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Abstract
Two new approximations for predicting the elastic scattering of plane acoustic
waves by a weak scatterer are proposed. The approximations have been
obtained by drawing analogy between acoustic and light scattering problems.
The validity of these approximations has been examined numerically for
the exactly soluble case of scattering by a homogeneous sphere. Results
show that for small angle scattering the proposed approximations have a
considerably larger domain of validity in comparison to the extensively used
Born approximation.

1. Introduction

In studies relating to the scattering of plane acoustic waves by an obstacle, exact analytic
solutions are available only for certain simple shapes such as a long cylinder, a sphere, a disc,
an ellipsoid etc. For scatterers of other shapes one needs to take resort to numerical solutions.
A common approach, for example, is the T-matrix method [1]. However, the exact numerical
solutions are highly computer intensive and provide little insight into the scattering processes
involved. Besides, there are situations where even the numerical solutions are not possible.
Thus, it is a common practice to employ approximation methods for describing the scattering
processes.

The choice of approximation for a particular problem is generally governed by the
characteristic size, d, and the acoustic properties of the scatterer. For example, if the scattering
object is very small in comparison to the wavelength, λ, of the incident wave one may employ
approximations like the long wavelength approximation and the Born approximation (BA) [2].
On the other hand, if the obstacle is much larger than the wavelength of the incident wave the
diffraction approximation [2] may be used. The purpose of this paper is to describe two new
approximations that predict accurately the elastic scattering of plane waves by an intermediate
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size weak scatterer. The first approximation described in this paper is a modified form of the
Born approximation (MBA), which extends the validity domain of the conventional BA to
higher values of d. The second approximation, referred to as the eikonal approximation (EA),
removes this restriction altogether but imposes a new condition, πd/λ � 1, for its validity
if the scatterer is inhomogeneous. This requirement essentially means that the variation in
scatterer density and compressibility over a wavelength is small. Similar approximations have
been employed successfully in the context of electromagnetic wave scattering [3–6] and the
potential scattering [6, 7]. But to the best of our knowledge, analogous approximations have
not been derived or used in the context of acoustic scattering.

This paper is organized as follows. Section 2 contains basic formulae needed to describe
the scattering of acoustic waves by an obstacle. In section 3 the expression for the scattering
amplitude has been derived in framework of the MBA. For the particular case of a homogeneous
spherical scatterer, for which exact solutions exist, the same result is rederived in section 4
starting from the exact analytic solutions. The alternative approach gives added insight into
the validity of the MBA. The scattering amplitude in the EA has been derived in section 5. In
section 6 these approximations have been validated numerically by comparing their predictions
with exact results for the exactly soluble model of the scattering by a homogeneous spherical
scatterer. Finally, section 7 contains summary of results and conclusions.

2. Basic definitions

The equation for the acoustic pressure p, either in the scattering region or outside, can be
written in the form [2]

∇2p − 1

c2

∂2p

∂t2
= 1

c2

∂2p

∂t2
γκ(r) + div[γρ(r) grad p], (1)

where

γκ(r) = κe(r) − κ

κ
γρ(r) = ρe(r) − ρ

ρe(r)
, (2)

inside the scattering region. Outside the scattering region γκ = γρ = 0. Here κ and ρ are
respectively the compressibility and the density of the medium surrounding the scatterer, κe

and ρe are the corresponding quantities for the medium inside the scatterer and c = 1/
√

ρκ is
the speed of the plane acoustic wave in the surrounding medium. Thus γκ and γρ are measures
of the mismatch of these quantities.

If the acoustic motion has a single frequency and the interaction is time independent, we
may write p = pω exp(−iωt). The angle-distribution factor �s(θ), sometimes also referred
to as the scattering amplitude may be expressed as [2]

�s(θ) = k2

4π

∫ [
γκ(r0)pω(r0) − iγρ(r0)

ar

k
·∇0pω(r0)

]
exp(−iks · r0) dr0, (3)

where ar = ks/k is the unit vector in the direction of the observer and r0 is a point inside
the scatterer volume. The scattering angle θ is the angle between the incident wave vector
k and the final wave vector ks. Since only the elastic scattering is of interest in this paper,
|k| = |ks| = k. From (3) it is clear that if one knew the exact form of pω in the scattering
region, one could compute the exact scattering amplitude. Thus the scattering problem under
consideration reduces to finding pω inside the interaction region.
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3. Modified Born approximation

Let us begin by defining a size parameter x = πd/λ which can be looked upon as a convenient
measure of the scatterer size in units of wavelength. Then if the inequalities

|γκ | � 1 |γρ | � 1, (4a)

x|γκ | < 1 x|γρ | < 1, (4b)

are satisfied, it may be assumed that the incident wave is not greatly disturbed by the scatterer.
That is the pressure field inside the scatterer may be taken to be the same as the incident
pressure field. Thus for an incident plane wave one may approximate

pω(r0) = exp(ik · r0). (5)

This is nothing but the BA. The conditions (4a) imply that the BA is valid whenever the
mismatch between the acoustic properties of the medium and the scatterer is small. Such a
scatterer may be termed a weak scatterer. The inequalities (4b) mean that the phase change
in the incident wave is negligible. The inequality also governs the maximum value of d for
which the BA is expected to yield good results.

The angle distribution factor in the BA can be obtained by substituting (5) in (3). This
gives [2]

�b(θ) = k2

4π

∫
[γκ(r0) + γρ(r0) cos θ ] exp(iq · r0) dr0, (6)

where cos θ = k · ks/k2 is the cosine of the angle between the direction of the incident plane
wave and the direction of the observer, q = k − ks is the difference of the incident and final
wave vectors whose magnitude is q = 2k sin(θ/2). The subscript b refers to the BA. For the
particular case of scattering by a homogeneous sphere, the integration in (5) can be performed
analytically to yield

�b(θ) = x2

q
[γκ + γρ cos θ ]j1(qa), (7)

where a is the radius of the sphere and j1(qa) is the spherical Bessel function of order unity. It
may be noted here that if γκ and γρ are real, the scattered intensity ib(θ) = |φb(θ)|2 becomes
zero whenever γκ + γρ cos θ = 0.

For a very small particle (a → 0) one may approximate j1(qa)∼= qa/3. This gives

�b(θ) ≈ x3

3k
[γκ + γρ cos θ ], (8)

which may be contrasted with

�l(θ) = x3

3k

[
γκ +

3ρe − 3ρ

2ρe + ρ
cos θ

]
, (9)

which is the angle-distribution factor in the long wavelength limit [2]. If ρe ≈ ρ, (8) and (9)
are approximately equal.

Saxon [3], in the context of electromagnetic scattering, has suggested a modified BA in
which the wave vector of the incident wave is modified by a multiplicative factor ke/k inside
the interaction region. This allows the properties of the scatterer to enter the BA. Shimizu [4]
has tested the predictions of this approximation for scattering by a homogeneous dielectric
sphere. It was found that the angular positions of successive extrema in the scattering pattern
could be reproduced much more accurately in the MBA. The findings were confirmed by
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Sharma and Somerford [8] for the scattering of electromagnetic waves by an infinitely long
cylinder. Drawing an analogy with electromagnetic case, we approximate

pω(r0) = exp(ink · r0),

where n = ke/k. When substituted in (3) this leads to

�mb(θ) = k2

4π

∫
[γκ(r0) + nγρ(r0) cos θ ] exp(iR · r0) dr0, (10)

where R = nk − ks and the subscript mb stands for the MBA. For a homogeneous sphere the
integration in (10) is straightforward. One obtains

�mb(ks) = x2

R
[γκ + nγρ cos θ ]j1(Ra), (11)

where R = k
√

1 + n2 − 2n cos θ . Theoretically, the validity domain of this approximation is
same as that of the BA. To examine their relative accuracy one must take resort to numerical
comparisons. This has been done in section 6 where the predictions of approximations have
been compared with exact results in the framework of exactly soluble model of scattering by
a homogeneous sphere.

4. Alternative derivation: the S-approximation

For a homogeneous sphere the exact scattering amplitude using the partial wave expansion
can be written as [2]

�(θ) = i

k

∑
m

(2m + 1)bmPm(cos θ), (12)

where

bm = j ′
m(x)jm(y) − αjm(x)j ′

m(y)

h′
m(x)jm(y) − αhm(x)j ′

m(y)
, (13)

with x = ka, y = nx, n = ke/k = c/ce, α = nρ/ρe and primes signify the differentiation with
respect to the argument. The spherical Hankel function is defined as hm(x) = jm(x) + inm(x)

with jm and nm as the spherical Bessel and the spherical Neumann functions of order m
respectively. The parameter α is related to acoustic impedances of scatterer (Ze) and the
acoustic impedance of the medium (Z) via the relation α = Z/Ze. Alternatively, this may
also be written as α = n(1 − γρ).

In the limit, α → 1 and n → 1, the denominator in (13) can be approximated as [10]

h′
m(x)jm(x) − hm(x)j ′

m(x) = i

x2
, (14)

allowing one to write

bm = −ix2

[
∂F

∂x
− α

∂F

∂y

]
, (15)

where F = jm(x)jm(y). The infinite series (12) can then be summed using the relation [10]
∞∑

m=0

(2m + 1)jm(x)jm(y)Pm(cos θ) = sin(xR)

xR
,

yielding

�s(θ) = x2

R
[γκ + nγρ cos θ ]j1(Ra). (16)



New weak scatter approximations 5

It is interesting to note that the scattering amplitude (16) is identical with (11). In optics, the
corresponding approximation is known as the S-approximation [5, 6]. Hence the subscript s.
The assumptions n → 1 and α → 1 imply ρe/ρ as well as κe/κ to be close to unity. Note that
in this derivation apparently no restriction has been placed either on the size of the scatterer
or on the angular range of the approximation. However, it should be recognized that while
approximating the denominator in (13) by (14) one is also neglecting terms involving x and θ .
We shall see later, in numerical comparisons, that this approximation is indeed valid only for
a restricted domain of x and θ values.

5. The eikonal approximation

The EA has been extensively used in problems relating to light scattering by obstacles whose
relative refractive index is close to unity [6, 11]. In optics, this approximation has been
implemented in a number of ways. It may be introduced either in the differential equation
or in the corresponding integral equation or at the level of Green’s function. Each approach
brings out a different feature of the approximation more clearly. Here, the approximation
has been introduced in the differential equation (1). It is assumed that for a weak scatterer a
plausible solution of (1) may be written as

pω(r) = exp(ikz)φ(b, z) (17)

where φ(b, z) is a slowly varying function of position. Without any loss of generality the
z-axis may be chosen along the incident wave vector direction. The vector b is the impact
parameter vector in the two-dimensional space transverse to z. Substitution of pω from (17)
in (1) then gives

(1 − γρ(r))∇2φ(b, z) + 2ik(1 − γρ(r))
∂φ(b, z)

∂z
+ k2(1 + γκ(r))φ(b, z)

− k2(1 − γρ(r))φ(b, z) = ikφ(r)
∂

∂z
γρ(r) + ∇γρ(r) · ∇φ(r), (18)

which may also be recast as[
∇2 + 2ik

∂

∂z

]
φ(b, z) +

k2[γκ(r) + γρ(r)]
1 − γρ(r)

φ(b, z) = ikφ(r)[∂γρ(r)/∂z] + ∇γρ(r) · ∇φ(r)
1 − γρ(r)

.

(19)

The EA consists in neglecting ∇2 term in (19). In addition the right-hand side is also set equal
to zero here. This is justified because both φ(r) and γρ(r) are assumed to be slowly varying
functions in space. This leads to the following equation

∂φ(b, z)

∂z
= k

2i
[1 − n2(r)]φ(b, z). (20)

The neglect of ∇2 term amounts to conditions [6, 11]

|1 − n2(r)| � 1 ka � 1.

The condition ka � 1 basically arises from the requirement that the variation in the scattering
properties of the scatterer over a wavelength is small. It is apparent that for a homogeneous
scatterer this condition is redundant. This condition also justifies the neglect of right-hand
side term in (19). For a homogeneous scatterer ∇γρ inside the scatterer is zero anyway. It has
been assumed that the mathematical difficulties arising due to sharp cut-off at the boundaries
of the scatterer are not relevant physically. The validity of this assumption has been amply
verified in light scattering problems [6, 11].
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Figure 1. Scattering of a plane wave by a scatterer in the eikonal approximation.

The solution of (20) is straightforward. Employing the boundary condition that
φ(b, z) = 1 at z = −∞, one can write

φ(r) = exp

(
k

2i

∫ z

−∞
[1 − n2(b, z′)] dz′

)
, (21)

leading to

pω(r) = exp

(
ikz +

k

2i

∫ z

−∞
[1 − n2(b, z′)] dz′

)
. (22)

This is the pressure field inside the scatterer in the EA. The physical picture that emerges from
this solution is as follows. A plane wave is assumed to pass through the scattering particle
at an impact parameter b in a straight line trajectory as shown in figure 1. The presence of
the scatterer introduces a change in the phase of the incident wave. Its amplitude remains
unaffected.

The scattering amplitude is obtained by substituting (22) into (3). If one is interested in
either near forward or near backward scattering, ar · ∇0 may be approximated by cos θ ∂

∂z0
.

The terms neglected are of the order θ(1 − n2). The scattering amplitude may thus be
written as

�eik(θ) = k2

4π

∫
d2b0 dz0

[
γκ(r0) +

[1 + n2(r0)] cos θ

2
γρ(r0)

]

× exp (iqzz0) exp (iq⊥ · b0) exp

(−ik

2

∫ z0

−∞
[1 − n2(b0, z)] dz

)
, (23)

where qz = 2k sin2(θ/2) and q⊥ = k sin θ . For a spherically symmetric scatterer, the
integration over azimuthal angle may be performed using the relation

1

2π

∫ 2π

0
dφ exp (iqb cos φ) = J0(qb)

to yield

�eik(θ) = k2

2

∫
b0 db0 dz0

[
γκ(b0, z0) +

[1 + n2(b0, z0)] cos θ

2
γρ(b0, z0)

]
J0(q⊥b0)

× exp (iqzz0) exp

(−ik

2

∫ z0

−∞
[1 − n2(b0, z)] dz

)
(24)
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Figure 2. Angular scattering pattern of various approximations compared against exact partial
wave results. In this figure x = 1.0 and ρe/ρ = κe/κ = 1.05. The y-axis is base 10 logarithmic
scale.

which is a simple two-dimensional integral representation of the scattering amplitude.
The straight line propagation obtained in the EA clearly implies that it is a small angle
approximation. Indeed a detailed examination of the angular validity domain of the EA shows
[6, 7] that θ � 1/

√
x if |x(1 − n2)| < 1 or θ � |1 − n2|1/2 if |x(1 − n2)| > 1.

For the special case of a homogeneous spherical scatterer, the z integration in
equation (24) can be performed yielding the one-dimensional impact parameter representation
of the scattering amplitude

�eik(θ) = k2

µ

[
γκ +

(1 + n2) cos θ

2
γρ

] ∫ a

0
b0 db0 J0(q⊥b0)

× sin
(
µ

√(
a2 − b2

0

))
exp

(−ik

2
(1 − n2)

√(
a2 − b2

0

))
, (25)

where µ = qz − k
2 (1 − n2). For forward scattering, the integration in (25) can be carried

out analytically and one obtains

�eik(0) = ix2

(n2 − 1)k

(
γκ +

(1 + n2)

2
γρ

)[
1

2
+

ieiβ

β
− eiβ − 1

β2

]
(26)

where β = ka(n2 − 1). The integration can be done analytically for backscattering also. It
may be mentioned here that a number of variants of the EA have been employed in the context
of potential scattering [6] and in the optical scattering [6, 12]. The variant of the EA used
here has been adapted from Perrin and Chiapetta [12]. This variant is known to be a better
approximation in reproducing the positions of maxima and minima more accurately compared
to other versions [12].



8 S K Sharma and R K Saha

0 5 10 15 20 25 30 35 40 45
10

−8

10
−6

10
−4

10
−2

10
0

10
2

scattering angle (degree)

lo
g

(|
φ(

θ)
|2

/|
φ e

x(0
)|

2
)

exact
Born
modified Born
eikonal

Figure 3. Angular scattering pattern of various approximations compared against exact partial
wave results. In this figure x = 20.0 and ρe/ρ = κe/κ = 1.05. The y-axis is base 10 logarithmic
scale.
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Figure 4. Angular scattering pattern of various approximations compared against exact partial
wave results. In this figure x = 50.0 and ρe/ρ = κe/κ = 1.05. The y-axis is base 10 logarithmic
scale.

In the limit x|n − 1| � 1, the expansion of the exponential term in (25) gives the leading
term,

�eik(θ) ≈ a

µ2

[
γκ +

n2 + 1

2
γρ cos θ

]
j1(qa) (27)

which in the limit n → 1 is the BA (7).
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Figure 5. (a) Forward scattering error contour chart for x = 1.0 in the BA. White area: error <

5%; darkest area: error < 10%; less dark area: error < 50% and least dark area: error > 50%.
(b) Same as (a) but for the MBA. (c) Same as (a) but for the EA.

6. Numerical comparisons

This section examines the validity domains of the BA, the MBA and the EA numerically
by comparing them against the exact results for the scattering of plane acoustic waves by a
homogeneous sphere. The exact results have been obtained by computing (12).

Figures 2, 3 and 4 compare normalized angular scattering functions, |�(θ)|2/|�ex(0)|2,
in various approximations with exact angular scattering functions for x = 1.0, x = 20.0 and
x = 50.0 respectively. The plots are for |�(θ)|2/|�ex(0)|2. The value of κe/κ = ρe/ρ = 1.05
in these figures. It can be seen from figure 2 that for small obstacles all three approximations
are equally good in predicting scattered intensity over almost entire range of scattering angles.
Predictions differ at backward angles. The BA is distinctly better than other approximations at
backward angles. The MBA and the EA are nearly identical throughout the angular domain.
The angular range over which approximations are valid reduces with increasing x. This can
be seen in figure 3 where angular scattering patterns for x = 20.0 are shown. The BA here is
distinctly inferior to the MBA and the EA. In particular, the positions of minima and maxima
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Figure 6. (a) Forward scattering error contour chart for x = 20.0 in the BA. White area: error <

5%; darkest area: error < 10%; less dark area: error < 50% and least dark area: error > 50%. (b)
Same as (a) but for the MBA. (c) Same as (a) but for the EA.

are very accurately reproduced in the EA and the MBA. This observation is important because
the positions of maxima and minima can potentially be used to predict the size of the scatterer
employing the MBA [4, 7]. The EA also reproduces the depth of the positions of minima
reasonably well while the MBA fails to do that. The BA is inferior to other approximations
even in the forward direction. The conclusions drawn from figure 3 become more apparent
in figure 4 where the angular scattering patterns are plotted for x = 50.0. None of the
approximations reproduce large angle scattering pattern very well.

For examining the validity of these approximations in the (γκ, γρ) domain, it is useful to
define per cent error in approximations as

per cent error = [|�ex(0)|2 − |�appx(0)|2] × 100

|�ex(0)|2 .

Since the MBA and the EA are small angle approximations, a natural choice for scattering
angle in these comparisons is θ = 0. The error contour charts for various approximations are
shown in figures 5, 6 and 7 for x = 1.0, x = 20.0 and x = 50.0 respectively. The values
of ρe/ρ and κe/κ have been varied in the domain 0.85–1.15. Figures 5(a)–(c) show the error
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Figure 7. (a) Forward scattering error contour chart for x = 50.0 in the BA. White area: error <

5%; darkest area: error < 10%; less dark area: error < 50% and least dark area: error > 50%. (b)
Same as (a) but for the MBA. (c) Same as (a) but for the EA.

contour charts for the three approximations when x = 1. It is clear from these figures that
while the BA is a good approximation over a large (γκ, γρ) domain, the EA and the MBA have
far enlarged validity domain. The area covering errors less than 5% is much greater for the
MBA and the EA in comparison to the BA. The error contour charts for the EA and the MBA
may be noted to be nearly identical for this case. The line joining the coordinates (0.85, 0.85)
and (1.15, 1.15) is the line α = 1. Clearly the approximations should be viewed as α → 1
approximations. Note that the errors can become quite large even if n is close to unity but if
α is not close to unity. Figures 6(a)–(c) depict the error contour charts for x = 20.0. It can be
seen that the domain over which the BA gives good results has shrunk considerably. It may be
noted again that the validity domains of the MBA and the EA are much larger in comparison
to that of the BA. The errors in the EA are less than 50% over the entire domain examined. On
the other hand, domain where the errors are less than 10% is larger for the MBA in comparison
to the EA. Figures 7(a)–(c) show plots of error contour charts for various approximations for
large scatterers (x = 50.0). The errors in the BA are very large. The EA is distinctly the best
approximation for large scatterers.
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Figure 8. The per cent error in the forward scattering as a function of x for various approximations.
Here κe/κ = ρe/ρ = 1.05.

Figure 8 shows per cent error as a function of size parameter x for a typical weak scatterer.
The scattering angle chosen in this comparison is θ = 0. It is clear from the figure that for a
weak scatterer the EA is indeed the most useful approximation for forward scattering angles.

7. Conclusions

This paper considers scattering of plane acoustic waves by a weak scatterer in the intermediate
size range. This range is generally recognized as the most difficult regime for scattering
calculations. Two approximations suitable for near forward scattering in this regime have
been derived by drawing an analogy with the scattering of electromagnetic waves by an
obstacle. The approximations are (i) the modified Born approximation and (ii) the eikonal
approximation. These approximations are expected to find wide use in the analysis of acoustic
scattering in various contexts.

The validity of the BA, the MBA and the EA has been examined numerically for the
exactly soluble problem of acoustic wave scattering by a weakly scattering homogeneous
sphere. Following conclusions may be drawn from these comparisons. (i) The MBA and
the EA are very useful approximations for weak scatterers in the intermediate size domain
for predicting small angle scattering. The MBA greatly increases the validity domain of the
conventional BA without destroying the simplicity of the BA. Thus, the MBA can be used in
most problems in place of the conventional BA with enhanced accuracy. (ii) The validity of
the EA is not limited to intermediate size particles only. For a homogeneous scatterer, this
approximation does not place any restriction on the size of the scatterer. For an inhomogeneous
scatterer its validity requires x � 1. This arises from the requirement of slow variation of
γκ(r) and γρ(r) in space. But despite the theoretical requirement x � 1, the approximation is
known to work well for small particles too because in this limit it reduces to the BA for weak
scatterers. The maximum error in the range x < 100 in forward scattered intensity is about
20% for κe/κ = ρe/ρ = 1.05 which is much less in comparison to other approximations.
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(iii) For small particles x < 1, the BA is the most suitable approximation for backward
scattering. For forward scattering, the MBA and the EA have a larger validity domain in terms
of ρe/ρ and κe/κ .

It was pointed out in section 6 that the positions of maxima and minima in the scattering
pattern are reproduced very accurately by the MBA and the EA. Since the positions of maxima
and minima in the angular scattering pattern are related to the size of the scatterer via zeros of
the Bessel function j1(x sin(θ/2)), the MBA would lead to a simple formula for the prediction
of the scatter size. The question of accuracy of the approximations in size determination will
form the subject matter of a separate investigation.
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