligned scatterers. As a result, the SNR 
also became greater than 1.91 for each sample. The cor-
responding histograms are shown in Figs. 5(d)–5(f). The 
Nakagami distribution function provided much better fits 
to these histograms than the Rayleigh distribution. In 
fact, the Rayleigh distribution function is not useful in 
this case. The shape parameter of the Nakagami distribu-
tion was always computed to be more than 1 (data not 
shown), which suggests large deviations from the Rayleigh 
distribution.

2) The Effect of Size Distribution: Signal statistics of sam-
ples composed of different size distributions of nuclei were 
also studied. Numerical values of the estimated parameters 
are given in the last three columns of Table II for the 5-MHz 
pulse and in Table III for the 25-MHz pulse. It can be ob-
served from Table II and Table III that the SNR increased as 
the size dispersity increased and it is close to 1.91 for Poly-
disperse2. Furthermore, σ and Ω increased as the dispersity 
increased and doubled compared with the mono-disperse 
sample for both pulses (at the highest level of dispersity). 
The numerical values of β remained very close to 1 for these 
samples. The fitting characteristics of the Rayleigh distribu-
tion are similar to that of the Nakagami distribution because 
errors of the fitted curves generated from these distributions 
are nearly the same for each sample.

Fig. 5. (a)–(c) Simulated signals for Mixture1 (excited with 50-MHz pulse), Mixture1.5 (excited with 25-MHz pulse), and Mixture2 (excited with 25-
MHz pulse). For clarity, a portion of the RF line is presented for each sample. (d)–(f) Corresponding histograms generated from 100 RF lines fitted 
with the Rayleigh (R) and Nakagami (N) distribution functions. 
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V. Discussion

A. Backscattering Coefficient Results

In an earlier study, Hunt et al. [11] showed that greater 
randomization of positions of scatterers resulted in higher 
backscatter signal strength. This is also confirmed in the 
present study (Fig. 2 and Table I). The IBSC increased 
as the number of particles with random positions within 
the sample increased. For instance, the IBSC increased by 
about 27 dB for the sample containing randomly located 
scatterers compared with that of orderly packed sample. 
The spectral slope did not change significantly in this fre-
quency range, 10 to 30 MHz, where ka varied between 
0.19 and 0.57. Note that the spectral slope for the sample 
with randomly distributed scatterers is marginally higher 
(≈4%) than that of the Rayleigh scatterers for which ka 
< π/10 [13]. For a sample with fully or partially ordered 
scatterers, the heights and positions of the peaks of the 
BSC curve determine the magnitude of the spectral slope. 
Note that the heights of the peaks of a BSC curve depend 
upon the proportion of regularly placed particles. The po-
sitions of the peaks of a BSC curve along the frequency 
axis are dependent upon the periodicity of regularly sepa-
rated particles. For example, the spectral slope is greater 
in the sample Regular because of the appearance of a 
strong peak at 66 MHz in Fig. 2(i). However, for Mixture1 
and Mixture2, peaks are closer to the frequency range 
(10 to 30 MHz) of interest but did not have that much 
influence on spectral slopes because their heights were 
relatively small. That is why the spectral slopes for the 
distributions Mixture1 and Mixture2 were slightly smaller 
than that of the Regular.

We found that the IBSC between 10 and 30 MHz in-
creased by about 7 dB for the highest poly-disperse me-
dium considered in this study compared with the mo-
no-disperse sample. This is consistent with published 
experimental results. For example, in a recent paper, Vlad 
et al. [2] showed that for an AML cell pellet, the ultra-
sound integrated backscatter increased by nearly 7 dB af-
ter a radiotherapy treatment which induced cell death, 
causing an increased cell size variance. Furthermore, the 
spectral slope did not change significantly. In another ex-
periment, Kolios et al. [1] measured an increase of 7 to 8 
dB at 35 MHz for apoptotic AML cells after exposure to 
a drug (colchicine) compared with that of healthy cells, 
and the corresponding spectral slope increased by about 
0.16 dB/MHz.

The model discussed here can incorporate the size dis-
persity of scatterers. Thus, it provides a realistic frame-
work to compute ultrasound backscattering by a collection 
of particles with heterogeneous sizes. Moreover, it is valid 
over the entire frequency range because the exact analyti-
cal solution has been used to determine the single-particle 
backscattering amplitude. However, the exact solution can 
only be obtained for some regular shapes (sphere, cylin-
der, layer, etc.), and therefore (4) can be used only for sit-
uations where scatterers can be approximated as objects 

with regular shapes. In addition, computation of (4) is 
much more intensive than that of (5). For example, it took 
about 10 min for each simulation to compute (5) to obtain 
the BSC for a mono-disperse sample (Mono-disperse) on a 
remote computer cluster [operating system: Linux CentOS 
5, RAM: 16 GB, processor: Intel Xenon E5462 Quad Core 
2.8 GHz for each node (Intel Corp., Santa Clara, CA)]. 
The execution time was nearly 7 h for each simulation to 
evaluate (4) on the same computing platform for the high-
est poly-disperse sample (Poly-disperse2).

B. Backscatter Signal Results

Hunt et al. [11] found that backscatter signal corre-
sponding to the central region of a sample similar to our 
first sample (labeled as Regular) was greatly reduced be-
cause of destructive interference for an input pulse with 
a 3.5 MHz center frequency. As the randomization in-
creased, signal strength also increased in that region. We 
also observed similar trends for both the 5-MHz and 25-
MHz incident pulses. Another interesting observation is 
that if the interrogating pulse contains a frequency for 
which wavelength and periodicity are related by d ~ λ/2, 
the signal statistics can be better described by the Naka-
gami distribution function. In this case, the corresponding 
SNR values were greater than 1.91 and the values for β 
were found to be greater than 1, confirming deviations of 
backscatter echo envelope histograms from the Rayleigh 
distribution [18]. We confirmed this effect up to the nuclei 
mixture in which 25.64% of the total nuclei were packed 
periodically and the remaining nuclei were randomly dis-
tributed. When the proportion of regularly arranged nu-
clei was less than 25%, this effect was smaller. The vari-
ation of histogram pattern with spatial organization of 
scatterers is in accordance with previous work by Shankar 
[18]. It was shown that the signal envelope histograms fol-
lowed the Nakagami distribution for situations in which 
the sample contained unresolvable periodic alignment of 
scatterers in addition to a collection of randomly located 
scatterers. The later distributions can better capture the 
complex situations in which signals contain coherent com-
ponents originating from periodically aligned scatterers.

On the other hand, it is shown that the signal envelope 
statistics followed the Rayleigh distribution although the 
samples contained poly-disperse scatterers. This was fur-
ther confirmed from the fact that for these samples, β val-
ues from the Nakagami distribution were also computed to 
be close to 1. Thus, it may be inferred that at this level of 
packing (>7000 scatterers/mm2) the spatial organization 
of particles played a more significant role on the shape 
of a signal envelope histogram than the scatterer size 
distribution. This might be because the signal envelope 
characteristics were primarily determined by the interfer-
ence of backscatter signals generated by the individual 
scatterers which was governed by the phase relationships 
(originating from the spatial organization of scatterers) of 
those signals. The size distribution would only control the 
strength (backscattering amplitudes would be different for 
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different scatterers depending upon their sizes) of those 
signals and played a lesser role to their phase relationships 
than the spatial organization.

VI. Conclusions

A modeling approach pertinent to ultrasound back-
scattering by cell aggregates was presented. It was devel-
oped by drawing analogy with ultrasound backscattering 
by red blood cells. In cell aggregates (such as in tumors), 
cells are tightly packed and therefore it can be assumed 
that nuclei mainly act as scattering centers. The nuclei 
embedded in cytoplasm were treated as weak scatterers 
of ultrasound waves, and hence multiple scattering was 
neglected. The scattering pattern of each nucleus was as-
sumed to be given by the exact analytical solution for the 
scattering of an incident plane wave by a fluid sphere. 
The resultant backscatter signal by a collection of par-
ticles was obtained by using the linear superposition of 
backscatter waves that originated from the nuclei. The 
theoretical model has been employed to examine spatial 
organization and size-distribution-dependent ultrasound 
backscattering by AML cells. A Monte Carlo simulation 
technique was implemented to generate 2-D tissue re-
alizations, and consequently, both frequency-dependent 
BSCs and signal statistics were studied for different tis-
sue configurations.

The present study confirms that the spatial organiza-
tion of scatterers strongly influences ultrasound backscat-
tering. The BSC increased as the sample contained more 
randomly distributed particles. It was estimated that the 
IBSC between 10 and 30 MHz increased by nearly 27 dB 
when the sample comprised a collection of randomly lo-
cated scatterers instead of regularly aligned nuclei. The 
corresponding spectral slope diminished from 4.36 to 
4.17. The IBSCs also increased in case of poly-disperse 
samples. An approximately 7 dB enhancement of IBSC 
was computed for the highest poly-dispersive medium 
compared with that of a mono-disperse sample. The as-
sociated spectral slope also increased from 4.17 to 4.47. 
Analysis of the signal envelope statistics revealed that 
for randomly positioned scatterers, the Rayleigh distri-
bution function provided good fits to the envelope histo-
grams for both mono-disperse and poly-disperse samples. 
However, for samples with partially ordered particles and 
if the irradiating pulse contained a frequency for which 
the wavelength became comparable to the scatterer spac-
ing periodicity (d ~ λ/2), then the Nakagami distribu-
tion function provided better fits to the histograms. This 
study suggests that the shape of an envelope histogram 
depends upon the periodicity in the spatial organization 
of scatterers and bandwidth of the input pulse. The in-
sights derived from this work are expected to help in the 
analysis of backscatter echoes from tumors using spectral 
and envelope statistics methods to quantify the portion 
of cells that respond to a treatment.
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