
IMPROVED TEST TECHNIQUES FOR

NETWORK-ON-CHIP BASED MEMORY SYSTEMS

Bibhas Ghoshal

IMPROVED TEST TECHNIQUES FOR

NETWORK-ON-CHIP BASED MEMORY SYSTEMS

Thesis submitted to the
Indian Institute of Technology, Kharagpur

for the award of the degree

of

Doctor of Philosophy

by

Bibhas Ghoshal

under the supervision of

Prof. Indranil Sen Gupta

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

JANUARY 2015

c©2015 Bibhas Ghoshal. All rights reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Date: / / 20

Certified that the thesis entitled “IMPROVED TEST TECHNIQUES FOR NETWORK-
ON-CHIP BASED MEMORY SYSTEMS” submitted by BIBHAS GHOSHAL to the
Indian Institute of Technology, Kharagpur, for the award of the degree of Doctor of Phi-
losophy has been accepted by the external examiners and that the student has success-
fully defended the thesis in the viva-voce examination held today.

(Member of DSC) (Member of DSC) (Member of DSC)

(Supervisor)

(External Examiner) (Chairman)

CERTIFICATE

This is to certify that the thesis entitled “Improved Test Techniques For Network-

on-Chip Based Memory Systems”, submitted by BIBHAS GHOSHAL to the Indian

Institute of Technology, Kharagpur, for the award of the degree of Doctor of Philosophy,

is a record of bona fide research work carried out by him under my supervision and

guidance. The thesis, in my opinion, is worthy of consideration for the award of the

degree of Doctor of Philosophy in accordance with the regulations of the Institute.

Professor Indranil Sen Gupta

Date:

DECLARATION

I certify that

a. The work contained in this thesis is original and has been done by myself under

the general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or diploma.

c. I have followed the guidelines provided by the Institute in writing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of Con-

duct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, figures, and text) from

other sources, I have given due credit to them by citing them in the text of the

thesis and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put them

under quotation marks and given due credit to the sources by citing them and

giving required details in the references.

BIBHAS GHOSHAL

ACKNOWLEDGMENTS

This thesis would not have taken shape without the help and contribution from my

well wishers. Thus, I would like to thank all who have contributed directly or indirectly

in realizing this thesis. First of all, I want to thank my family, especially my parents, my

wife, my son, my in-laws and my brother who have always been by my side and have

inspired me and helped me in every possible way during my PhD. It was the dream of

my parents that I pursue a career in research and earn a PhD. I sincerely thank them for

nurturing such a dream and the support they provided to achieve it. No words of praise

are enough for my wife, Runa, who took all the responsibilities of the family on herself

while I was busy with my research. She has been my pillar of strength and motivation.

I would like to earnestly thank her for being on my side at every moment. I would also

like to thank my son Arya, who never complained about lack of enough interaction with

his father but motivated me in my work. I would also like to thank my in-laws and my

brother for providing me the mental support needed during my PhD work.

I thank IIT Kharagpur and the Department of Computer Science and Engineering

(CSE) for providing me with the opportunity of pursuing my PhD, along with research

facilities which were of the very best quality. I am grateful to my supervisor Prof. In-

dranil Sen Gupta, whose guidance and motivation made this thesis into a reality. He not

only provided me technical guidance on my research, but also taught other aspects of

research work, such as managing resources, improving writing skills, delivering presen-

tations etc. The knowledge gained from him helped me in every stage of my PhD career

and at the same time developed me into a better individual. I sincerely thank Professor

Chittaranjan Mandal, Dept. of CSE, IIT Kharagpur for mentoring me during my PhD

xii

work. He not only provided technical guidance but also helped me in improving the

interaction skills. I would also like to thank Professor Santanu Chattopadhay, Dept. of

E&ECE, IIT Kharagpur for providing me an oppurtunity to work with him. He was kind

enough to allow me to be a part of his research group and shared the tools with me. He

was also responsible for improvement of my technical document writing skills.

I sincerely thank the undergraduate and graduate students who worked with me on

various problems over the duration of my PhD – Anurag Kayal, Dhawal Gadiya. I

would also like to thank Soham and Bodhisatwa, students of Netaji Subhas Engineering

college, who helped me in coding while working on one my research problems. I am

particularly grateful to Subhadip Kundu and especially Kanchan Manna, for the help

they provided during my PhD work. The discussions and interactions with them were

very helpful and were responsible in determining the course of the PhD. I would like to

thank my friends Arghya, Subhasis, Rishiraj, Sumanta and especially Dharmendra for

making my stay at IIT Kharagpur a fun-filled and memorable one. I also express my

sincere gratitude to the faculty members and staff of CSE, IIT Kharagpur.

Finally, I am grateful to God for his blessings and for giving me the strength to

persevere throughout the long and arduous journey towards a PhD.

Bibhas Ghoshal

Kharagpur, India

ABSTRACT

The search for a cost effective interconnect architecture and increasing communi-

cation demand in Systems-on-Chip (SoC) designs have paved the route to Network-

on-Chip (NoC) research a decade back. The Network-on-Chip (NoC) communication

architecture is a packet based network where cores communicate among themselves by

sending and receiving packets. High parallelism, smaller latency in data transmission

and facility of Intellectual Property (IP) re-use have made NoCs overcome the prob-

lem of bandwidth and latency in conventional bus-based interconnects. However, like

all other designs, NoC based SoC designs must also be tested for defects. Survey of

different test techniques developed for NoC based systems suggest that focus has been

primarily on finding improved test techniques for NoC based logic cores. However, the

embedded memory content in NoC based systems have increased over the years and

will continue to increase. Due to their high density, these embedded memories are more

prone to defects than other type of on-chip circuits and therefore, require more impor-

tance when it comes to testing NoC based systems. In this thesis, the objective has been

to devise cost effective test techniques for memory modules in a NoC based memory

system, targeting minimum area overhead at optimized test time and test power.

The research was aimed at improving the existing approaches of test of NoC based

memory cores along the following directions : test architecture, test scheduling algo-

rithms and on-line test techniques. A distributed test architecture has been proposed to

allow hardware sharing and eventually reduction of Design-For-Testability (DFT) area

overhead. The test technique utilized by the test hardware tries to incorporate the ad-

vantages of both parallel and serial approaches of testing embedded memories, thereby

reducing the test time. For the test architecture proposed in the thesis, a test scheduling

algorithm has been proposed focusing on limiting the number of concurrent test blocks

xiv

under power constraint with the aim of performing a power aware test of the memory

cores. Experiments performed on ITC’02 benchmark circuit confirms that our proposed

test schedule performs a more power constrained test as compared to dedicated Built-

In-Self Test (BIST) techniques for embedded memories.

In addition to improvement of existing approaches, novel test architectures have also

been devised. These architectures involve utilization of the existing on-chip resources,

such as refresh circuit for test purpose. The refresh based test technique has been effec-

tively utilized to perform on-line tests of embedded DRAMs interconnected by the NoC

infrastructure. To perform the on-line tests, transparent March tests have been used in

place of standard March tests, to ensure restoration of initial contents of the memories

after test. Reusing refresh allows periodic testing of DRAM without interruption while

overcoming the requirement of additional Design-For-Testability (DFT) hardware. An-

alytic results have been used to explore the fault coverage of the proposed test technique.

The transparent test technique has also been employed for detection of permanent

faults developed in FIFO buffers during field operation of NoC. A prototype implemen-

tation of the proposed test algorithm has been integrated into the router-channel interface

and the on-line test has been performed with synthetic self-similar data traffic. The per-

formance of the NoC after addition of the test circuit has been investigated in terms of

throughput using a System C based NoC simulator. Area overhead of the test circuit has

been studied by synthesizing the test hardware with a industry standard design library.

To summarize, the research work presented in this thesis is an attempt to provide

system-level solutions for effective power constrained testing of hundreds of embedded

memories connected using NoC with low overhead in Design For Testability hardware.

Contents

Table of Contents xv

Author’s Biography xix

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives of the thesis . 4
1.3 Contributions of the thesis . 5

1.3.1 Network-On-Chip based Memory BIST 5
1.3.2 Re-using refresh circuit for test of NoC based eDRAMs 6
1.3.3 On-line field test for permanent faults in NoC buffers 7

1.4 Organization of the thesis . 8

2 Background 9
2.1 Part I : Architecture and Working Principle 9

2.1.1 SRAM operation . 9
2.1.2 DRAM operation . 11
2.1.3 FIFO buffer . 18
2.1.4 NoC based system . 18

2.2 Part II : Test Methods . 26
2.2.1 Faults in memories . 26
2.2.2 Testing Methods . 27
2.2.3 Functional Fault Models . 27
2.2.4 Memory test algorithms . 32
2.2.5 Test for word oriented memory . 34
2.2.6 Memory BIST architecture . 35

2.3 Summary . 36

3 Literature Review 37
3.1 Studies on Network-on-chip based MBIST . 39
3.2 Studies on Memory BIST optimization . 40
3.3 Studies on re-using refresh for test of DRAM cores 47

xv

xvi CONTENTS

3.3.1 BIST for DRAM testing . 47
3.3.2 Refresh re-use for test . 48
3.3.3 Online test of memories . 49

3.4 Studies on Test of FIFO Buffers . 51
3.5 Summary . 52

4 Network-on-Chip based MBIST 53
4.1 Motivation . 53
4.2 Proposed Method : Distributed and Hybrid Test Architecture 54

4.2.1 PSO based memory grouping . 58
4.2.2 PSO based optimization algorithm . 59
4.2.3 Experimental results and evaluation 60

4.3 Power Aware Memory Grouping Technique 61
4.3.1 Test scheduling problem . 62
4.3.2 Memory grouping problem . 63
4.3.3 The memory grouping algorithm . 63
4.3.4 Placement problem for the BIST controller 64

4.4 Experimental results . 66
4.4.1 Experimental setup . 69
4.4.2 Results for the d695 benchmark circuit 70

4.5 Summary . 73

5 Re-using Refresh for Off-line Test of DRAMs 75
5.1 Motivation . 76
5.2 Fault Models and Test Algorithm . 76
5.3 Refresh re-use based test technique . 77
5.4 Proposed BIST Architecture . 79
5.5 Experimental results for commodity DRAM 81

5.5.1 Area estimation . 81
5.5.2 Test time analysis . 82

5.6 Refresh re-use technique for e-DRAMs interconnected using the NoC infras-
tructure . 83
5.6.1 Impact of refresh re-use on test of eDRAMs 84

5.7 Summary . 85

6 Refresh Re-Use for Online test of DRAMs 87
6.1 Motivation for this work . 88
6.2 Fault Models Considered in this Work . 89
6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC . . 90

6.3.1 Transparent March test . 91
6.3.2 Modified transparent March test - proposed technique 92
6.3.3 Modified transparent March X algorithm 94
6.3.4 Fault coverage of the proposed MTMX algorithm 97

6.4 Refresh re-use based test technique . 100
6.4.1 Review of DRAM refresh . 100
6.4.2 Implementing the MTMX Test using refresh 101

CONTENTS xvii

6.5 Hardware implementation of the proposed approach 105
6.5.1 BIST hardware . 105
6.5.2 Operation of the controller . 106

6.6 Analysis and Comparison . 107
6.6.1 Hardware overhead . 107
6.6.2 Test cycle time . 109
6.6.3 Other features . 111

6.7 Summary . 112

7 Test of FIFO Buffers in NoC Routers 115
7.1 Motivation . 116
7.2 Fault Models Considered . 116
7.3 Proposed Transparent Test Generation Technique 117

7.3.1 The test algorithm . 120
7.3.2 Fault coverage of the proposed algorithm 121

7.4 Proposed test technique . 123
7.4.1 The test process : periodic and on-line 125
7.4.2 Test architecture . 127

7.5 Experimental Results . 129
7.5.1 Area estimation of the test hardware 130
7.5.2 Throughput estimation . 132
7.5.3 Analysis . 134

7.6 Summary . 134

8 Conclusions and Future Work 137
8.1 Summary of the Contributions . 137

8.1.1 NoC based MBIST . 137
8.1.2 Re-using refresh for off-line test of DRAMs 138
8.1.3 Refresh re-use for on-line test of DRAMs 139
8.1.4 Test of FIFO buffers in NoC routers 139

8.2 Directions of future work . 140

Bibliography 141

Author’s Biography

Bibhas Ghoshal received M.Sc degree in Electronic Science from Jadavpur University, Kolkata,

in 2002, and an M.E. degree in Computer Science and Engineering from West Bengal University

of Technology in 2005. He has been pursuing Ph.D. at the Department of Computer Science and

Engineering, IIT Kharagpur, since January 2010. He was university topper in B.Sc examination

and received merit award for excellence in M.Sc examination. Even though his Ph.D. is on Test-

ing of NoC based memory systems, his general research interests include FPGA based system

design, CAD for VLSI, Image Processing, Open source application development.

Publications made out of this thesis
(listed in reverse chronological order)

1. Bibhas Ghoshal,Kanchan Manna, Santanu Chattopadhay, Indranil Sengupta , “On-line
field test for permanent faults in NoC buffers”, IEEE TVLSI,vol.PP, no.99, pp.1,1.

2. Bibhas Ghoshal,Chittaranjan Mandal and Indranil Sengupta , “Re-using Refresh for Self-
testing DRAMs”, in Proceedings of the International Symposium on Eletronic System
Design (ISED 2013) held at NTU Singapore from 12-13 December, 2013.

3. Bibhas Ghoshal, and Indranil Sengupta , “A Distributed BIST Scheme for NoC-based
Memory Cores”, in Proceedings of the 16th EuroMicro Conference on Digital System
Design held at Santander, Spain (4th - 6th September 2013) pp. 567-574 .

4. Bibhas Ghoshal,Subhadip Kundu, Indranil Sengupta, Santanu Chattopadhay, “Particle
Swarm Optimization Based BIST Design for Memory Cores in Mesh Based Network-
on-Chip”, in Proceedings of the 16th International Symposium on VLSI Design and Test
(VDAT 2012) pp. 343-349 .

xix

List of Figures

2.1 Basic Architecture of SRAM . 10
2.2 Basic Architecture of DRAM . 11
2.3 Architecture of DRAM Memory Cell . 12
2.4 DRAM array . 13
2.5 DRAM read operation timing diagram . 14
2.6 Distributed (a) and Burst (b) refresh cycles of DRAM 16
2.7 DRAM with refresh circuitry . 17
2.8 Functional Model of SRAM type FIFO [93] 19
2.9 General Architecture of NoC . 20
2.10 NoC regular and irregular topologies [8] : Mesh-based(a), Torus(b), Octagon(c),

Binary tree(d) and Irregular application specific (e) 21
2.11 Router Architecture [8] . 22
2.12 Functional memory model [13] . 27
2.13 Simplified functional memory model [13] . 28
2.14 Markov model representation : good memory cell (a), stuck-at-0 cell (b), transi-

tion fault model (b) [13] . 30
2.15 Markov model representation of coupling fault (a) and nine cell neighborhood

representation (b) . 31
2.16 SA1 Fault Detection using MATS+ test . 34
2.17 Generic Memory BIST Architecture . 36

3.1 Structure of the survey done on related work 38
3.2 Block diagram of the packet based BIST scheme proposed in [59] 40
3.3 BIST structure for memories proposed in [42] and [101] 48

4.1 Proposed NoC based MBIST Test Architecture (first test phase : First March
element M1 transferred to B1) . 55

4.2 Proposed NoC based MBIST Test Architecture (second phase : memory control
signals from B1 to cores of cluster 1) . 56

4.3 Third phase : March element M2 transferred to B1 and March element M1 trans-
ferred to B2 . 57

4.4 Phases in the proposed test schedule . 62
4.5 Illustrative example of Algorithm 2 applied on 4x4 NoC (a): initial configura-

tion, (b): grouping cores to centrally located controller for h = 1, (c): grouping
cores to edge located controller for h = 1, (d): grouping cores to centrally located
controller for h = 2, (e): grouping cores to centrally located controller for h = 3 66

xxi

xxii LIST OF FIGURES

4.6 Modified mapping of the cores of System d695 to 4x3 size mesh type NoC
assuming all memory cores . 70

4.7 Test Power variation during (rw) March operation on ITC’02 benchmark circuit. 71
4.8 Test Power variation during (rw) March operation on ITC’02 benchmark circuit. 72

5.1 Interleaving of DRAM Refresh and Test Cycles 78
5.2 The Proposed BIST Architecture . 80
5.3 Refresh reuse technique for eDRAMs . 83
5.4 Scheduling the write operation over Row 0 for different clusters of eDRAMs . 84

6.1 Stuck-at-1 Fault Detection using MTMX test 97
6.2 Stuck-at-0 Fault Detection using MTMX test 99
6.3 Write Disturb Fault Detection using MTMX test 100
6.4 Interleaved random accesses and burst refresh cycles 102
6.5 (i)Refresh address (ii) Interleaved test and refresh cycles (iii) Memory contents

after a Test/Refresh cycle . 103
6.6 (a) The Proposed Memory BIST Architecture (b) State diagram of the Controller 113

7.1 Fault Detection during invert phase and restore phase of the Transparent SOA-
MATS++ test . 122

7.2 Fault Detection during read phase of the Transparent SOA-MATS++ test 123
7.3 (a) data traffic movement in 2x2 mesh type NoC (b) FIFO buffers involved dur-

ing the data movement . 124
7.4 State diagram representation of the test process 125
7.5 Interleaved test and normal cycles . 126
7.6 (a) Hardware implementation of the test process for the FIFO buffers (b) Imple-

mentation of test circuit . 128
7.7 State diagram representing operation of the test controller 129

List of Tables

2.1 Standard DRAMs and Refresh Specifications [2] 16
2.2 Subset of functional memory faults [13] . 29
2.3 Reduced functional memory faults . 29
2.4 March Test Algorithms [13] . 34

4.1 Cost values calculated for different mesh sizes wih different percentage allot-
ment of blank spaces for BIST controllers . 61

4.2 Data for d695 benchmark circuit . 69
4.3 Area estimate of the BIST controller synthesized in 180nm library 70
4.4 Comparison of the BIST area overhead . 71

5.1 Area estimate of the proposed BIST architecture 82
5.2 Area overhead of existing approaches with respect to the proposed BIST technique 82

6.1 Phases in MTMX test . 94
6.2 MTMX test for Stuck-at-fault and Write Disturb Fault 94
6.3 Different types of DRAM refresh . 101
6.4 Area estimate of the modified Memory Controller 108
6.5 Area overhead estimate . 108
6.6 Comparison of Area overhead for different data width 109
6.7 Comparison of Different Transparent Test Schemes 110
6.8 MTMX Test cycle time for different refresh rates of a 16Mb DRAM 111

7.1 Phases in MTMX test . 119
7.2 Area estimate of a router considered for the mesh type network [57] 130
7.3 Area estimate of test circuit . 131
7.4 Area occupied by test hardware for each input channel 131
7.5 Area overhead estimate of different routers located at different positions in a NoC 132
7.6 Estimate of area occupied by test hardware for a 4x8 size NoC 132
7.7 Throughput estimation of the NoC without test circuit 134
7.8 Throughput estimation of the NoC with test circuit 135
7.9 Throughput estimation of the NoC having two partitions with different test start

times . 135
7.10 Throughput estimation of the NoC having four partitions with different test start

times . 136

xxiii

Chapter 1

Introduction

Intellectual Property (IP) based design and advancement in manufacturing technology have al-

lowed today’s Systems-On-Chip (SoCs) to include hundreds of embedded cores. In such dense

SoCs, the choice of interconnect architecture is a big concern as it governs the performance,

power dissipation and cost of the system. Designers using bus based interconnect network for

complex System-on-chip (SoC) designs often face difficulty relating to bandwidth, signal in-

tegrity, and power dissipation of the chip. A new communication architecture called Network-

on-Chip (NoC) [8] has been proposed to solve these issues. In a NoC-based chip, the cores

communicate among themselves by sending and receiving packets which contain network de-

pendent information required to route the data from its source to its destination. The communi-

cation network consists of network interfaces, routers and channels which connect the routers.

Like all other SoCs, NoC based SoCs must also be tested for defects. In majority of works re-

ported in literature, the focus has been to find improved test techniques for minimization of test

time and test power at reduced area overhead for logic cores interconnected using NoC. How-

ever, embedded memory content in NoC based systems has increased from one-tenth to more

than three-fourth of the chip area today and will continue to increase [103]. Due to their high

density, these embedded memories are more prone to defects than other type of on-chip circuits.

To the best of the knowledge, not much research has been done on exploring test techniques for

NoC based memory cores.

The present thesis discusses improved techniques devised for technology-independent func-

tional testing of memory cores interconnected using NoC. Different approaches have been em-

ployed for different types of memories, based on their respective fault models and modes of

operation. Both off-line and on-line techniques have been proposed for detection of manufac-

turing faults and run-time faults in memories respectively. To re-use the NoC for testing inter-

connected cores, it must be ensured that the elements of NoC are fault free. First-In-First-Out

1

2 Chapter 1 Introduction

(FIFO) buffers present within the routers occupy significant amount of area of the NoC infras-

tructure. Thus, test of FIFO buffers has major significance in the test of the NoC infrastructure.

The thesis also proposes improved test technique for memory modules which are part of the NoC

infrastructure, namely the Static Randon Access Memory (SRAM) based FIFO buffers. Thus,

the work presented in this thesis is an attempt to devise cost- effective test techniques, in terms

of area overhead, test power and test time for memory modules that are interconnected using

NoC as well as part of the NoC infrastructure.

1.1 Motivation

An important test issue for SoCs is the design of an efficient Test Access Mechanism (TAM).

However, TAM design is not a concern during test of memory cores since they are tested by em-

ploying memory built-in-self test (MBIST) techniques, where test generation as well as compar-

ison of results are done on-chip. Moreover, MBIST reduces pin count at system level, requires

no external test equipment, reduces development efforts, tests are carried out at speed and test

time gets reduced as number of cores can be tested in parallel. As a result, MBIST has been

accepted as the most preferred technique for detection of faults in memories. With more and

more memories embedded in circuits, accessibility becomes an issue and TAM design becomes

more and more complex. The situation then leads to accepting MBIST as the solution of choice.

Even for memory cores interconnected using NoC, employing MBIST is the most cost effective

test technique because it avoids adding the TAM area overhead to the existing overhead of the

communication infrastructure. However, MBIST for memories connected using NoC also face

the same test challenges as faced by any other BIST technique for embedded memories. Unless

carefully designed, NoC based MBIST may induce excessive power, in addition to performance

degradation and increased area overhead [59].

The overall real estate to be devoted to the BIST circuitry is significant. As a result, there is

a major incentive to reduce the area overhead. To reduce the BIST area and routing overhead,

distributed approaches are necessary. However, as hardware resource sharing is introduced in

distributed memory BIST, the testing technique must be carefully considered to reduce the rout-

ing congestion and to facilitate rapid power-constrained testing. Research suggests that the

approaches taken so far have explored two main directions to gain improvement in performance

of MBIST. One has been the parallel and serial interconnection techniques of BIST wrapper

sharing as proposed in [28], [47] while the other has been memory grouping algorithms for op-

timized area, power and time proposed in [17], [67]. Parallel testing can reduce test time, but

power consumption may be a factor. Sequential testing has the opposite effect. A balance of

1.1 Motivation 3

both techniques may be best. In order to reduce memory power dissipation during test, pro-

posals for low power memory BIST have been reported in [16], [30] and [99]. However, all

these proposals have targeted memories in SoCs and cannot be directly applied to memories

interconnected using NoC as there are a number of other constraints that need to be considered

such as test time, area overhead, routing overhead, etc. Although the constraints have been tack-

led separately by previous researchers involving BIST design optimization for memory cores in

SoCs, there are no system-level solutions for effective power constrained testing of embedded

memories connected using NoC with low overhead in Design For Testability hardware. Thus,

the motivation of the thesis has been to exploit specific features of the NoC architecture while

applying the hardware resource sharing approach so that a cost effective system level solution

can be proposed for testing of memory cores interconnected using NoC.

Moreover, special features and functionalities of memory cores have been explored which

could be utilized for test purpose. Refresh operations require reading the contents of a memory

location and writing them back to the same location. March tests for detecting functional faults

in memories also require writing some patterns in to the memory and reading them back. There

is a similarity in the operations performed on the memory during both refresh and word-oriented

March test. The manner in which the operations need to be performed are also similar. Both

require scanning the entire memory row by row and performing read followed by write operation

on each row. These similarities in refresh and word-oriented March test have motivated us to

re-use the refresh circuit for test purpose. Refresh circuit has earlier been used for detection of

errors by Hellebrand et al. in [42] and Yarmolic et al. in [101]. However, both the works utilize

refresh circuit for detection of soft errors. The soft error detection schemes do not perform active

test as they do not alter the contents of the memory. Therefore, they cannot detect functional

faults in memories as mentioned by Thaller in [86]. Off-line and On-line BIST architectures

have been proposed which re-use refresh circuit in performing March tests [13] on the Dynamic

Random Access Memory (DRAM) cores for detection of manufacturing and run-time perma-

nent faults. Then, both the architectures are utilized in testing number of embedded DRAMs

(eDRAMs) interconnected using NoC.

Significant amount of area of the present NoC data transport medium is occupied by First In

First Out (FIFO) buffers. Accordingly, the probabilities of faults or defects occurring in buffers

are significantly higher compared to the other components of the NoC. Thus, test process for the

NoC infrastructure must begin with test of the FIFO buffers. Although researchers have given

importance to detection of functional faults in FIFO buffers, the detection of in-field functional

latent faults (faults which develop over time) have been overlooked. One probable reason could

be the belief that with advent of deep sub-micron technology (DSM), permanent faults (faults

4 Chapter 1 Introduction

that occur due to permanent damage in routers/link) are not as frequent as transient faults (faults

occurring at run-time) as mentioned in Hwang et al. [49]. However, recent studies of memory

failures in field by Sridharan et al. [83], Schroeder et al. in [78] and Hwang et al.in [49] gave

strong evidence that memories experience both transient fault (soft error) and permanent (hard

error) faults in the field but permanent faults constitute bulk of all failures. It is therefore nec-

essary to find a cost-effective test technique that can detect permanent faults developed during

field operation of FIFO buffers.

1.2 Objectives of the thesis

Through this research, we have tried to provide comprehensive system-level solutions for ef-

fective power constrained testing of embedded memories interconnected using NoC and for

memory modules which are part of the NoC infrastructure with high test concurrency and low

overhead in DFT hardware. The objective of the thesis is as follows.

To devise cost effective test techniques for memory modules in a NoC based memory

system, targeting minimum area overhead at optimized test time and test power. The

memory modules targeted are SRAM and DRAM cores which are interconnected us-

ing NoC and FIFO buffers which are part of the NoC communication infrastructure.

The research presented in this thesis has been aimed at improving the existing approaches of test

of NoC based memory cores along the following directions.

a) Test architecture: For memories interconnected using NoC, the objective has been to pro-

pose a distributed test architecture to allow hardware sharing and eventually reduction

of area overhead due to test circuitry. Moreover, the proposed architecture should em-

ploy a hybrid test approach incorporating the advantages of both parallel and serial testing

approaches to optimize test time and test power. The objective has also been to re-use

the on-chip resources such as refresh circuit for test purpose. Re-using refresh for test

avoids use of extra DFT logic, bringing down area overhead. It also saves read cycles dur-

ing March test operation on the DRAM, as read operations get performed during refresh.

Moreover, test circuit for each type of memory should be designed for programmability,

to support multiple test algorithms for higher fault coverage.

b) Test scheduling algorithm: For optimized time and power during test of number of mem-

ory cores, improved test architectures should be supplemented by efficient test scheduling

algorithms. Thus, the aim of the test scheduling algorithm proposed in this research has

1.3 Contributions of the thesis 5

been to limit the number of concurrent test blocks under power constraints and to reduce

the total time required for test.

c) On-line test: Recent studies of memory failures in field gave strong evidence that mem-

ories when deployed for field operation experience permanent faults more than transient

faults. It is therefore necessary to find a cost- effective on-line test technique that can

detect hard faults during field operation of memories. Such a test technique must possess

the following characteristics :

• The test must be an active test so that functional defects are uncovered.

• The test must be performed periodically to ensure that no fault gets accumulated,

thus requiring an on-line transparent test technique.

• The test hardware must be cost-effective in terms of area.

Thus, the objective has been to develop on-line tests for embedded DRAMs (e-DRAMS)

that possess the above mentioned characteristics and can detect run-time faults.

d) Modified test algorithm for on-line test : One of the requirements of any on-line test is

restoration of data after test. Therefore, the objective of the research has been to propose

transparent tests for detection of permanent faults developed during field operation of

DRAMs and for detection of latent hard faults which develop in FIFO buffers during field

operation of NoC.

1.3 Contributions of the thesis

This section summarizes the significant contributions of the thesis.

1.3.1 Network-On-Chip based Memory BIST

The problem of optimized test power and test time at reduced area overhead during test of

embedded memories in SoCs have been tackled separately by previous approaches found in

literature. However, there are no system-level solutions for the same in case of memories inter-

connected using NoC. In this respect, this thesis focuses on providing a system level solution

for test of NoC based memory cores utilizing NoC as TAM and targeting optimization of test

power, test time and reduced DFT area overhead.

a) Distributed and hybrid test architecture :
A distributed MBIST architecture has been proposed for testing heterogeneous memory

6 Chapter 1 Introduction

cores interconnected using NoC. In the proposed architecture, the memory cores form

different groups based on distance and timing constraints. Each group has a dedicated

BIST controller which performs parallel March test on all the cores in a group. The groups

are tested in a pipeline fashion. The NoC is re-used to act as TAM for delivering test

instructions to the BIST controllers. The hybrid test technique and the distributed BIST

architecture allows the test of memory cores to be performed at much lesser time than

required in [59]. The proposed architecture is an improvement on similar architectures

found in literature as it allows test of memory cores of any size while others had allowed

only test of homogeneous memory cores. Utilizing a distributed BIST architecture leads

to less area overhead than dedicated BIST for each core.

b) Test time reduction :
The reuse of the available on-chip network to act as TAM brings down the area overhead.

However, reducing the time to test still remains a problem due to latency in transporting

the test instruction from BIST circuit to the memory cores. A Particle Swarm Optimization

(PSO) based technique has been used to place the BIST controllers at fixed locations and to

form clusters of memories sharing the BIST controllers. This reduces the test instruction

transport latency which in turn reduces the total test time of memory cores.

c) Power aware test schedule :
Based on the proposed NoC based MBIST architecture, a test schedule has been proposed

which involves a grouping technique whose aim is to group memory cores which are at

same distance from a BIST controller. Then, groupings are improved to make the test

schedule satisfy the power constraint. Experiments performed on ITC’02 benchmark

circuit confirm that our proposed test schedule performs better power constrained test as

compared to dedicated BIST technique.

1.3.2 Re-using refresh circuit for test of NoC based eDRAMs

• Refresh re-use based off-line test :
A two-pronged approach has been adopted in this work. First, the refresh circuit of the

DRAM is leveraged to participate in the MBIST. Next, the BIST specific circuitry is

shared between neighboring memories. The refresh re-use overcomes the requirement

of additional DFT hardware. Moreover, to perform a read followed by a write operation

on a DRAM, interleaving write cycles in between refresh cycles brings about the required

effect while saving time for extra read cycles. However, the total test time increases for

a commodity DRAM if refresh based test is performed. We extend the refresh re-use

1.3 Contributions of the thesis 7

technique to test a number of eDRAMs utilizing a distributed approach of testing. The

increase in test time during test of a single DRAM core is effectively utilized to schedule

the test of groups of eDRAMs so that power dissipation during parallel test of a number

of eDRAMs remains within the power budget.

• Refresh re-use based on-line test :
A BIST architecture has been proposed which reuses the refresh circuit of DRAM in per-

forming periodic Transparent March (TMARCH) tests on the DRAMs. A TMARCH test

generation algorithm is proposed for DRAMs targeting permanent faults developed dur-

ing DRAM operation. The proposed algorithm generates a more efficient word-oriented

TMARCH tests compared to the conventional transparent test generation techniques by

avoiding signature based prediction phase. The read followed by write operations per-

formed during the refresh burst cycles of the DRAM are re-used for the proposed TMARCH

tests. Re-using the the refresh cycles for test purpose avoids waiting for idle cycles of the

processor to perform the test as required in other proposed on-line transparent test tech-

niques. It allows periodic testing of DRAM without interruption and test finishes within a

definite time. Re-using the refresh circuit overcomes requirement of additional DFT hard-

ware. Therefore, the proposed refresh re-use based transparent test technique provides a

cost-effective solution by providing facility for periodic tests of DRAM without requiring

costly test such as Error Correcting Code (ECC) and additional test hardware.

1.3.3 On-line field test for permanent faults in NoC buffers

Significant amount of area of the present NoC data transport medium is occupied by First In

First Out (FIFO) buffers. Accordingly, the probabilities of faults or defects occurring in buffers

are significantly higher compared to the other components of the NoC. Thus, test process for the

NoC infrastructure must begin with test of the FIFO buffers. In this work, an on-line transparent

test technique has been proposed for detection of run-time faults developed in FIFO buffers

present within the routers of the NoC infrastructure. The test performs active fault detection over

the entire FIFO buffer. In this work, the FIFO buffers are tested following a Transparent March

algorithm instead of conventional March test algorithms to ensure that the memory contents are

not lost during test. The Transparent March test is repeated periodically to avoid accumulation

of faults in the FIFO buffers. The data traffic moving in and out of the FIFO buffers during

normal operation of the NoC is used as data background during test. Thus no data background

needs to be loaded in the FIFO buffers prior to testing. A prototype implementation of the test

circuit performing the Transparent March test on the FIFO buffers is proposed. The test circuit is

integrated into the router-channel interface and the on-line test is performed with different data

8 Chapter 1 Introduction

traffic of different applications. The performance of the NoC after addition of the test circuit is

investigated in terms of throughput and latency using a System C based simulator.

1.4 Organization of the thesis

The rest of the thesis is organized as follows.

Chapter 2 provides the reader with a background on memory testing as well as NoC based

systems. The chapter has been divided into two parts. The first part discusses the architecture and

working principles of the memory cores commonly used in NoC based systems. It is followed

by discussion on NoC based system, detailing architecture of each component . The second

part of the chapter presents a background on different faults in memories, fault models and the

different memory test techniques employed by different researchers.

Chapter 3 provides a detailed review of past literature, while identifying research gaps and

scope for further work. The chapter presents a survey of the work already done in the field

of Memory BIST optimization, off-line and on-line test techniques that have targeted test of

DRAMs and test of FIFO buffers.

Chapter 4 presents the proposed distributed MBIST technique employed for testing hetero-

geneous memory cores interconnected using NoC. It provides details on the proposed architec-

ture employed for testing and also discusses the efficient test schdule developed for the proposed

test architecture that aims at reduction of test time and test power.

Chapter 5 discusses the proposed Built-In-Self test technique that utilizes refresh circuit to

perform functional tests on DRAMs. The refresh re-use technique overcomes the requirement

of additional DFT hardware and avoids separate test read cycles.

Chapter 6 discusses a proposed transparent test technique for testing permanent faults de-

veloped during field operation of DRAMs. The proposed transparent test is structured in a way

that facilitates its implementation during refresh cycles of the DRAM. Moreover, the on-chip

refresh circuit is modified to allow its re-use during implementation of the proposed transparent

test.

Chapter 7 presents the proposed on-line transparent test technique for detection of latent

hard faults which develop in FIFO buffers of routers during field operation of NoC. The test is

repeated periodically to prevent accumulation of faults. Analytic results are used to explore the

fault coverage of the proposed test technique.

Chapter 8 concludes the thesis by summarizing the contributions and indicating a few issues

for future work that have been opened up by the studies in this thesis.

Chapter 2

Background

The research work presented in this thesis is about the test challenges for Network-on-Chip

(NoC) based memory cores and the improved proposals to overcome them. Since the thesis

involves Design-for-Testability (DFT) proposals for memory cores interconnected using NoC, it

is imperative to provide the reader a basic background on design and working of each component

of NoC based memory system (including memory cores) to have an understanding of the DFT

architecture. Thus, we have divided this chapter into two parts. In the first part, we describe

in details the internal structure and operation of memory cores and NoC based systems while

in the second part, we discuss about the fault model for memories, test algorithms and memory

Built-In-Self Test (BIST) architecture. The memory cores considered are SRAM, DRAM and

FIFO buffers. We end the chapter with discussion on test methods for NoC based systems, with

a brief on the concept of re-using the NoC to act as Test Access Mechanism (TAM).

2.1 Part I : Architecture and Working Principle

2.1.1 SRAM operation

The basic architecture of a static RAM is shown in Figure 2.1. A location of a SRAM can be

randomly accessed for read/write by inputing the address of the corresponding location. Each

address is linked to a particular data input/output pin. The architecture of the SRAM includes

a rectangular array of memory cells arranged in rows (word-lines) and columns (bit-lines) and

additional circuits for decoding addresses and implementing read and write operations.

A memory cell is a bistable flip-flop made up of four to six transistors. The flip-flop may

be in either of two states that can be interpreted by the support circuitry to be a 1 or a 0. Each

memory cell has a unique location or address defined by the intersection of a row and column.

9

10 Chapter 2 Background

Address
lines

Row

Select

Decoder

Memory Cell Array

(2i rows by 2n−i columns)

Data Bus
Lines

Input

Data

Control

Column

Input / Output

Circuits

Output

Buffers

Column Select
Decoder

Data
Out

Address
lines

Control

Logic

MWRITE#

MREAD#
CE#

READWRITE

A0

Ai−1

Ai

An−1

WE

OE

Figure 2.1: Basic Architecture of SRAM

The address of a memory location comprises of two parts. The first part is the row address (A0

to Ai−1 lines shown in Figure 2.1), which selects one row/word-line. The second part,(Ai to

An−1 lines shown in Figure 2.1) is the column address which selects one bit out of all the bits

of the word activated during the word-line selection. Since row and column addresses are not

required at the same time, they can be multiplexed on the same address lines. The read/write

operations are controlled by the Control logic as shown in Figure 2.1. The chip select enable

(CE#) is an additional input signal required to activate the chip. Two more control input pins

exist on the chip, the WE#(write enable) and the OE#(output enable).

Read and Write operation of SRAM

During a write operation, the WE# pin triggers the chip to store in an internal location the data

bits present at the input data pins. This data is translated into appropriate signal and stored in

the appropriate memory cell. During a read operation, the OE# pin triggers the chip to place

the data bits from the internally accessed location on its output data pins. The performance

of a SRAM is measured using two parameters, the access time and cycle time. Access time is

defined as the minimum amount of time required to read a bit from memory, measured with

respect to the initial rising clock edge in the SRAM read operation. Cycle time is the amount of

time required to perform a single read or write operation and reset the internal circuitry so that

2.1 Part I : Architecture and Working Principle 11

another operation can begin.

2.1.2 DRAM operation

The basic architecture of a DRAM core is shown in Figure 2.2. Similar to SRAM, the typical

DRAM chip also consist of array of memory cells, arranged in word-lines and bit-lines and

support circuit for address decoding and control for read/write operation. However, DRAM

chips have two additional circuits, sense amplifiers and refresh counters which are not present

in SRAM. The sense amplifiers are used to detect and amplify the charge in the capacitor of the

memory cell. Refresh Counters keep track of refresh sequence.

Figure 2.2: Basic Architecture of DRAM

Accessing data in DRAM is different from accessing data in SRAM. It is observed that

DRAM chips have input address pins equal to half the size of the number of addresses submit-

ted to them. In case of DRAM chip shown in Figure 2.2, the memory cell array is accessed by

multiplexing the 9 input address lines: first, external memory interface logic (or “DRAM con-

troller” discussed later) gates the row address (address bits A0 to A8) on the DRAM’s address

input pins and asserts the RAS signal. The RAS signal forces the DRAM chip to latch the row

address, decode it and and select one of the 512 rows. Then, the memory interface logic gates

the column address (address bits A9 to A17) on the same address input pins of the DRAM and

asserts the CAS signal. The CAS signal will force the DRAM chip to latch the column address,

decode it, and select one of the 512 columns. The memory cell at the intersection of these two

selections is the accessed bit location. The write enable (WE) signal allows or disallows a write

operation to be performed on a memory cell array. In other words it helps to choose a write or a

read operation.

12 Chapter 2 Background

DRAM memory cell

The memory cell consists of a select transistor and a storage capacitor as shown in Figure 2.3.

Storage Capacitor

Read / Write Select

Read / Write data

Wordline

Select Transistor

Bit line

Figure 2.3: Architecture of DRAM Memory Cell

The DRAM cells are arranged in a rectangular structure as shown in Figure 2.4. The word-

lines control the gate of the transistors while bit lines collect data from a large number of DRAM

cells arranged in a column. Each column of cells is composed of two bit-lines, each connected

to every other storage cell in the column. Figure 2.4 shows a DRAM layout where two DRAM

arrays are located next to each other. Bit-lines in the same position of the DRAM arrays are

paired and gated into a sense amplifier.

DRAM read

The read operation of a DRAM chip involves row access followed by column access, followed

by write back and precharge [66]. The read cycle of a DRAM chip is illustrated using the timing

diagram shown in Figure 2.5 and the steps involved in the read cycles are listed as follows.

a) Initially, both RAS and CAS are high. All bit-lines are precharged to Vcc/2 as shown in

Figure 2.4. All word lines are at GND level, ensuring transistors are off.

b) The row address is applied to the address pins and RAS is asserted low. The row address

is latched and decoded to activate a word-line. The bit lines are disconnected from the

Vcc/2 bias and allowed to float.

c) Once the word-line gets activated, the memory cell of the word-line gets connected to the

bit line pairs and transfers its stored charge to the bit-line. This either lowers or raises the

voltage in the bit line.

2.1 Part I : Architecture and Working Principle 13

Vcc/2 Gnd Vcc

Sense Amplifiers

Pre-charged to

Vcc/2

Word-line
driven

Bit line B0 Bit line B1 Bit line B2 Bit line B3

Figure 2.4: DRAM array

d) The sense amplifier then detects the differential voltage between the two bit lines (such as

B0 and B2 of Figure 2.4) and amplifies this voltage.

e) During this time, the column address gets latched into the column address buffer. When

CAS falls, the column address is decoded and one of the sense amplifiers is connected

to the data out buffer and the data appears at the output pins after a prescribed amount of

time.

f) When RAS is de-asserted, the word line goes to low. As a consequence, all DRAM cells

in the row are now disconnected from the bit line.

DRAM characterization

DRAMs are characterized by different access times.

a) Random Cycle Time (tRC) : Minimum time between any two successive reads.

b) Access Time from RAS (tRAC) : The time elapsed from asserting the signal RAS until

valid data is present on the output data pins.

c) Access Time from CAS (tCAC) : The time elapsed from asserting the signal CAS until

valid data is present on the output data pins.

14 Chapter 2 Background

Figure 2.5: DRAM read operation timing diagram

d) Row setup time (trs) : The time elapsed from the moment the row address is gated to the

input pins until RAS is asserted.

e) Column setup time (tcs) : The time elapsed from the moment the column address is gated

to the input pins until CAS is asserted.

From the timing diagram shown in Figure 2.5, it can be observed that cycle time is almost

twice the access time. This additional time that must be lapsed before RAS can be asserted

again is the precharge time (tPR).

DRAM write

A DRAM write operation is similar to DRAM read, except that a write driver circuitry is used

for placing the data in the cell.

a) Initially, RAS and CAS are high, all bit lines are precharged, the row address is applied

to the row address decoder and RAS goes low.

b) Once the address gets decoded, a single row line (corresponding to the address) goes high.

This connects all the cells in this row to the bit lines.

c) The bit lines are pulled up or down by the sense amplifiers according to the contents of

the cell.

d) WRITE is de-asserted and the data is applied.

2.1 Part I : Architecture and Working Principle 15

e) The column address is applied to the column address decoder and CAS is asserted low.

The write driver overdrives the sense amplifier selected by the column address decoder.

f) RAS and CAS go high again. The row line goes low and all cells are now disconnected

from the bit lines.

DRAM refresh

Information in DRAM is stored as electrical charge on a capacitor of a transistor cell, which

provides temporary storage of data because with passage of time, charges in DRAM memory

cells leak away. Therefore, to prevent data loss in DRAM, the memory cells must be periodically

refreshed using special external circuits. The external circuitry periodically reads each cell and

rewrites it, restoring the charge on the capacitor to its original level. When the word line is de-

asserted, all cells in the row have their contents restored at full charge / discharge level. Thus, a

refresh operation refreshes all cells in the same row at the same time. During memory refresh

cycles, address originates from external address refresh logic and not from the normal address

source and as a result, the memory is not available for normal read or write during refresh cycles.

Types of DRAM refresh

DRAM refresh can be categorized based on the following parameters [66].

• Refresh Cycle:The time to refresh one row of a DRAM. Since refresh is performed one

row at a time, the number of refresh cycles equals the number of rows in the DRAM.

• Refresh Time: Interval of time within which all rows must be refreshed. It is determined

by the silicon technology and design of the memory cell. If the refresh time divided by the

number of refresh cycle is 15.6µsec, it is called a Standard Refresh device. If the result is

125µsec, it is called Extended Refresh device.

Some of the standard DRAMs and their specifications have been listed in Table 2.1.

Refresh cycle distribution

Refresh in a DRAM is achieved either by a burst method or by a distributed method [2]. Figure

2.6 (a) represents the distributed refresh while Figure 2.6 (b) illustrates the burst refresh. In

distributed refresh, the refresh cycles are evenly spaced, and a refresh cycle is executed every

15.6µsec such that all rows are turned on before repeating the task. In burst refresh, refresh

cycles are performed consecutively until all rows have been refreshed. During refresh, other

memory operations are disallowed.

16 Chapter 2 Background

Table 2.1: Standard DRAMs and Refresh Specifications [2]

DRAM Refresh Time Number of Cycles Refresh Rate

4Mx1 16ms 1,024 15.6µ sec

256Kx16 8ms 512 15.6µ sec

256Kx16 64ms 512 15.6µ sec

4Mx4 32ms 2,046 15.6µ sec

4Mx4 64ms 4,096 15.6µ sec

Distributed

Refresh

Burst

Refresh

Each pulse represents

a refresh cycle

Required time to complete

refresh of all rows

Time

Refresh Time
Time

(a)

(b)

Figure 2.6: Distributed (a) and Burst (b) refresh cycles of DRAM

Refresh cycle operation

There are four kinds of refresh cycle operations used by DRAM vendors as mentioned in [66].

a) RAS Only Refresh (ROR) : Address of the row along with RAS is applied to the DRAM.

Throughout the cycle, CAS is held high. The refresh addresses are generated by the

DRAM controller.

b) CAS before RAS Refresh (CBR) : First the CAS is lowered, followed by RAS signal. The

WE signal must be held high while RAS is lowered. Each transition from RAS from

high to low does one refresh. The refresh addresses are generated by an internal refresh

counter.

c) Hidden Refresh: Read/Write operation is followed by a refresh operation. After a read/write

cycle, CAS is asserted low, while RAS is toggled to high, and then brought back to low.

Since CAS was low, lowering RAS brings about CBR refresh. The refresh is hidden in a

sense that data remains valid for a longer time on the output.

2.1 Part I : Architecture and Working Principle 17

d) Self Refresh (SR): This refresh involves a CBR cyle with RAS active for a minimum of

100µsec. The refresh is performed using a counter and an oscillator to generate the row

address and to monitor the refresh interval.

DRAM refresh circuitry

Figure 2.7 shows the functional block diagram of a DRAM with the refresh circuit. The refresh

control and refresh counter shown in Figure 2.7 are present within the Memory Controller chip

and are responsible for initiating the refresh operations of a DRAM.

Refresh
Control

Refresh

Counter

Data Selector Row

Decoder

Column

Decoder

Memory Array

Input / Output Buffers
and

Sense Amplifiers

R WR

Row

Addr

Latch

Col

Addr

Latch

RAS

CAS

Address

Refresh
Address

Row
Address

Column Address D out

D in

Figure 2.7: DRAM with refresh circuitry

In case of a Standard Refresh Device, after every 15.6µs, the internal timer of the Refresh

Control generates a Refresh Request for the DRAM signifying the start of a Refresh Cycle and

instructs the Refresh Counter to generate a Refresh Address. This Refresh Address generated by

the Refresh Counter is Multiplexed by the Data Selector during the refresh operation to the Row

Decoder. With theRAS signal asserted low, the contents of the address generated by the Refresh

Counter are read by the Sense Amplifiers and then out into a Refreshment Register through the

Dout pin. The contents of the Refreshment Register are again brought in through the Din pin to

be written into the same location which has still been addressed by the address generated by the

Refresh Counter

18 Chapter 2 Background

2.1.3 FIFO buffer

Systems with multiple interacting cores often require buffers for storing data if the cores operate

at different data rates. These buffers are FIFO memories which are either shift type FIFOs or

RAM type FIFOs [93]. The shifting type FIFOs use shift register to shift data from the write

port into the last unused location of the read port.

RAM type FIFOs as the name implies uses a SRAM and write and read address register

to access data. According to the classification mentioned in [93], the RAM type FIFOs can be

recognized as either ring address RAM type FIFO, dual-port RAM type FIFO and arbitration

RAM type FIFO. In ring address RAM type FIFO, an n-bit shift register specifies the read and

write addresses. The dual-port RAM type FIFO has a N bit counter specifying the read and

write addresses, which accesses memory via separate ports. In arbitration RAM type FIFOs

read and write addresses are specified with an N-bit counter accessing a single-port memory

using an arbiter.

A functional model of an arbitration RAM type FIFO is illustrated in Figure 2.8. It consist

of SRAM memory of n B-bit words. The address is of N-bit and is provided by either the WAR

(Write Address Register) or the RAR (Read Address Register). The DI (data input) line receives

the input data while the output data can be taken from the DO lines. The control block generates

control signals meant for providing different functions, such as serialization of a simultaneous

Read Request (RR) and Write Request (WR). The read and write acknowledge are provided

through the RA and WA lines respectively. The Full Flag(FF) and the Empty Flag (EF) indicate

the full and empty status of the FIFO. The Reset (RS) control input initializes the WAR and

RAR such that they specify the same, initial address IA. The Re-Transmit (RT) control input

resets the RAR to its initial value.

2.1.4 NoC based system

With advancement of semiconductor technology, the computation cost in today’s chip design

is reducing day by day. However, communication is getting more and more expensive, thus

shifting the focus to more communication-centric designs. To this effect, researchers have been

trying to come up with efficient schemes such as the on-chip interconnects in order to reduce the

cost of designs. Conventional bus-based on-chip interconnects are severely limited in perfor-

mance (latency and bandwidth). Advanced bus-based solutions overcome the problem of band-

width, but fail to provide the scalability for cost effective communication scheme [70]. Thus,

the design specific global on-chip interconnection in SoC designs have made way for a more

general purpose on-chip interconnection network, referred to as NoC. High parallelism in NoCs

leads to smaller latency in data transmission and as a result the the performance loss is avoided.

2.1 Part I : Architecture and Working Principle 19

WAR

RAR

Address
Multi-
plexer

SRAM
memory

n words

B bits/word

Multi-
plexer

Data

N

N

N

B B

B

DI DO

WR

WA

WCK

FF
RS

RR

RA

RCK

EF

RT

Control

Figure 2.8: Functional Model of SRAM type FIFO [93]

Moreover, by providing standard interfaces which are compatible with existing protocols, NoC

facilitates reusing of IP blocks and increases modularity in SoCs [70]. The advantages provided

by NoCs have allowed the SoC designers to consider them for high density SoCs.

NoC architecture

The components of the NoC communication infrastructure are routers, Network Interfaces (NI)

and links. Routers are responsible for routing data units of transmission from source to destina-

tion. Links connect the routers together and also the routers to the NIs. Network interfaces are

used to interface a core to the interconnection network. Figure 2.9 shows the general architecture

of NoC.

Network topology

The network topology refers to the connection technique of the routers in the NoC. A number

of network topologies, with different performance behavior have been proposed by different

researchers. Some topologies are regular, such as mesh, torus and octagon and some are irregular

application specific [56]. Irregular topologies are more efficient in terms of resource usage

while regular topologies are more advantageous when it requires control of electrical parameters.

Some regular and irregular topologies have been shown in Figure 2.10.

20 Chapter 2 Background

Figure 2.9: General Architecture of NoC

Communication in NoC

Cores in NoC communicate among themselves by sending and receiving messages which are

sent in the form of packets. A packet contains information necessary for routing it from source

to destination. Packets are divided into smaller data transfer units called flits. Flits are the basic

unit of storage allocation and bandwidth. They do not have any routing information and have to

follow the route for the whole packet. Flits are composed of physical words called phits which

actually construct the packets. They are units which are transferred in a single clock cycle.

Routers

The router consist of a Routing Logic Block (RLB) and input/output ports. RLB connects the

input ports to proper output ports.

Switching techniques

Switching techniques determine how the internal switches of the network are set to connect

router inputs to outputs for transferring messages. Switching techniques are of two types,

namely, circuit switching and packet switching. In circuit switching, links are reserved for

a special connection from source to destination. However, this technique produces excessive

blocking leading to communication latency affecting bandwidth. In packet switching, each mes-

sage is partitioned into fixed length packets and the packets are transmitted without reserving the

2.1 Part I : Architecture and Working Principle 21

(a) (b)

(c) (d)

Functional Core Switch

(e)

Figure 2.10: NoC regular and irregular topologies [8] : Mesh-based(a), Torus(b), Octagon(c),
Binary tree(d) and Irregular application specific (e)

entire path. Since links are not reserved and the arrival time of packets are not known, contention

exists for access of links and buffers. The contention problem is overcome by arbitration which

determines which packet is eligible for access. Packets of connections which loose out in arbitra-

tion need to be stored and thus a buffers scheme is required for storage. Buffers can be placed at

input or output ports. Packet switched network is further classified as store-and-forward(SAF),

virtual-cut-through(VCT), wormhole and virtual channel.

• SAF switching : A packet if completely buffered at each intermediate node before it is

forwarded to the next node. Therefore, it needs huge silicon area [56].

• VCT : A packet is forwarded to the next router as soon as there is enough space to store

the packet. VCT overcomes the latency penalty of SAF, but also requires high silicon area

to store the entire packet [79].

• Wormhole : Packets are divided into flits. The header flit contains information about

source and destination addresses. Payload flit contains data, while tailer flit contains end

of packet information. Header flit decoding enables the switches to establish the path

22 Chapter 2 Background

FIFO FIFO

Routing Logic

Block

FIFO

FIFO

Figure 2.11: Router Architecture [8]

while payload and tailer flits simply follow this path in a pipelined way. If a certain flit

faces busy channel, subsequent flits also wait at their respective channels.

• Virtual channel (VC) : To mitigate the effect of Head-of-line blocking, each physical chan-

nel uses several virtual channels. When a particular packet is blocked, VC allows other

packets to use the link that would otherwise be left idle.

Flow control

Flow control protocol determines how packets travel through the network from source to des-

tination. It is either end-to-end level or switch-to-switch level. In end-to-end level, the sender

NI controls the amount of space available in the receiving NI. If there is enough space in the re-

ceiver NI to receive one unit of data, the sender NI will send the data. In link-level flow control,

each router should be assured that there is enough space in the next router of the path and then

the data will be sent to the next router.

Buffering

In NoCs, flits travel through multiple First-In-First-Out (FIFO) buffers from source to desti-

nation. As a result, if the latency of the FIFO is high, performance of the overall network is

degraded. To design a low latency FIFO, independent read and write clocks are provided to it.

The FULL and EMPTY signals are dependent on both the clocks.

2.1 Part I : Architecture and Working Principle 23

Network Interface

The NI module interfaces the core to the network. It decouples computation from communi-

cation and performs protocol conversion between the core and router to which it is connected.

According to the work reported by [80], the NI architecture can be divided into three parts,

Generic Core Interface (GCI), Packet Maker (PM) and Packet Disassembler (PD). The function

of each part is described as follows.

• Generic Core Interface (GCI) : It abstracts the network communication protocol from the

core specific wrapper for heterogeneous system implementation.

• Packet Maker (PM) : The core specific wrapper transmits the message to PM memory.

PM performs the following tasks.

– Packetizes the message stored in PM memory and breaks them into several flits

before queuing them into asynchronous FIFO having independent read and write

clocks.

– In case of source routing, maintains the routing information in look-up-table.

– Insert redundant bits (parity) in the packet tailer for supporting end-to-end flow con-

trol.

• Packet Disassembler (PD) : PD performs the following tasks.

– Writes incoming flits from asynchronous FIFO to PD memory.

– Decodes packet header from PD memory, extracts control information required by

the core, and passes it to GCI.

– The core wrapper reads the payload and the tailer to obtain the total message. It also

performs error detection and end-to-end flow control.

– Ensures in-order delivery of packets which is extremely important for adaptive rout-

ing.

As routers and IP cores are operating at completely independent clocks, the asynchronous FIFO

in NI performs the synchronization task in clock domain crossing.

Routing Strategies

Routing algorithms are classified based on the following decisions.

• Number of destinations of a single packet:

24 Chapter 2 Background

– unicast: each packet has a single destination.

– multicast: single packet has multiple destinations.

• Position of routing decision:

– source routing : pre-computed routing table in NI

– distributed routing : each packet carries source and destination address. The routing

decision is implemented in each router by a routing table or by executing a finite

state machine.

• Deterministic : packets always follow specific path from source to destination. This as-

sures in-order delivery of packets.

• Oblivious : Selects path randomly or cyclically.

• Adaptive : Routing decisions are taken based on the current state of the network (conges-

tion, available link, etc.) and alternative paths are chosen dynamically.

The challenges in routing scheme are as follows.

• Livelock : It arises when packets travel around its destination node, but unable to reach

it because the channel to do so are occupied by other packets. It occurs only in adaptive

routing when packets are allowed to follow minimal path.

• Deadlock : It arises when a set of messages are blocked forever because each message

in the set holds one or more resources needed by another message in the set. Dimension

order routing is the most simplest approach to avoid deadlock in deterministic routing.

In two dimensional (2-D) mesh type network, it is called X-Y routing, where a packet is

first forwarded in the X-direction until it reaches the X coordinate of the destination and

then forwarded in the Y-direction until it reaches the destination. Like X-Y routing, Y-X

routing is also deadlock free. For ring and torus type networks, deadlock is avoided by

splitting each physical channel into group of virtual channels.

NoC testing

Testing NoC based systems involve three steps. First, it must be ensured that the NoC infrastruc-

ture is fault free so that in the next step while testing the IP Cores, the NoC infrastructure can be

utilized as Test Access Mechanism (TAM). Finally, in the last step, the whole integrated circuit

is tested which checks for correctness of the interaction between IP Cores and the interconnect.

2.1 Part I : Architecture and Working Principle 25

a) Testing NoC infrastructure : Testing the NoC infrastructure involves test of links, routers

and NIs. Links have to be tested first as they are responsible for transferring data between

switches. Moreover in some design methodologies the NoC infrastructure is reused as

TAM for testing routers. In such cases, links are the basic elements for transferring test

data, therefore their correct functioning should be guaranteed prior to using them as TAM.

Tests are performed for detection of of crosstalk in wires and for detection of timing

relations in interconnection links when the NoC is used in Globally Synchronous Locally

Asynchronous (GALS) systems [84]. Router testing is done in two parts; the combinational

logic part used for data routing (RLB) and the buffers. The RLB is tested using standard

test methods for combinational circuits such as scan and BIST [65]. However, testing

buffers is difficult as they are small and distributed all over the chip. Thus employing

traditional BIST approaches leads to increased area overhead.

b) Testing IP cores : One of the major design issue for test of deeply embedded memory

cores in SoCs is accessibility of their terminal through input/output ports of the SoC. For

solving this problem, designers use a special hardware for transferring test data from I/O

pins of chip to core terminals. This hardware is called Test Access Mechanism (TAM). In

case of NoC based SoCs, researchers have proposed the re-use of the NoC infrastructure

to act as TAM [23]. The re-use mechanism allows concurrent transferring of test data to

different cores leading to reduction of test time. Moreover, the technique is cost-effective

as no extra hardware is required.

c) Testing the whole integrated circuit : After the NoC infrastructure and the Intellectual

Property (IP) cores have been tested, the interaction between computing cores must also

be functionally tested. This includes test of the I/O functionality of each IP core and of

the routers.

26 Chapter 2 Background

2.2 Part II : Test Methods

More than 90% of the chip area in today’s SoCs are dominated by memory cores. The advance-

ment of memory design technology and structural simplicity of memories have resulted in high

density of memories. However, high packaging density of memories causes more susceptible

to physical defects. Since memories have high impact on the overall chip area, efficient and

high quality tests are required to detect the physical defects in memories. The most popular and

widely used tests have been discussed in this part of the chapter. Moreover, we also briefly cover

the memory test architectures used to perform the test algorithms. The details have been covered

in the subsequent subsections.

2.2.1 Faults in memories

A fault refers to an underlying cause of failure such as radiation induced bit flip or stuck-at

bit [83]. The presence of a Memory Fault can be detected when there is physical difference be-

tween the correct and incorrect behavior of a memory. The faults which cause memory failures

can be classified as Permanent faults, Transient faults and Intermittent faults.

Permanent (Hard Faults) corrupt bits in a persistent manner due to a physical defect such as

stuck at faults. Permanent faults are generated during manufacturing process and are detected by

post-manufacturing tests [reference]. Hard faults can only be repaired by replacing or bypassing

the faulty device. The mechanisms which cause hard faults are bad electrical connection, broken

components (IC mask defect), bur-out chip wire, corroded connection between chip and package

and logic error.

Transient faults occur randomly and without significant physical damage. They cause incor-

rect data to be read from a memory location. The following are possible factors that contribute

to transient faults: Cosmic rays, alpha particles, electromagnetic interference, voltage fluctua-

tions, humidity, pressure. Errors in memories introduced by transient faults are often called soft

errors. The device that experiences transient fault can be repaired by overwriting the location

with correct data.

Intermittent Faults, which cause memory locations to sometimes return incorrect values.

These faults are caused by non-environmental conditions such as loose connection, aging com-

ponents, noise in the system, critical timing. Similar to transient faults, intermittent faults are

non-permanent faults. However, unlike transient faults, intermittent faults indicate device dam-

age or malfunction.

2.2 Part II : Test Methods 27

2.2.2 Testing Methods

The real physical defects in memories are often too numerous to be analyzable. As a result, there

is requirement of a model which would reduce the set of target faults to a sizable number and

would make their analysis possible. A fault model can be defined as an abstract representation

of defects. The representation can be at different levels of abstraction, such as behavioral, func-

tional, logic level or electrical level. Depending on the level of abstraction of the fault model

which is being used by the testing method, we can classify the testing method to structural and

functional testing [70].

Functional testing is a comprehensive testing which tests if the Device-Under-Test (DUT)

can behave as it is expected to behave. It can be done in two different ways: (a) Applying func-

tional test vectors and (b) Using hardware redundancy. Structural testing is testing the structure

of the device-under-test by using lower levels of fault models. For example, structural testing of

a 4-input AND gate tests all the input lines and the output line for stuck-at faults. Therefore the

total number of test patterns that should be applied to the gate is 10 test patterns.

2.2.3 Functional Fault Models

Address
Latch

Column
Decoder

Refresh
Logic

Row
Decoder Memory Cell

Array
Write
Driver

Sense Amplifiers Data
Register

Data
out

Data
in

Read/Write
and

Chip Enable

A C H

B D

E

F G

Adddess Refresh

Data Flow

Control
Flow

Figure 2.12: Functional memory model [13]

Functional fault modeling has been the primary level for memory test. Functional modeling

28 Chapter 2 Background

Address

Address Decoder

Memory Cell Array

Read/Write Logic

Data

Figure 2.13: Simplified functional memory model [13]

identifies the circuit as a function but visibility to the inner workings of the memory is not pro-

vided. Figure 2.12 shows a functional memory model and Table 2.2 lists some of the functional

faults based on the functional model that can occur in memories.

However, the functional fault model of Figure 2.12 can be reduced to a more simplified

model as shown in Figure2.13 and the functional faults in Table2.2 can be mapped to reduced

functional faults of Table2.2.3.

The four fault models listed in Table 2.2.3 form the classic memory fault models. The

fault models have been explained using the Markov model based state diagrams [3]. The “R”

indicates a read operation while “W0” indicates write 0 and “W1” indicates write 1. “S0” and

“S1“ indicate the cell in a “0“ or a “1” state. The state diagram for the good memory cell is

shown in Figure2.14 (a). The defect free single cell can be written to either state and retains the

original information when read. The definition of classic memory fault models are as follows.

• SAF : Indicates that a cell has been stuck to a particular state. Figure2.14 (b) represents

the stuck-at-0 fault where the cell contains a “0” regardless of any data (“0” or “1”) written

to it.

• TF : Indicates memory cell retains either state. If a cell is written to a state, it cannot

transition back. The cell can only be written in one direction. For example, as shown in

Figure2.14 (c), if the cell is in state S0 and is written a “1”, the cell moves to S1 state.

However, in S1 state, a write “0” will not bring the cell back to S0, rather the cell will

2.2 Part II : Test Methods 29

Table 2.2: Subset of functional memory faults [13]

Functional Fault Functional Fault

a Cell stuck j Address line open

b Driver stuck k Address lines short

c Read/Write line stuck l Open circuit in decoder

d Chip-select line stuck m Wrong address access

e Data line stuck n Multiple simultaneous address access

f Open circuit in data line o cell can be set to 0 but not to 1 (or vice versa)

g Short circuit between data lines p Pattern sensitive applications

h Cross talk between data lines

i Address line stuck

Table 2.3: Reduced functional memory faults

Notation Fault

SAF Stuck-at-fault

TF Transition fault

CF Coupling fault

NPSF Neighborhood pattern sensitive fault

30 Chapter 2 Background

S0 S1

W0

W1

R,W1

R,W0

S0

W0

W1

R

S0 S1

W1

R,W1,W0R,W0

(a)

(b)

(c)

Figure 2.14: Markov model representation : good memory cell (a), stuck-at-0 cell (b), transition
fault model (b) [13]

remain in S1 state.

• CF : It indicates that a transition in cell j causes an unwanted change in memory cell i. The

cell which does the coupling is the aggressor and one which transitions is called victim.

• NPSF : The memory cell is dependent upon cells in its neighborhood, which may be

pattern of “0”s or “1”s or a pattern of transitions. For example in a nine-cell neighborhood,

the base cell (cell under test) is dependent on the surrounding eight neighboring cells.

The coupling fault and NPSF fault have been illustrated in Figure2.15 (a) and (b) respectively. In

this chapter of the thesis we have restricted our discussion of memory faults to only those which

are considered during the course of the research work. Since detailed discussion of the classical

memory faults can be found in number of literatures, extensive coverage of them would not

provide any deeper insight. A detailed discussion of coupling faults and pattern sensitive faults

can be found in [13] and [61].

2.2 Part II : Test Methods 31

S00 S01

W0/j

W1/j

R,W0/i,W1/j
R,W0/i,W0/j

S10 S11

W1/j

W0/j

R,W1/i,W1/jR,W1/j,W0/j

W0/i
W1/i

W0/i

W1/i

(a)

Base
cell

cell cell cell

cell cell

cell cell cell

NeighborNeighborNeighbor

Neighbor Neighbor

NeighborNeighborNeighbor

(b)

Figure 2.15: Markov model representation of coupling fault (a) and nine cell neighborhood
representation (b)

There are faults in memories which depend on the actual circuit operation such as Read

Disturb Fault Model (RDF), Write Disturb Faults (WDF), Data Retention Fault (DRF), Address

Decoder Faults (AF), SOI Faults, False Write Through and Pre-Charge Faults. In this chapter,

we briefly describe only the RDF, DRF and the WDF since these faults have been considered in

the research problems discussed in the succeeding chapters. The details of the remaining faults

can be found in [3].

• Read Destructive Fault (RDF) : RDF occurs when a read operation performed on the

defective cell changes the data in the cell and returns an incorrect value on the output [3].

RDF are predominant in SRAMs, where a defective SRAM loses its data state on a read

and behaves as a dynamic cell. Since DRAMs refresh data after every read operation, read

disturb faults are less likely to occur in DRAMs.To detect read disturb fault, a 1 and a 0

should be read from each cell.

• Write Disturb Fault (WDF) : A WDF occurs when a non transition write operation per-

formed on the defective cell causes a transition in the cell. To detect a write-disturb fault,

each cell should be read after a non-transition write. For example, with a cell initially

32 Chapter 2 Background

holding a 0 value, if a write 0 is performed, then the cell must be read for a 0 immediately

after the read. Similarly, with a cell initially holding a 1 value, if a write 1 is performed,

then the cell must be read for a 1 immediately after the read.

• Data Retention Fault (DRF) : A DRF occurs when a memory cell loses its previously

stored logic value after a certain period of time during which it has not been accessed

[32]. This kind of fault is the consequence of resistive open defects in SRAM core-cells,

in particular in the self refreshment loop circuit. A detailed discussion of analysis and

detection procedures of DRFs can be found in [29]

2.2.4 Memory test algorithms

A number of RAM tests such as Memory Scan (MSCAN), Galloping Pattern (GALPAT), Checker

Board Pattern have been found in literature [61]. However, these tests have poor fault coverage.

As a result, researchers came up with a simple yet efficient test for memories called March based

tests. March tests are the most widely accepted tests for detection of faults due to their high fault

coverage and linear relation of their test time with respect to the memory size [13]. A March

instruction consists of sequence of operations, called March element applied to each cell before

proceeding to the next cell. An operation can be writing a 0 (w0) or reading a 1 (w1), reading

an expected 0 from a cell (r0) and reading an expected 0 from a cell (r1). March element can

be done in either one of two address orders: the ascending order (↑) or descending order (↓).
When the address order is irrelevant, then (l) is used. A bit oriented March test is represented

as follows.

{l (w0); ↑ (r0, w1); ↓ (r1, w0)}

. There are three March elements in the March test notation. The March elements are separated

by semicolons and are denoted as M0, M1 and M2. In each March element, first the address

sequence is specified followed by the operations. The execution of all the three March elements

is illustrated in Algorithm 1. The memory considered in Algorithm 1 is assumed to be having N

locations with each location of sizeB bits (cells). The variables i and j in Algorithm 1 represent

the pointers for address and cells respectively.

In the March element representation, the March element M0 begins by performing a write

operation (with a data 0) on each cell of the first address and then continues to the next address.

This is illustrated in the lines 1-7 of Algorithm 1 representing the example March test. Thus, after

the M0 element has been performed, every cell of the entire memory is filled with zero. Next,

the March elementM1 is performed where on each address (memory cell) a read operation (with

an expected 0 in the fault-free case) is performed followed by a write back of the complemented

2.2 Part II : Test Methods 33

bit immediately. Then, the same operations are continued for each cell of the next address. The

M1 operation execution is illustrated in lines 8-15 of Algorithm 1. The M2 element is a repeat

of M1 except that the read and write data are reversed. The M2 March element execution is

illustrated in lines 16-23 of Algorithm 1. The example March test algorithm is also called a

March 5N algorithm as it requires 5N read/write operations, N being the size of the memory.

The March test used in the Algorithm 1 is called MATS+ test [13]. A list of different March test

is presented in Table2.2.4

Algorithm 1 March Test Example
1: for i = 0 to N do
2: for j = 0 to B do
3: Write(0, cell[j])

4: j ← j + 1

5: end for
6: i← i+ 1

7: end for
8: for i = 0 to N do
9: for j = 0 to B do

10: Read(cell[j])

11: Write(1, cell[j])

12: j ← j + 1

13: end for
14: i← i+ 1

15: end for
16: for i = 0 to N do
17: for j = 0 to B do
18: Read(cell[j])

19: Write(0, cell[j])

20: j ← j + 1

21: end for
22: i← i+ 1

23: end for

Fault detection using the March test

The fault detection using March test has been excellently illustrated by Bushnell and Agarwal

in [13]. We use their detection technique to explain the detection of Stuck-at-fault 1 (SA1) of at

cell (2,2) in a memory of size 3x3. Figure2.16 illustrates the detection technique using a MATS+

test consisting of March elements M0, M1, and M2. The fault is detected by March element M2

34 Chapter 2 Background

Table 2.4: March Test Algorithms [13]

Algorithm Description

MATS {l (w0); ↑ (r0, w1); l (r1)}
MATS+ {l (w0); ↑ (r0, w1); ↓ (r1, w0)}

MATS++ {l (w0); ↑ (r0, w1); ↓ (r1, w0, r0)}
MarchX {l (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓ (r1, w0)}
MarchC- {l (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓ (r1, w0); l (r0)}
MarchA {l (w0); ↑ (r0, w1, w0, w1); ↑ (r1, w0, w1); ↓ (r1, w0, w1, w0); ↓ (r0, w1, w0)}
MarchY {l (w0); ↑ (r0, w1, r1); ↓ (r1, w0, r0); l (w0)}
MarchB {l (r0); ↑ (r0, w1, r1, w0, r0, w1); ↑ (r0, w0, w1); ↓ (r1, w0, w1, w0); ↓ (r1, w1, w0)}

as it moves from the highest memory address downward and expects to read a 0 in cell (2,2), but

instead gets a 1.

0 0 0

0 0 0

0 0 0

1 1 1
1 1 1

1 1 1

memory contents
after M0 after M1 after M2

after M0 after M1 after M2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

memory contents memory contents

memory contents memory contents memory contents

1 1 1
1 1 1

1 1 1

Figure 2.16: SA1 Fault Detection using MATS+ test

2.2.5 Test for word oriented memory

For a word oriented memory, the read/write operations in the March tests are performed on a

data word instead of a bit. The data word read or written in case of a word oriented memory

is called the background pattern or data background. For a word-oriented memory having N

number of data words and w bits/word, the word-oriented MATS+ is represented as

{l (wa); ↑ (ra, wb); ↓ (rb, wa)}

2.2 Part II : Test Methods 35

where a is a background word and b is its complement [61]. Different techniques have been

proposed by researchers for converting a bit-oriented March test to word-oriented March test.

The first work in this regard was proposed by Vand de goor in [89]. In his work, Van de goor

proved that fault models developed for single cell in bit-oriented memories can be applied for

word-oriented memories. However, for faults involving two or more cells, further classification

is required according to whether they are within the same word or not (i.e., intra-word or inter-

word faults) [89] .

2.2.6 Memory BIST architecture

With more and more memories embedded in circuits, accessibility becomes an issue in tester

based methods making Built-in-Self Test (BIST) the solution of choice. The memory Built-

in-Self Test architecture (MBIST) comprises of a BIST controller, a memory with a wrapper

and an interconnect as shown in Figure 2.17. The MBIST wrapper further includes an address

generator to provide the complete memory address sequences (for n address lines all the 2n

lines are visited in complete sequence); a background pattern generator to produce data pat-

terns when testing word-oriented memories [13]; a comparator to check the memory output

against the expected correct data pattern; and a finite state machine (FSM) to generate proper

test control signals based on the commands received from upper level controller (Automatic Test

Equipment). The interconnect between the wrapper and the controller could either be serial (a

single command line shared by all wrappers) or parallel (dedicated multiple command lines

linking different wrappers to the controller). The collar(or wrapper) included with the memory

also consists of multiplexers that select between address, data and control signals from the BIST

controller in test mode and the signals from the CPU in mission mode. A comparator is used to

check if the expected data from the read operation matches the data actually read out from the

memory.

The basic operation of memory BIST is straightforward: First, the memory is put into a test

mode by the use of muxes placed on every data, address, and control line. A finite state machine

writes a test pattern to a memory cell, reads it back, and compares it to the original value. If a

mismatch occurs, a flag is set to show that the memory cell under test has a failure (the Pass/Fail

line in Figure 2.17). The address is incremented and the process continues recursively. The pro-

cess of stepping through the entire memory space can be done multiple times, using different

patterns to more fully exercise the memory.

36 Chapter 2 Background

FSM

Embedded Memory

Correct Data

Data Out

Pass/Fail

Background

Pattern

Generator

Address

Generator

Control

Logic

De-
Coder

Com-
parator

Control Address

Data

Commands
from ATE

Address In

Data In

Control

Controller

Interconnect Wrapper

Data Out

Figure 2.17: Generic Memory BIST Architecture

2.3 Summary

In this chapter, both the design and the test aspects of memory cores and NoC based systems

have been presented, covering architectural descriptions, working principles and test issues. The

brief discussion covered in this chapter would pave the path for clear understanding of the topics

discussed in the forthcoming chapters. Following this chapter is Chapter 3, which presents a

survey on the literature related to test of NoC based memory systems. The chapter touches upon

the different aspects of memory testing elaborating on the test challenges and proposed solutions

by exploring works of different researchers.

Chapter 3

Literature Review

Memory testing has been a research topic of interest for almost three decades. Researchers over

the years have contributed to the three different aspects of memory testing, namely, fault mod-

eling, test algorithm design and memory BIST architectures. Some of the earlier works in fault

modeling such as by Dekker et al. in [26] and Goor et al. in [91] were limited to static fault

modeling. However, with emergence of dynamic faults in memories, fault models for dynamic

faults were also proposed in works by Hamidoui et al. in [37] and [39]. With introduction of

fault models, since early 1980s, March tests have become the dominant type of tests for memo-

ries. A detailed discussion of different March tests have been covered in several text books such

as the one by Van de goor in [90]. With advent of technology and emergence of SoCs, acces-

sibility of embedded memory cores has become an issue during testing of SoCs. Thus, BIST

has been chosen as the viable test option for embedded memories in SoCs. As a result, over

the past decade, a lot of text has been dedicated to design of innovative MBIST architectures.

Some of the commonly used MBIST architectures have been covered in books by Bushnell and

Agarwal [13] and Wang et al. [96].

Another important issue in SoCs has been the communication infrastructure. The increas-

ing communication demand in present day SoCs has led to research on novel interconnection

networks such as NoC. Mullins has listed more than 400 articles on different aspects of NoC

involving communication infrastructure, software and operating system services and Computer

Aided Design (CAD) tools for NoC in the website [1]. The focus of the present thesis has been

to integrate both the above mentioned issues, memory testing and NoC. To this effect, the thesis

aims to highlight test challenges for memory cores interconnected using NoC and to come up

with effective solutions for the same.

The present chapter presents a survey of different test techniques that have been proposed

by researchers with the aim of optimizing either area overhead or test time or power dissipation

37

38 Chapter 3 Literature Review

during test of memory cores interconnected using NoC and also during test of memory cores

which are part of the NoC infrastructure. Figure 3.1 provides an illustrative view of the structure

that has been followed during the survey. The subsections of the chapter highlight important fea-

tures of different proposals found in literature and also mention the shortcomings which served

as a motivation for the research problems of the presented thesis. The presentation of the survey

has been arranged following a pre-order traversal of the tree structure shown in Figure 3.1.

Test of Memory Cores in NoC based Systems

Test of Memory Cores
Interconnected using NoC

Test of Memory Cores

Part of NoC infrastructure

NoC Based
MBIST

MBIST
Optimization

Re-using refresh

for test

Test of SRAM based

MBIST
Sharing

Memory Grouping MBIST On-line
techniques

BIST Sharing

for

Identical Memories

BIST Sharing

for
Heterogeneous Memories

Algorithms

FIFO Buffers

Transparent Test
techniques

Off-line On-line

for DRAM

Refresh
Re-use

Figure 3.1: Structure of the survey done on related work

The research on the test techniques for NoC based memory cores has been guided along

three directions. The first being a survey of literature related to NoC based MBIST. However,

it has been found that not much has been done in this regard. Thus, the motivation shifted to

search for optimization techniques employed for embedded memory cores in SoCs and applying

them for NoC based SoCs. It has been found that researchers have followed two paths to bring

about improvement, either by proposing memory grouping algorithms or by proposing efficient

BIST circuitry sharing techniques among memory cores as illustrated in Figure 3.1. Thus, a

survey has been performed on both the approaches and later applied in the proposals presented

in the thesis. The third direction of research has been to exploit on-chip resources such as refresh

circuit for test purpose with the aim to bring down the test area overhead. The survey of refresh

based test methods presented in the thesis have included both on-line and off-line test techniques.

However, survey of literature reveal that proposals related to refresh based test have been mainly

3.1 Studies on Network-on-chip based MBIST 39

off-line test proposals targeting run-time transient errors and not faults and to the best of the

knowledge, no literature has been found related to refresh based on-line test. However, the

similarity of refresh and memory test algorithms motivated the proposal of an on-line test for

DRAMs using refresh circuit presented in the thesis. Thus, a survey of literature related to on-

line test of memories in general has been performed. An outcome of the survey has been the fact

that transparent March tests have been preferred over standard March tests while performing the

on-line test of memories. As mentioned in Chapter 1, one of the research directions of the thesis

has been test of memory cores which are part of the NoC infrastructure. The memory cores

considered have been the SRAM based First-In- First-Out (FIFO) buffers present in the routers

of the communication medium. Thus, a survey of literature related to test of FIFO buffers has

been performed which includes both on-line and off-line test techniques of FIFO buffers.

3.1 Studies on Network-on-chip based MBIST

Test time reduction by means of test parallelization can be achieved if an on-chip network is

implemented as test access mechanism (TAM). Ever since Cota et al. proposed to use NoC as

TAM in [23] and [24], the concept has gained immense popularity among research groups. The

main advantage of the reuse of an on-chip network is the availability of a number of access paths

to each core, depending on the number of interfaces between the system and the external tester.

If the system functional inputs and outputs can be reused, the pin overhead is null, while the area

overhead is minimum, since the access mechanism is already available on the chip. Test time

can be also minimized if the intrinsic parallelism of the communication platform is explored to

increase the test parallelization. Test parallelization in NoC-based systems can be further im-

proved by the use of BISTed cores as mentioned in [22].

However, not much research has been done on exploring the NoC based BIST technique for

memory cores and to the best of our knowledge only Liu et al. [59] have proposed a NoC based

MBIST. Liu et al. in [59] have proposed a packet based BIST scheme which tests memories in a

NoC. The packet based BIST scheme proposed in [59] is shown in Figure 3.2. The BIST uses the

network resource to transport test patterns such that one BIST circuit can test all memories at-

tached to the network resource without incurring the routing and timing problems. The proposed

BIST scheme applies test operations to multiple memories in a pipeline. If a memory executes

read test operation, the next memory will perform a write test operation. Thus, the memories

are divided into two groups, one receives the read test operation while the other receives the

write test operation. In static memory, the write power is larger than read power. Therefore,

the number of memories that can be tested in parallel under a limited test power consumption

40 Chapter 3 Literature Review

increases. However, the proposed work of Liu et al. has several problems. It proposes a single

BIST controller for testing a number of identical memories. If we assume all memory cores

are non-BISTed, then a single BIST controller has to send address, data and control for all the

memories. This will substantially increase the network transport latency and hence negatively

impact the test time. However, if we assume all memories are BISTed (each memory has an

Address generator, Data generator and Test pattern generator), then the area overhead problem

is the same as the case where each core has a dedicated BIST. No additional advantage is gained

by sharing the BIST controller.

Read/Write

Address

Background

TPG

Built-In-Self Test

Path

Register

Instruction

Register

Control

Signal

Generator

Command

Decoder

R/W

Addr

Data

Faulty

Inst

Network

Faulty

Addr

Buffer

Comparator

Data
Output

Data in

Addr

R/W

Wrapper

Network
Interface

Memory

NI

Inst-en Inst-in

Test-D

Inst-out

Test-en

NI

Figure 3.2: Block diagram of the packet based BIST scheme proposed in [59]

The experimental results presented by Liu et al. in [59] have been based on the assumption

that the memory cores connected to the NoC are homogeneous. Such an approximation is too

simple given the complexity of today’s memory intensive NoC based applications and the dif-

ferent sizes of memories used in them. Moreover, no experimental results on any benchmark

circuit have been provided to give an estimate of test time or power.

3.2 Studies on Memory BIST optimization

Memories with self contained BIST circuits in NoC based SoCs lead to high area overhead.

Thus, researchers have proposed the concept of BIST circuit sharing. Literature suggests that

there have been two approaches in sharing of BIST circuit. One is the stand alone approach

3.2 Studies on Memory BIST optimization 41

where there is a dedicated wrapper or controller for a memory core or cluster of memory cores

and the other is the distributed approach where a single controller is shared to manage some or all

of the MBIST wrappers in a SoC. However, in some cases, memories have different widths and

addressing spaces and they cannot be connected to the same BIST logic. Therefore, to achieve

a satisfactory solution, a decision on which memory cores to be grouped should be taken along

with how to connect the memories in a group. Several heuristics have been used for deciding

on grouping memories which share MBIST components for reduced area overhead. Memories

that are physically far apart and/or belong to different physical hierarchies are placed in different

groups. Memories that serve the same functionality are preferably grouped together to promote

concurrent testing. For the same reason, memories that have same type (single port memories or

dual port memories) and similar size parameters are grouped.

In the following subsections, we present a survey of different memory sharing techniques

that have been proposed by different researchers. The proposed approaches have considered two

main directions to gain improvement in performance of Memory BIST by hardware sharing:

Memory grouping algorithms for optimized area, power and time and Memory BIST architec-

tures.

Memory grouping algorithms

As far as we know, the first complete work on formulation of memory grouping problem has been

proposed by Miyazaki et al. in [67]. A two pronged approach has been considered in [67]. First,

a BIST methodology has been proposed which allows sharing of wrappers. Second, a memory

grouping problem has been formulated with the aim of finding the optimized BIST architecture

for any input design. The memory grouping problem formulation considered has been focused

towards optimization of area under the constraints of power and time. To formulate the memory

grouping problem, a graph theoretic approach has been utilized involving identification of serial

and parallel compatibility subgraphs based on design constraints. The authors have proposed

two methods for sharing BIST logic among memory cores, serial (connectivity of memories

with same bit-width) and parallel (connectivity of memories with same word-width). Serial

connection reduces the area overhead while requiring more test time than parallel connection.

Several other problems have also been identified for the proposal. Components far apart on the

chip have not been allowed to share their components due to congestion issues. Moreover, the

proposed memory grouping problem formulation has been found suitable only if optimization is

carried out after placement of memories.

An improvement on the optimization approach of [67] has been proposed by Zaourar et al.

in [108]. The authors of [108] have presented a Genetic Algorithm (GA) based method to op-

42 Chapter 3 Literature Review

timize the choice of BIST architecture among all valid possibilities with regard to additional

area, peak power and testing time. Zaourar et al. have also used a graph theoretic approach

of finding serial and parallel compatibilities. However, unlike min-cut algorithm used for par-

titioning problem used in [67], the authors in [108] have used the idea of picking equivalence

classes for serial and parallel compatibilities. This alleviates the algorithmic difficulty of the

memory grouping problem. Moreover, they have considered the memory grouping problem as a

multi-objective problem, with area, time and power as the optimization criteria. A set of pareto

optimal solutions for the optimization problem have been proposed and a multi-objective evolu-

tionary GA has been used to sample the pareto optimal solutions. However, the shortcoming of

the work presented in [108] is that, as all test wrappers are launched simultaneously during test,

the peak test power becomes high.

A software based solution for MBIST, optimized for area, peak power and test time have

been proposed by Zaourar et al. in [107]. The authors have proposed a software approach of

three modules operating in sequence. The first module creates memory compatibility group, the

second module applies Genetic Algorithm (GA) to the memory groups for optimized parameters

and the last module checks the obtained solutions for the sharing constraints. However, no test

results have been reported and no comparison with existing work is cited in [107]. Another

BIST design optimization problem has been discussed in [17] where the authors have proposed

an optimization tool for memory BIST design to minimize total test time, total routing length and

total area under practical design constraints. They have proposed an iterative process of reaching

optimization objective. The first step involves assignment of memory cores to controllers based

on Integer Linear Programming (ILP) formulation. In the next stages, by an iterative algorithm,

the initial assignment has been checked for violation of user defined constraints. On violation,

the core violating the constraint is moved from one group to the other. A basic assumption of

the work has been test of only one group at a time. This assumption leads to testing of memory

groups in sequence which eventually increases test time.

Forming memory core clusters which can share memory wrappers has been accepted as a

solution for reducing the Design For Testability (DFT) area overhead problem as discussed so

far. However, sharing wrappers without caring for physical design problems has an adverse

effect on at-speed operation of the memory cores. Thus, some works have proposed physical

design aware memory grouping problem and their solutions as in [55] and [95]. Baosheng et

al. in [95] have proposed a memory grouping technique for BIST circuit sharing which reduces

the Design For Testability (DFT) area overhead utilizing the floor-plan information. Since at

floor-plan level, the physical information about the functional blocks with embedded memories

becomes available, grouping of memories at this level reduces the DFT area overhead. The au-

3.2 Studies on Memory BIST optimization 43

thors of [95] have also proposed a mechanism to avoid routing congestion involving grouping

of blocks with the same type of memories and recreating a single BIST controller for the group

at Register Transfer Level (RTL). Next, the new design is checked for routing congestion with

the original design timing constraints. If no violations occur, further grouping proceeds in the

similar way.

Kokarady et al. in [55] have presented a layout aware Programmable Memory BIST design

(PBIST) synthesis flow. PBIST allows test algorithm alteration at the time of test application.

Running different test algorithms make the test procedure more exhaustive and accurate as more

number faults are detected. The authors have thus used PBIST to allow for use of several test

algorithms at run time. However, PBIST has a more complex BIST insertion flow. If num-

ber of memory instances are large, PBIST controller sharing leads to sequential testing causing

high test time. On the other hand, use of multiple controllers lead to area and power overhead.

The authors argue that the present day synthesis tools are physical design friendly and make

important decisions regarding cell placement and wire routing. Even insertion of DFT such as

scan chains is layout aware. Thus, the problem of PBIST synthesis must also be layout aware

as decisions taken at layout level influence routing congestion. The synthesis of Programmable

Memory BIST (PBIST) is formulated as a combinatorial optimization problem where logical and

physical architecture of the PBIST solution is obtained through several transformations. They

have proposed an optimization framework called (Layout Aware Memory PMBIST Synthesis)

LAMPS which is primarily intended for PBIST synthesis. It makes use of physical and logical

transformations to PMBIST data path to improve rout-ability, total wire length, area, timing and

power dissipation.

BIST sharing for identical memories

In present day NoC based SoCs, it is quite common to have many identical memories on-chip.

Several works have proposed to share test wrapper for these identical memories to reduce test

area overhead. Baosheng et al. in [95] have proposed a technique for partly sharing wrapper

for identical memories. The technique involves sharing memory BIST controllers for embed-

ded SRAMs (e-SRAMs) embedded in different functional blocks. The proposal considered each

identical memory to have its own address generator, response compactor and memory control

signal generator. The data generator and the command generator have to be shared among all

identical memories. The proposal in [95] also considered a method for minimizing the number

of BIST controllers by sharing them among memories which are neighbors. The authors argue

that since the memory BIST controllers are generally implemented at the register transfer level

(RTL), every functional block with e-SRAMs contains one or more BIST controllers. After en-

44 Chapter 3 Literature Review

tering the gate level design stage, the physical information of those functional blocks is known

and can be utilized to reduce DFT area overhead. The functional blocks that are close to each

other in floor-plan and have memories with the same port type can share a single BIST con-

troller. However, this way of reduction leads to routing congestion. The authors have proposed

a mechanism to avoid routing congestion on account of reduction in number of controllers. The

mechanism involves grouping of functional blocks having same type of memories and allotting

a single BIST controller for the group.

A modular design of a wrapper enabling BIST for small memories has been investigated

in [4]. The wrapper provides a standardized interface between memory and test controller, so

that the wrapper allows for at-speed test at low area overhead. Both serial and parallel interfac-

ing between BIST circuits and memory cores have been researched and number of modifications

have been proposed for reduced area overhead. However all of them either lead to routing con-

gestion suffering at-speed testability or increase the test time or suffer from increase in power

dissipation during testing. A shared BIST scheme has been proposed by Chen et al. in [15] for

testing multiple memories in parallel. The main drawback in such type of parallel connection

lies in the interconnect between controller and wrappers, which uses one parallel command line

to configure all the memory BIST wrappers to run the same test commands. This implies that for

large SoCs, different types of memories (or memories requiring different test algorithms) cannot

be tested simultaneously using the same BIST controller, thus increasing testing time as well as

test control complexity. Moreover, using parallel interconnects between the controller and the

wrappers, the routing congestion may become a potential problem when hundreds of embedded

memory cores are present. Furthermore, the testing time for each test session is dominated by

the largest memory, which may lead to prohibitively long testing time under power dissipation

constraints. Serial interfacing techniques have also been proposed as in [69] and [51]. Serial

techniques can reduce routing overhead. However, they lead to long testing time.

Identical memories are physically located at neighborhood and therefore read data of a Ran-

dom Access Memory (RAM) can be used as written data of another RAM. By taking advantage

of this feature, pipelined BIST has been proposed in [46], [47] and [59]. Huang et al. [46] have

proposed a low cost BIST scheme to test identical memories in a pipeline. The BIST scheme

uses serial interfacing technique to test each memory in an array of memories such that its area

cost is small. On the other hand, it tests multiple memories in a pipeline to avoid the problem

of long test time. The pipelined structure of BIST proposed in [47] allows only one test pattern

generator and one test controller to support testing of multiple static random-access memories

(SRAMs). This subsequently brings down the area overhead. In [47], the authors also propose

a systematic procedure to convert March tests into a pipelined March test so that the tests can

3.2 Studies on Memory BIST optimization 45

be made compatible with respect to the pipelined BIST architecture. Chao et al. in [48] have

presented an enhanced IEEE 1500 wrapper design for memory testing. The IEEE 1500 interface

is mainly used for logic core testing and is not used for memory core testing as it leads to long

test time. The enhanced IEEE 1500 wrapper wrapping the logic cores presented by Chao et al.

in [48] can also generate March tests for RAMs. Thus, the RAM cores attached to these logic

cores can also be tested by the enhanced IEEE 1500 wrappers. This brings down the area cost

of the DFT circuits for RAMs in SoC.

BIST sharing for heterogeneous memories

Memory cores tend to have different configurations in word size, address space, pipeline latency

and control protocol. Thus, clusters of memory cores with different configurations sharing BIST

controllers or wrappers is referred as BIST sharing for heterogeneous memories. Concurrent

testing is a simple and effective solution for minimizing test time for heterogeneous memory

cores. However, in concurrent testing a dedicated BIST is attached to each core which leads to

significant area overhead and complex test control. Researchers have proposed different BIST

architectures such that area overhead problem can be reduced. Different parallel and serial in-

terconnection techniques of BIST wrapper sharing have been proposed.

Benoso et al. in [9], present a programmable BIST architecture based on single programmable

BIST processor and a set of memory wrappers to simplify the test of a system containing a

large number of distributed multi-port memories of different sizes. The BIST processor is im-

plemented as micro-programmable machine providing the test engineer a flexible and reusable

block that can be used to manage the BIST of any number of memories of any size and is in-

dependent of test algorithm. However, this technique has the disadvantage of large test time.

Wang etal. in [96] have proposed a Built-in-Self Diagnosis (BISD) architecture where multiple

heterogeneous memory cores are tested parallely. The SRAM cores share the BISD but have

dedicated background generator, control signal generator and the comparator. By using a dif-

ferent data back ground generator, the same test command can be applied to test memories of

different word widths. The BISD implements the address generator to meet the largest address

space among the memory cores. Cores with smaller address space will be turned off by the

mask register when the BISD goes beyond its address space. The whole test finishes when the

test completes for the largest core.

A BIST sharing technique for memories with multi ports as well as memories operating at

different clock domains has been proposed in [96]. To exploit the advantages of both paral-

lel and serial serial sharing of BIST wrappers, Denq et al. [28] have proposed a hybrid BIST

scheme for testing heterogeneous memory cores. The proposed hybrid BIST scheme reduces

46 Chapter 3 Literature Review

interconnections to minimize the routing area while uses parallel interface to test the memories

at-speed. The MBIST components are the same as in [15]. The Test Pattern Generators (TPGs)

are placed right next to their corresponding memory cores, and are connected with a scan chain

instead of by dedicated serial input/outputs (I/Os). The area overhead of the routing wires thus

is reduced significantly. The hybrid communication supports parallel testing, so it reduces test

time effectively as compared with serial test. The hybrid BIST scheme reduced the routing over-

head by having a test pattern generator for each memory. In addition, the position of the test

pattern generators help in at-speed test of the memory cores. A serial control interface is used to

control the test pattern generators of the memories under test.

In [30], a new flexible, hierarchical and distributed power-constrained embedded memory

built-in self-test (BIST) architecture for complex and heterogeneous systems-on-a-chip (SOCs)

is presented. The proposed architecture consists of a shared technology-independent BIST con-

troller, low area and low power memory BIST wrappers and serial interconnect between them

for low routing-overhead. Due to its flexibility, in addition to reducing routing complexity and

achieving high test concurrency under power constraints, the presented solution can simultane-

ously support multiple test algorithms for heterogeneous memories, as well as embed custom

test algorithms required for new memory faults.

One way to improve the effectiveness of nearly every memory test algorithm is to execute it

at-speed. At-speed BIST operation means running the test at the same frequency as the fastest

system operation. In some cases, at-speed testing even may exceed normal system operation

to achieve better test quality. However, at-speed testing of heterogeneous memory cores is a

difficult task. Traditional BIST architectures may fail to mimic true system at-speed operation

because they take three cycles for each cell test: one for writing the pattern, one for reading

it back, and one for comparing. One method to avoid this operation delay is to use pipelining

stages; while reading from one cell, data can be readied for writing to the next cell [46], [47]. Not

only does this method offer a higher quality test, but test time also can be decreased by up to a

factor of three. However, if memories are working at high frequencies, and placed physically far

apart, then testing memories at-speed with a shared BIST becomes impossible. Bahl and Srivas-

tava [6] have proposed a low area shared BIST architecture that can test memories of different

sizes using a single BIST at-speed. All the memories are surrounded by dedicated wrappers.

The proposed BIST controller is a shared central block. It is like a normal BIST engine except

it is capable of delaying the comparison of the expected output by a programmable number of

clock cycles. The test procedure comprises of four steps. The first step involves selecting the

memory to be tested. In the second stage the controller generates an initialization sequence to

calculate the total pipelined delay. In the third stage, the controller delays the expected data by

3.3 Studies on re-using refresh for test of DRAM cores 47

the calculated number of clock cycles and in the final stage the test algorithm is run for detection

of faults. The proposed architecture offers many advantages. Different memories on the chip can

be tested using a single BIST, irrespective of their placement on the chip. The proposed method

greatly reduces the test logic present on the chip as there is no need of a dedicated BIST for

every memory. The proposed architecture can also be used for a programmable BIST, thereby

allowing a single BIST to be shared between different types of memories that require different

test algorithms.

To minimize test effort for embedded memories in SOC, automatic test integration of mul-

tiple and heterogeneous memory cores in a SOC environment is required. Linag et al. in [15]

have presented an automatic generator for memory BIST circuits called BRAINS (BIST for

RAM in Seconds). It has a graphic user interface and is integrated with a memory compiler to

form an Intellectual Property (IP) generator for various memory configurations. It also features

an automatic test grouping and scheduling which can optimize the overhead in test time, perfor-

mance, and power consumption. With a configurable and extensible architecture, the proposed

framework facilitates easy memory test integration for core providers as well as system integra-

tors. The automatic generation of memory BIST cores extends the ability of system-level test

integration, multi-port and multi-memory support.

3.3 Studies on re-using refresh for test of DRAM cores

One of the research direction of the thesis has been to exploit on-chip resources for test purpose.

To this effect, re-using refresh circuit of DRAM cores for test purpose avoids use of additional

BIST hardware and thus reduces area overhead. Therefore, a survey of literature related to

refresh re-use based testing has been carried out. However, to the best of the knowledge, not

much work has been done on the topic. The only notable works have been by Hellebrand et al.

in [41] and [42] and by Yarmolic et al. in [101]. However, extensive work has been done on

BIST implementation of DRAMs. A brief overview of the research on BIST for DRAMs based

on March test algorithm have been provided in the following subsection.

3.3.1 BIST for DRAM testing

Some of the notable works in the field of BIST implementation for DRAM testing have been

by Sridharan et al. [82], Inoue et al. [50], and Ohsawa et al. [73]. The proposals have been tar-

geting detection of Stuck-at-fault (SAF), Coupling Fault (CF) and Address Decoder Fault (AF)

in DRAMs. The BIST proposed in [82] uses a parallel signature analyzer which accesses bit

lines from different arrays simultaneously. The problem with this architecture is that it requires

48 Chapter 3 Literature Review

external tester to scan in test data and has low fault coverage. In [50], the parallel write op-

eration allows only certain patterns to be applied to the cells so the technique cannot identify

interference between memory cells. The BIST proposed in [73] has a low fault coverage. Pat-

tern sensitive faults are considered typical of DRAMs and for DRAM testing, a neighborhood

pattern sensitive fault (NPSF) testing model is more appropriate due to high fault coverage. A

number of BIST techniques have been proposed for both commodity and embedded DRAM

testing using the NPSF testing models [19], [76], [106]. However, no NPSF test can detect ad-

dress decoder faults, whereas all March test can. Therefore the appropriate scheme would be to

put both test algorithms in the BIST hardware [13]. BIST architectures have also been proposed

such that both March test and NPSF tests can be programmed into the same hardware [10]. This

allows both the tests to be run using the same hardware and thus has a higher fault coverage.

However, putting both the tests in the same hardware increases the complexity of the BIST hard-

ware leading to increased area overhead. Moreover, the time for programming the BIST for a

particular test algorithm adds up to the total test time thus increasing the test time as well.

3.3.2 Refresh re-use for test

Cells in DRAM cores have to be refreshed periodically to prevent data loss. Refresh degrades

performance of the system and wastes energy. However, refresh can be put to good use when

applied for test of DRAMs. For example, Hellebrand et al. in [42] and Yarmolic et al. in [101]

have tried to utilize refresh circuit for soft error detection in DRAMs. Both the propsals in [42]

and [101] target the periodic consistency checking for embedded memories and are based on

the BIST architecture. In [101], a signature based scheme of error detection has been used. The

proposed strategy used by the authors has been sketched in Figure 3.3.

Test Pattern

Generator
Memory Data

Compressor

DataAddress

Figure 3.3: BIST structure for memories proposed in [42] and [101]

The test pattern generator generates a sequence of memory addresses which are predeter-

mined. The corresponding data from each address is fed into the output data compressor and

the final state of the compressor is used to represent a characteristic of memory. Initially, a

3.3 Studies on re-using refresh for test of DRAM cores 49

characteristic is generated for the correct memory content (Cref) and stored in some particular

location. Then the characteristic generation procedure is performed periodically for the mem-

ory. The subsequent characteristic generated for the memory is referred to as Ctest. Each time a

Ctest is generated, it is compared with Cref to reveal inconsistencies. The above proposed tech-

nique of Yarmolic et al. is an off-line test technique and incorporates an overhead of adjusting

the reference signatures each time a write operation is performed. In other words, whenever a

write operation is performed, reference signature is computed by scanning the entire memory.

However, the authors of [101] also provided a self adjusting correction technique to overcome

the overhead of scanning the entire memory. Their proposed adjustment technique performed

adjustment of characteristic of a fault-free RAM concurrently with the write operations com-

puted as modulo-2 address characteristic while ensuring same test quality is achieved as by a

conventional approach based on signature analysis. However, the problem with the proposal

of [101] is that being an offline test, it has to wait for the idle time of the memory.

Hellebrand et al. proposed an improvement on the work by Yarmolic et al. by providing

an on-line error detection scheme in [41] and [42]. The basic testing technique in the proposals

by Hellebrand et al. remained the same as in [101], that is, concurrently computing memory

characteristic and comparing it with a precomputed reference characteristic. However, in [41]

and [42], the authors have used a periodic refresh operation for concurrently computing the

memory characteristic that needs to be compared with the reference characteristic. This on-line

checking technique lowers error detection latency. However the technique leads to increased

area overhead. The authors of [42] and [101] suggest that their architecture can be used for

production test using any test algorithm. However, there are problems of using the signature

based scheme. Firstly, the approach does not support active error detection. It does not alter the

memory contents to trigger and detect functional faults. Secondly, the area overhead of storing

the signatures. Thirdly, the problem of aliasing associated with any signature based scheme.

3.3.3 Online test of memories

Recent studies of DRAM failures in field ([49], [78] and [83]) provided strong evidence that

DRAMs experience both transient (soft) faults and permanent (hard) faults in field but per-

manent faults constitute bulk of all DRAM failures. The field study published by Schroeder et

al. [78] was based on Google’s server fleet with data collected over a period of 2.5 years while the

one published by Sridharan et al. [83] was based on Jaguar’s memory system with data collected

over 11 months. The study published in [49] was based on data collected from four different pro-

duction systems. The most important conclusion drawn from the studies of [49], [78] and [83]

has been the increase of hard faults alongside the soft errors during field operation of DRAMs.

50 Chapter 3 Literature Review

The BIST based architectures proposed for DRAMs performing off-line March test on mem-

ories cannot detect latent hard faults which occur during field operation of memories. Thus,

there is a necessity of on-line tests. An on-line test technique for memories has been provided

by Corno et al. in [21]. However, the proposal resulted in duplication of memory. To prevent

accumulation of both soft and hard faults, periodic test of the whole memory is necessary with-

out disturbing the system operation. Moreover, such a test must ensure that the test must not

destroy the contents of the memory and does not prolong the system operation. Such a test is

referred to as Transparent test. Nicolaidis et al. in [71] first proposed transparent March test

for memories and gave a systematic way to convert a standard March test to transparent March

test. As mentioned in [71], transparent March test consist of two testing phases: (i) signature

prediction phase, in which the golden signature is obtained, and (ii) fault testing phase where the

fault is activated. The obtained signature after fault testing is compared with the golden signa-

ture to check whether the memory under test is faulty. Thus, the transparent technique proposed

by [71] and all techniques based on it ([18], [45] and [64]) require signature computation for

error checking. As a result, these do not perform active test and thus they fail to detect functional

faults. Moreover, all the transparent test schemes mentioned above suffer from aliasing effect

and increase in test time.

To reduce the test time while performing transparent test, a symmetric transparent test

methodology has proposed in [102]. In this methodology, if a transparent test is not symmet-

ric, then an additional state is added to make it symmetric. This causes the final content of the

signature analyzer to be zero if no faults exist. Since the methodology eliminates the signature

prediction phase, test time reduces. However, this methodology still suffers from the problem

of aliasing. Transparent scheme avoiding aliasing has been reported in [87]. In [87], the authors

propose a transparent on-line memory test (TOMT) for word-oriented memories for detection of

soft errors as well as functional faults. The proposed TOMT technique uses transparent March

tests with check bits instead of computing signatures. However, there are two major drawbacks

with the work in [87]. First, the TOMT algorithm is not time efficient as it executes bit-wise

manipulation to obtain the word-oriented transparent test. Secondly, the hardware implemen-

tation of the proposed TOMT algorithm incurs an area overhead proportional to the size of the

memory. Naturally, with increase in size of memory the area overhead of the test circuit for the

TOMT algorithm increases.

Since Error Correcting Code (ECC) is one of the most widely used method for increasing

memory reliability, researchers have tried to integrate transparent testing with ECC ([58], [60]

and [87]). This integration gives power to ECC so that it can be used for detection of functional

faults as well. However, as already mentioned in the last section, ECC memories are costly

3.4 Studies on Test of FIFO Buffers 51

and hence these techniques will not find much use in DRAMs targeted for consumer electronics

where cost is a major factor.

3.4 Studies on Test of FIFO Buffers

FIFO buffers in NoC infrastructure are large in number and spread all over the chip. Accord-

ingly, the probabilities of faults are significantly higher for the buffers compared to the other

components of the router. Both on-line and off-line test techniques have been proposed for test

of FIFO buffers in NoC. FIFO buffers are tested in two ways, either when they are not in applica-

tion (Off-line) or when they are in application (On-line). Off-line tests are suitable for detection

of permanent faults developed during manufacturing process while on-line test are suitable for

detection of run-time faults. On-line test can be further divided into two sub-classes. In the

first sub-class, buffers are either in operational mode or test mode while in the second sub-class

buffers being tested are in application and test at the same time.

Off-line test techniques have been reported in [34] and [43]. The authors in [43] propose

a concurrent off-line functional test technique for NoC interconnect and routers. The proposal

involves sending test packets through the network during NoC operation to locate interconnect

faults. Special sequences such as Walking One sequences are sent as test data to detect inter-

connect faults which inherently test routers as well. Additional test packets are included with

different test sequences to activate all faults in FIFO buffers. However, the proposal in [43] aims

at detecting manufacturing faults in FIFO buffers while in this work, we consider faults which

develop during in-field operation of the buffers. The proposal of Grecu et al. in [34], to have

shared BIST controller for FIFO buffers is also suitable for detection of manufacturing fault.

On-line test techniques for detection of faults in FIFO buffers of NoC routers have been

proposed by Nazarian in his thesis [70] and by Kakoee et al. in [52]. Both techniques reported

in [52] and [70] fall in the first sub-class of on-line test. Nazarian proposed a new platform for

on-line -structural test of routers in NoC in [70]. The main contribution of Nazarian’s thesis is

design of a wrapper with specific characteristics that can be used in the proposed platform for

on-line structural NoC test.

The authors of [52] have proposed an on-line test technique where each router in the NoC

is tested separately using its neighbor in different phases. Only the router under test remains

in test mode while all other parts of the NoC continue to operate in functional mode. While

considering faults in FIFOs, the authors have devised separate detection techniques for faults in

the flip-flops of the FIFO and control circuit of FIFOs. The format of a data flit in the packet is

judiciously chosen to cover all stuck-at faults and bridging faults in data-path of the routers in-

52 Chapter 3 Literature Review

cluding the flip-flops of the FIFOs. To detect the control path faults, several test rounds or phases

are performed. Each phase is responsible to cover some of the combinational paths inside the

router under test. However, the problem with the approach proposed in [52] is that it allows only

one router to be tested at a time. Thus, only one FIFO buffer gets tested. Moreover, the test

process involves transfer of test packet between router under test and its neighbors. As a result,

a number of test cycles are spent in test packet transfer. Thus, increasing test time and affecting

the normal operation. On-line test technique proposed for FIFO buffers in both [52] and [70]

consider standard cell based FIFO buffers while we consider SRAM based FIFO designs. Thus,

faults considered in this work are different from those targeted in [52] and [70].

To the best of our knowledge, no work has been reported in literature that proposes on-line

test of SRAM based FIFO buffers present within routers of NoC infrastructure. However, as the

FIFOs considered in this work are SRAM based fifos, we were motivated to survey on-line test

techniques for SRAM based FIFOs in general. SRAM based FIFOs are tested using either of the

following two approaches, dedicated BIST approach as proposed by Barbagallo et al. in [7],Van

de Goor et al. in [92] and [93] and Zorian et al. in [109] or distributed BIST proposed by Grecu

et al. in [34]. Since dedicated BIST for each FIFO buffer would mean prohibitively large area for

BIST, Grecu et al. in [34] proposed a better approach of dedicated BIST with a shared controller

and stimulus generator. The BIST controller writes the same test packets to all the FIFO buffers

on the chip. Then, the Local Response Analyzer (LRA) detects each buffer and reports back

error information (if any). However, the approach proposed in [34] increases routing cost as

each FIFO is connected to the BIST controller. Both dedicated and distributed BIST approaches

being off-line test techniques fail to detect permanent faults which develop over time.

3.5 Summary

This chapter presents different horizons of research in the field of test of memory cores intercon-

nected using NoC. It has been observed that not much has been done in this field. As a result, the

survey was directed towards test of memory cores in the SoC environment with the aim of re-

ducing area overhead at optimized test time and test power. Moreover, other aspects of memory

testing such as on-line test techniques have been explored revealing the necessity of transparent

testing during on-line test of memories. As this thesis focuses on testing memory cores intercon-

nected using NoC, Chapter 4 will emphasize on the NoC based MBIST architecture, covering

its test challenges and elaborating the proposed distributed and hybrid test technique. It will

also cover the details of the power aware schedule supplementing the proposed distributed test

architecture.

Chapter 4

Network-on-Chip based MBIST

The inter-core communication architecture in SoCs has observed a paradigm shift from tradi-

tional bus- based methods to packet based communication over the last decade. The use of NoC

to act as the communication medium has allowed the SoC designers to overcome the problem of

bandwidth, low performance and high power dissipation encountered in bus based methods [8].

In a NoC-based chip, the communication network consists of network interfaces (NI), routers,

and channels to connect the routers. The cores communicate among themselves by sending and

receiving packets. Details of the NoC infrastructure has already been covered in Chapter 2.

As in case of any SoC based design, cores interconnected using NoC must also be tested

for manufacturing defects. However, a major design issue in SoCs has been the design of Test

Access Mechanism (TAM). In NoC based SoCs, the area overhead due to the communication

infrastructure is large. In such a situation, a dedicated TAM solely for the purpose of test is

impractical as it would further increase the area overhead. Thus, the re-use of the NoC as TAM

has been an attractive solution as it overcomes the problem of additional TAM area overhead

and facilitates test parallelism. Ever since, it had been proved by Erika Cota et al. in [23] that

reduced test times can be achieved by the network reuse even under power constraints while pin

count and area overhead are strongly minimized, the NoC re-use for TAM has gained immense

popularity among different research groups. Based on the re-use of NoC for data communication

as TAM, different researchers have proposed NoC based SoC test scheduling techniques.

4.1 Motivation

Majority of research related to re-use of NoC to act as TAM have focused on testing of logic

cores. A few notable among them have been by Amory et al. in [5] and Erica Cota et al. in [24].

However, not much has been done on exploring the NoC to act as TAM while testing memory

53

54 Chapter 4 Network-on-Chip based MBIST

cores interconnected using NoC. One probable reason may be that Built-In-Self Test (BIST) is

the most preferred technique for testing memories and Memory BIST (MBIST) does not need

any TAM as tests generation as well as comparison of results are done on-chip.

However, MBIST for memories connected using NoC also face the same test challenges as

faced by any other BIST technique for embedded memories. Unless carefully designed, NoC

based MBIST may induce excessive power, in addition to performance and area overhead. For

instance, with hundreds of embedded memories, dedicated BIST for each memory core leads to

high routing and gate area overhead. To reduce the BIST area and routing overhead, distributed

approaches are necessary. However, as hardware resource sharing is introduced in distributed

memory BIST, the testing technique must be carefully considered to reduce the routing con-

gestion and to facilitate rapid power-constrained testing. Parallel testing can reduce test time,

but power consumption may be a factor. Sequential testing has the opposite effect. Test area

overhead reduction while allowing at-speed testing can be achieved if an on-chip network is

implemented as test access mechanism (TAM) for testing memory cores.

The focus of the research proposed in this chapter has been towards devising a MBIST

scheme for memory cores interconnected using NoC at optimized test time and test power at

minimum area overhead. To reduce the area overhead a distributed BIST architecture has been

proposed which involves grouping memory cores into clusters and each cluster being tested by

a dedicated BIST controller. An important requirement for a distributed BIST scheme is the

choice of the grouping technique for the memory cores which is governed by the design metric

(time/power) that needs to be optimized.

In this chapter two memory grouping technique formulations have been presented. Although

the BIST architecture considered for both the grouping techniques involve a distributed ap-

proach, the objective of both are different. The first memory grouping technique is based on a

Particle Swarm Optimization (PSO) formulation focusing on reduction of test instruction/data

transport latency to bring down the overall test time. The second technique applies a heuristic to

group memory cores applying distance and timing constraints and focusing on reduction of total

power dissipation during test.

4.2 Proposed Method : Distributed and Hybrid Test Architecture

Literature suggests that researchers have either proposed a serial testing approach or a parallel

testing approach during BIST design optimization for memory cores embedded in SoCs as can

be found from some notable works by Baoshen et al. in [95], Dostie at al. in [69], Huang et al.

in [47],and Denq et al. in [28]. Testing the memory cores one by one keeps the power dissipa-

4.2 Proposed Method : Distributed and Hybrid Test Architecture 55

tion under check but increases the test time while testing a number of cores in parallel makes

testing faster at the cost of higher power dissipation. Thus, the best solution is to leverage on the

advantages of both the approaches.

The proposed test architecture is a distributed Memory BIST (MBIST) architecture having

a number of BIST controllers each of which is responsible for testing a group of memory cores.

The groups are tested in a pipeline while memories in a group are tested in parallel. The hy-

brid test technique and the distributed BIST architecture allows the test of memory cores to be

performed at much lesser time than required in [59]. The packet based BIST re-uses the NoC

to act as TAM bringing down the routing cost. Moreover, utilizing the already existing on-chip

network for test purpose avoids requirement of test circuits and thus reduces area overhead.

NI NI NI

NI NI NI

NI NI NI
B1C1 C2

C3

C7 B2 C6

C5 C4

Cluster 2

Cluster 1

Router

NI

C

Memory
Core

NI

B

BIST
Controller

LEGEND

NI

Network
Interface

Automatic Test Equipment
(ATE)

March element M1

Figure 4.1: Proposed NoC based MBIST Test Architecture (first test phase : First March ele-
ment M1 transferred to B1)

The basic idea of the hybrid approach of testing used in the proposed architecture is illus-

trated in Figures 4.1, 4.2 and 4.3.

A 3x3 mesh type NoC has been considered in all the three figures which follows a X-Y

routing mechanism and utilizes wormhole switching.

The memory cores to be tested are grouped in two clusters. The grouping is done based on

either a PSO based approach or by applying some heuristic (both techniques have been discussed

in the next sections). After the grouping has been done, based on the timing precedence relation,

the test schedule determines the order in which the BIST controllers will receive the March tests.

Let the BIST controllers for the Clusters 1 and 2 be B1 and B2 respectively and the maximum

56 Chapter 4 Network-on-Chip based MBIST

NI NI NI

NI NI NI

NI NI NI
B1C1 C2

C3

C7 B2 C6

C5 C4

Cluster 2

Cluster 1

Router

NI

C
Memory
Core

NI

B

BIST
Controller

LEGEND

NI

Network
Interface

Figure 4.2: Proposed NoC based MBIST Test Architecture (second phase : memory control
signals from B1 to cores of cluster 1)

test time of Cluster 1 is greater than maximum test time of Cluster 2. Hence B1 receives March

tests earlier than B2. Assume that the memory cores are tested using a March test with two

March elements M1 and M2. The sequence of test operations will be as follows:

a) First phase of the test session: The ATE transports M1 to B1 (in this case B1 is the BIST

controller of the group that has the core having the maximum test time among all cores) as shown

in Figure 4.1.

b) Second phase of the test session: B1 decodes the instruction and accordingly generates

low level memory control signals for all the memory cores in cluster 1 as shown in Figure 4.2.

All the cores in Cluster 1 are tested in parallel for M1. Once every core in cluster 1 passes the

test for M1, the information of test completion is returned to B1.

c) Third phase of the test session: Once Cluster 1 completes the test for M1, B1 passes M1 to

B2 and itself fetches M2 from ATE which is shown in Figure 4.3. B1 decodes M2, B2 decodes

M1 and both B1 and B2 generate low level memory control signals for their respective clusters

Figure 4.3. Cores in Cluster1 and Cluster 2 are tested parallely for test M2 and M1 respectively.

The testing time of a memory core is determined by the address space of the memory core

and the length of the March algorithm. The length of the March element can be calculated by

the word width of the core. Therefore, the testing time of the memory core can be computed

using the product of address space and word-width. If N is the address space of a memory core

and w be the word width then, the test time of the core = N ∗w. For a group of memories tested

in parallel using the same March test, the testing time of an i-th core (i = 1,2......,n) ti = Ni*wi

and the test time of the group is the maximum of all the test time of all the cores in the group.

Pipelining brings in test parallelism among groups and performs test faster as compared to

4.2 Proposed Method : Distributed and Hybrid Test Architecture 57

NI NI NI

NI NI NI

NI NI NI
B1C1 C2

C3

C7 B2 C6

C5 C4

Cluster 2

Cluster 1

Router

NI

C

Memory
Core

NI

B

BIST
Controller

LEGEND

NI

Network
Interface

Automatic Test Equipment
(ATE)

March element M2

March element

M1

Figure 4.3: Third phase : March element M2 transferred to B1 and March element M1 trans-
ferred to B2

other proposed serial test techniques. However, as in the case of any pipelined architecture, it

must be ensured that there are no pipeline stalls. Pipeline stalling in the proposed architecture

can be avoided if a timing relation is maintained among the testing groups. The group with the

largest test time has to be tested first followed by the one with the second largest and so on. For

example, according to Figure 4.3, to avoid pipeline stalling in the second test session, Cluster

2 must finish test for M1 before Cluster 1 finishes test for M2. This precedence constraint of

testing the memory core groups has to be taken care of while scheduling test for the architecture.

The proposed test architecture uses a hybrid approach where number of cores in a group

share a BIST controller. Thus, an obvious question that comes up is what should be the condi-

tion for group formation and how many groups should be formed? It is expected that the number

of groups that are formed is minimum so that the area overhead due to the BIST controllers is

minimum. Moreover, the groupings should also ensure that the power dissipation during test

is within the power budget. To ensure minimum power dissipation and reduced test time, two

different strategies have been proposed which are discussed in the next two sections. The first

proposal utilizes a PSO based approach of grouping memory cores with the aim to reduce test

instruction transport latency and hence bring down the area overhead. The memory grouping

problem has been formulated as a placement problem considering reduction of test instruction

transport latency as the only objective. The locations of the BIST controllers are computed us-

ing the Particle Swarm Optimization (PSO) algorithm and memory cores are assigned to the

controllers based on a greedy approach. The second proposal applies a heuristic grouping tech-

58 Chapter 4 Network-on-Chip based MBIST

nique whose aim is to group memory cores which are at same distance from a BIST controller.

Then, groupings are improved to provide a test schedule that satisfies the power constraint. The

proposed test scheduling strategy consists of two phases: the initial phase of memory grouping,

followed by the power aware test schedule phase.

4.2.1 PSO based memory grouping

This section presents the formulation of the problem of finding the best position of the BIST

controllers in the proposed NoC based test architecture and allocating memory cores to the

controllers such that the transport latency is minimized. The transport latency develops due to

the time required to transport the test instruction from one controller to the other as well as

transportation of low level control signals from a BIST controller to its corresponding cores.

Out of the two components of the test transport time, the time for transportation of instructions

among controllers is the more dominant one. For a mesh type network-on-chip, the controllers

are placed at different locations in the mesh, and transportation of a instruction involves its

movement from the source controller to the destination controller, hopping through a number of

routers in between. Each hop from one router to the next involves a number of router clock read

cycles (governed by the design of the router). Thus, greater the distance between two BIST

controllers, larger is the time required for the instruction to travel from source to the destination

and more the number of clock cycles required to finish a test. Thus, the transport of test instruc-

tion brings about a latency in testing and hence we referred to it as test transport latency in the

thesis. This test transport latency is applicable for each test pattern that is communicated among

the BIST controllers.

The problem of optimized transport latency can be stated as,

Given a mesh-based NoC with X-Y routing algorithm; a number of memory cores,

and the location of these cores in the NoC, maximum number of allowed BIST con-

trollers, determine the location of the controllers and assign memory cores to con-

trollers such that the total transport latency is minimized.

The problem stated above is treated as a variant of the Uncapacitated Facility Location problem

(UFL) [35], where a number of customers (memory cores) have to be alloted to a number of

facilities (BIST controllers) such that the total cost is minimized. The total cost in the UFL prob-

lem is the distance traveled by a customer to its nearest serving facility. In the problem stated

above the total cost is the sum of setup cost (Csetup) and service cost (Cservice).

4.2 Proposed Method : Distributed and Hybrid Test Architecture 59

The set up cost (Csetup) of a BIST controller is the total latency in transporting the March in-

struction to each of the BIST controllers. The service cost (Cservice) of a BIST controller is the

maximum of the number of hops from the BIST controller to its alloted memory cores. The

mathematical formulation of the problem considering Figures 4.1, 4.2 and 4.3 is as follows.

Csetup = hATEB1 + hB1−B2 (4.1)

Cservice = Max(hB1−C1, hB1−C2, hB1−C3, hB1−C4, hB1−C5) +Max(hB2−C6, hB2−C7)

(4.2)

where, (hi−j) is the number of hops from core i to core j.

The objective function Z = Min (Ctotal) where, Ctotal = Csetup + Cservice subject to the con-

straints that the maximum number of controllers to be alloted is fixed and each memory core is

alloted to exactly one BIST controller.

4.2.2 PSO based optimization algorithm

Research suggests that meta-heuristic solutions have been preferred over exact solutions for the

Uncapacitated Facility Location (UFL) problem [35], as it is an NP-hard problem. Since, the

problem stated in the previous section can be treated as a variant of the UFL problem, we have

also used a meta-heuristic approach like Particle Swarm Optimization (PSO) for the problem

similar to [35]. Other optimization and search techniques such as Genetic Algorithm (GA)

could also have been used. However, the use of PSO has been motivated by the fact that PSO

is more computationally efficient (uses less number of function evaluations) than the GA as

mentioned in [40]. To investigate this claim, Hassan et al. set two statistical tests to examine

the two elements of this claim, equal effectiveness but superior efficiency for PSO over the GA.

The results of the t-tests support the hypothesis that while both PSO and the GA obtain high

quality solutions, with quality indices of 99% or more with a 99% confidence level for most test

problems, the computational effort required by PSO to arrive to such high quality solutions is

less than the effort required to arrive at the same high quality solutions by the GA.PSO [54] is a

population based stochastic technique which is initialized with a group of particles with random

position and searches for optima by updating their position through generations. The different

parameters used in the PSO based formulation are defined as follows.

a) Particle structure: n-bit binary array, n being the total number of possible controller po-

sition. So a 1 in ith position indicates presence of a controller in the ith location, and 0

otherwise.

60 Chapter 4 Network-on-Chip based MBIST

b) Fitness function: Objective function mentioned in the previous section.

c) Global Best (GB) and Particle best (PB): Particle best of a particle has the minimum

fitness among all particles generated through changes to that particle, across generations.

Within a particular generation, the particle resulting in the minimum fitness function is the

global best. Both GB and PB (for a particle) are updated after each iteration.

d) Evolution of particles: Mask operators have been defined to find the new position of a

particle. Mask operators are calculated separately based on GB and PB positions. Mask

operator is calculated by comparing bit by bit with GB and the particles current position.

If controller is present/absent at a particular bit position in both GB and particle then bit

at the same location of the Mask operator is set to 0 and 1 otherwise. In other words,

when a bitwise-XOR is performed between particles current position and mask operator,

it will produce GB. However, not all bits are XOR-ed. Based on a random probability,

certain bits in particle position are left unaltered. The rest is found by XOR-ing the cur-

rent position with Mask operator. After applying the mask operators for GB, the particle

positions also go through the same process for their respective PB. The position obtained

after applying the PB mask operator is considered as the particles new positions.

e) Termination condition: The algorithm terminates if the particle with minimum fitness does

not change for the last 20 generations. Moreover, a maximum iteration condition is also

(200 in this problem) considered to terminate the process.

4.2.3 Experimental results and evaluation

Since there is no published work for the optimization problem stated in this paper, the PSO

based method has been compared with a heuristic method, Neighborhood Allocation method

(NA) similar to the approach taken in [17]. In the PSO based approach, the number of allowed

BIST controllers are placed at locations using the Mask operator technique explained in the

previous section. After the BIST controllers have been placed, memory cores are alloted to them

using a greedy approach. Simulation of the NA and PSO based techniques have been performed

on a 2.0 GHz dual core Linux workstation with 4 Gb memory. The experimental results have

been shown in Table 4.1. The values in Table 4.1 represent calculated fitness values. The

percentage allotment is the percentage of total number of blocks in the test architecture that

are BIST controllers. The data from Table 4.1 reveal that the best percentage improvement of

PSO based approach over NA technique is obtained with a mesh size of 32x32 and with 25%

allotment.

4.3 Power Aware Memory Grouping Technique 61

Table 4.1: Cost values calculated for different mesh sizes wih different percentage allotment of
blank spaces for BIST controllers

Mesh size Technique Allotment
25% 50% 75%

4x4 NA [17] 30.00 21.62 20.73

PSO 24.67 17.73 17.65

8x8

NA [17] 96.63 52.46 43.00

PSO 54.66 31.13 31.00

16x16

NA [17] 144.00 76.00 67.00

PSO 71.00 50.00 54.00

32x32

NA [17] 323.61 132.53 105.46

PSO 122.13 97.53 91.00

The results illustrated in Table 4.1 reveal that for the two-level test architecture considered in

the chapter, as the number of BIST controllers increase, the cost value decreases indicating re-

duction in transport latency. However, there are a few shortcomings for the PSO based grouping

methods. The basic assumption to consider homogeneous memory cores is an over simplifica-

tion of the problem as in practical NoCs, the memory cores are of different sizes. Similarly, the

objective of optimization considered in PSO based approach is rather a simple one, considering

only transport latency. However, test time cannot be considered independent of test power.

The above two shortcomings mentioned for the PSO based approach has been the motivation

for the power aware memory grouping technique discussed in the next section.

4.3 Power Aware Memory Grouping Technique

The grouping technique presented in this section is an improvement over the PSO based ap-

proach discussed in the last section as it allows test of heterogeneous memory cores (memory

cores of any size) unlike the PSO based proposal which allowed only homogeneous memory

cores. Additionally, the PSO based approach has been focused only towards reduction of net-

work transport latency. However, the proposal presented in this section considers a grouping

technique which takes into account both timing and power constraints. Based on the proposed

NoC based MBIST architecture, experiments have been performed on d695 ITC’02 benchmark

circuits [63] to confirm that the proposed heuristic memory grouping based test schedule per-

forms a more power constrained test as compared to dedicated BIST technique.

62 Chapter 4 Network-on-Chip based MBIST

Memory

Distance

(#hops)

Test time
precedence
relation

Location of
Memory

Test time

Blank

Location of

PowerPower
Budget

Maximum Power

of each
Memory core

Test Schedule

Grouping

Schedule

of
Memory

Memory Groupings
&

Aware
Dissipation

constraint

BIST Controllers

Cores

Cores

Locations

Figure 4.4: Phases in the proposed test schedule

4.3.1 Test scheduling problem

The proposed test scheduling strategy consists of two phases: the initial phase of memory group-

ing followed by the power aware test schedule phase. As shown in Figure 4.4, the memory

grouping phase is based on the timing precedence constraint as well as on the distance con-

straint. Before the memory grouping problem and the power aware test schedule is formally

defined, certain notations are described as follows.

n : Total number of memory cores

r : Number of rows in the NoC ; cl : Number of columns in the NoC

A : l-element march test {M1,M2....,Ml} where Ml is the l-th March element

C : Set of memory cores {C1,C2...,Cn}
Ci : i-th core in the set C, where {i = 1,2,........n}
tCi(Ml) : test time of the core Ci for the l-th March element Ml

B : Set of possible locations for placing BIST controllers {B1,B2,...,Bm} where m < n

Bj : j-th core in the set C, where {j = 1,2,........m}
xCi / xBj : row number of Ci / Bj in a mesh type NoC, where {x = 1,2......r}
yCi / yBj : column number of Ci / Bj in a mesh type NoC, where {y = 1,2,.......cl}
G : Set consisting of groups of memory cores

4.3 Power Aware Memory Grouping Technique 63

gj : a memory group, gj ∈ G and gj⊆C

Tgj (Ml) : Maximum test time of a group gj ∈ G for March element Ml

Tgj (Ml) = Max(∀Ci∈gj tCi(Ml))

h : number of allowed hops in the NoC

4.3.2 Memory grouping problem

The Memory grouping problem is stated as:

Given a NoC with n number of memory cores, their testing time and their positions

(in terms of row numbers and column numbers), m number of possible BIST loca-

tions and their positions, partition n into groups and allot a BIST controller to each

group based on timing precedence constraint and distance constraint.

Distance constraint: The distance between the memory core and its alloted BIST controller is

less than a pre-determined number of hops.

Timing precedence constraint: It requires that the group that is tested for a March element

finishes the test before it receives the next March element from a group that was operating on it.

4.3.3 The memory grouping algorithm

The objective of the memory grouping algorithm is to form clusters of memory cores where

each cluster can contain memories of different sizes and the clusters be formed in such a way

that the cores which are at same distance from a controller fall in one group. The groups are then

ordered to maintain timing precedence relation. The memory grouping problem also assumes

available blank positions where BIST controllers can be placed. These blank positions can be

at the center or along the sides or at the corner of a NoC. For example, for a NoC of size r*cl

(where r is the row number and cl is the column number), the different positions are identified

as follows. The position of a core is given by an ordered pair (xj ,yj) where x is the row number

and y is the column number. Corner locations are the ones which have (xj ,yj) such that xj can

be either 1 or r and yj can be either 1 or cl. Similarly, the side locations are the ones which

satisfy the condition that if xj can have values either 1 or r then j can be anything from 2 to cl-1

and conversely if yj can have values either 1 or cl then xj can be anything from 2 to r-1. The

center locations are the ones which allow xj and yj to allow any value within the range 2 to r-1

and 2 to cl-1 respectively.

In the next subsections, it is shown that if BIST controllers are placed at these blank loca-

tions, then for particular number of allowed hops from a BIST controller to a core, the number

64 Chapter 4 Network-on-Chip based MBIST

of cores that can be reached from a BIST controller is maximum for the controllers placed at

the center locations followed by the ones at the side and then the ones at the corner (provided

as a Lemma and its corollary in the next subsection). The grouping technique utilizes a greedy

approach of trying to allot as many cores as possible to the locations at the center assuming that

BIST controllers are placed at these locations. It is ensured that each core is alloted to exactly

one controller.

After allotment of cores to all center positions, if it is found that some memory cores remain

unallocated, then the grouping algorithm tries to allot these unallocated cores to the controllers

at the side locations followed by controllers at corners. After trying to allot each core to a con-

troller in either of the three positions, still unallocated memory cores remain, then the steps for

grouping are repeated with increased allowed hops. Once every memory core has been alloted to

a controller, the groups formed are the ones which share the same BIST controller. The groups

are then sorted in decreasing order of test time. The results of the memory grouping phase is

number of memory groups (number of required BIST controllers), position of the BIST con-

trollers and allotment of memory cores to the BIST controllers. The test architecture allows for

parallel testing of memory cores in a group. Moreover, the pipelined technique of overlapped

test operation of two or more groups will cause a number of memories of different groups to per-

form the same test operation. This may result in power dissipation which may exceed the power

budget. Thus, a power aware schedule is required after the initial memory grouping. Based on

the results of the memory grouping phase and on the power constraint, the next phase which is

the improvement phase generates a power aware test schedule.

4.3.4 Placement problem for the BIST controller

As mentioned in the previous section, the best position for placing a BIST controller is the center

location of the NoC followed by ones at the side and then the ones at the corner. This placement

problem is provided as a lemma. The lemma and its proof is discussed next.

Lemma 4.3.1. In the proposed test architecture, for a given number of hops (h), the number of

memory cores that can be reached from a blank location is given by

Th = (h/2)[d(1 + h) + (1− h)] (4.3)

where d = 2 for blank locations at center positions, d = 3 for blank locations at side positions

and d = 4 for blanks at center positions.

Proof by induction. The proof is provided for only the corner case. The same approach can be

4.3 Power Aware Memory Grouping Technique 65

used for other cases, and hence is not detailed here.

Let P(h) be the proposition that

Th = (h/2)[2(1 + h) + (1− h)] (4.4)

where d = 2 (a BIST controller placed at a corner location can hop only in two directions).

Basis step : To prove P(1) is true, we assume the left most top corner. The cores that can

be reached from there at one hop are cores to the right and at the bottom of the corner position

only. The same logic can be applied for the other three corner positions and in each case the

number of cores that can be reached is 2,

i.e. T1 = 2 and (1/2)[2(1+1) + (1-1)] = 2. Thus, P(1) is true.

Inductive Step: Assume P(h) is true. Thus,

Th = (h/2)[2(1 + h) + (1− h)] (4.5)

where d = 2 is true. It must be shown that

Th+1 = (h+ 1/2)[2(1 + (h+ 1)) + (1− (h+ 1))] = (h+ 1)(h+ 4)/2 (4.6)

where d = 2 is also true.

It can be seen that if a corner blank location is considered, then to obtain the number of cores

that it reach in two hops is equal to number of cores that it can hop to in single hop plus an

additional 3 places. Extending that to case of h and h + 1, we can derive that the number

of cores that can be reached from a blank location at a corner position in h+ 1 hops is equal to

places that can be reached in h hops plus an additional h + 2 locations. Mathematically, it can

be written as Th+1 = Th+ h+2. Since we have assumed P(h) is true, then substituting the value

of Th we obtain

Th+1 = (h/2)[2(1 + h) + (1− h)] + h+ 2, (4.7)

where d = 2

Therefore, T(h+1) = (h+1)(h+4) / 2. Thus, P(h+1) is true and thus proves the lemma.

Corollary 4.3.2. For a particular number of allowed hops, the number of cores that can be

reached from a blank location depends on the position of the blank location (the value of d in

Th). Greater the value of d more the number of cores that can be reached. Thus, a blank at the

66 Chapter 4 Network-on-Chip based MBIST

center position of the NoC is the best place to put a BIST controller in the NoC.

Illustrative example

The operation of the Memory grouping algorithm has been illustrated using Figure 4.3.4 which

uses a 4×4 matrix to represent a 4×4 NoC. The example is shown for a particular permutation

of memory cores and BIST controllers. The BIST controllers are represented by B1 and B2

while the memory cores have been enumerated from C1 to C10.

(a) (b) (c)

(d) (e)

Figure 4.5: Illustrative example of Algorithm 2 applied on 4x4 NoC (a): initial configuration,
(b): grouping cores to centrally located controller for h = 1, (c): grouping cores to edge located
controller for h = 1, (d): grouping cores to centrally located controller for h = 2, (e): grouping
cores to centrally located controller for h = 3

4.4 Experimental results

ITC’02 benchmarks [63] were used to evaluate the proposed test architecture and the test schedul-

ing algorithm. As the original benchmarks do not include test data for memory cores, we have

4.4 Experimental results 67

Algorithm 2 Memory Grouping Algorithm
Input :
Size of the NoC = r ∗ cl
Set of memory cores C and (xCi ,yCi) of each core Ci∈C

Set of possible locations for placing BIST controllers B and (xBj ,yBj) of each location Bj

xCi / xBj where {x = 1, 2......r}
yCi / yBj where {y = 1, 2,cl}
tCi : test time of the core Ci, tCi = Ni*wi where Ni is the address space of the core Ci and wi

is the word width

pCi : maximum power dissipation of each core Ci

/* In the algorithm we assume that tCi = tCi(Ml) */

Step 1 : Initialization

(a) Let the number of hops be 1.

(b) For each memory core Ci ∈ C,∀i(1,n) use a flag (say visited(Ci)) to keep track of whether

the core has been grouped (1 for grouped and 0 for ungrouped). Initialize the visited flag for

each core as 0.

(c) For each blank location Bj , ∀j(1,m) create an empty set gj . Each gj will have a Tgj
representing maximum test time of the group. Initialize each Tgj equal to 0.

(d) Let G be a set of gj ,∀j(1,m)

Step 2 : Sort the set of blank locations B such that the blanks at the center positions of the NoC

appear first in the sorted set followed by the blanks at the side positions and then the blanks

at the corner positions. For two or more blanks at the same position, sorting is done based on

increasing order of row number (xBj) followed by increasing order of column number (yBj).

/* Sorting condition:

Center : (xBj = 2,....r-1) ∧ (yBj = 2,.......cl-1)

Side : {xBj = (1∨r)∧ yBj = (2,.......cl-1)}∨ {(xBj = (2,....r-1) ∧ (yBj = (1∨cl-1)) }
Corner :{xBj = (1∨r)} ∧ { yBj =(1∨cl))} */

68 Chapter 4 Network-on-Chip based MBIST

Step 3 : Satisfying the distance constraint

(a)Assume a BIST controller is placed at Bj . Initialize the value of j to 1.

(b) Check whether set C = ∅. If yes, then goto Step 5

(c) For each core Ci ∈ C,

if (dist(Ci,Bj) ≤ h) and visited(Ci)= 0 then
(i) Include Ci in the set gj : gj = gj ∪ Ci

(ii) Update G with new gj : G = G ∪ gj
(iii) Mark the core Ci as visited : visited(Ci)= 1

(iv) Check whether the test time of the core tCi is greater than the maximum test time of

the group Tgj . If yes, then replace Tgj with tCi . This ensures that the test time of the group is

same as the test time of the core which has maximum test time in the group.

(v) Drop the core Ci from the set C : C = C\ {Ci}
end if
(d) Repeat steps (b) and (c) for the rest of the blank locations Bj ∈ B,∀j(2,m)

Step 4: Grouping the memory cores which could not be grouped for h=1

while (C 6= ∅) do
Repeat Step 3 with h incremented by 1

end while
Step 5 : Satisfying the timing precedence relation and the resulting grouping result

(a) Drop empty groups from G

(b) Sort G in decreasing order of Tgj
(c) return (G)

4.4 Experimental results 69

added the data ourselves. We assume all cores in the benchmark are memory cores similar

to [104] and use the same data for d695 as used in [74] and [104]. The test data used for d695

circuit is shown in Table 4.2.

4.4.1 Experimental setup

Table 4.2: Data for d695 benchmark circuit

Core time (units) power (units)

1 38 660

2 1029 602

3 2507 823

4 5829 275

5 12192 690

6 11978 354

7 4219 530

8 4605 753

9 1659 641

10 7586 1144

The first step of the experiment was mapping the d695 benchmark to a NoC. We followed

the same mapping as done in [24]. The implementation involved mapping the 10 cores of d695

to 4x3 size mesh type NoC. Thus, two of the 12 routers are not connected to any core. The

mapping has been modified by connecting two BIST controllers to the unconnected routers and

each of the ten cores is assumed to be a memory core. The modified implementation of the

d695 bechmark is shown in Figure 4.6. The proposed test scheduling algorithm was written in

C and was run on a PC with 2.0 GHz processor and 2GB RAM. The input to the algorithm was

the test time and test power values of d695 circuit given in Table 4.2 and the locations of the

cores and BIST controllers. In the first experiment we assumed dedicated BIST for each core.

Thus there was no requirement of the BIST controllers and the mapping was same as in [24].

However, we used another nine different mappings and for each mapping we calculated the total

power dissipation for a (rw) March operation. In the next experiment, test scheduling algorithm

was applied to the modified d695 implementation as shown in Figure 4.6 and was repeated for

another 9 different mappings.

70 Chapter 4 Network-on-Chip based MBIST

Core

Core Core Core

Core Core Core

Core Core Core

1

5 10 2

3 6 4

9 8 7

BISTBIST

Figure 4.6: Modified mapping of the cores of System d695 to 4x3 size mesh type NoC assuming
all memory cores

4.4.2 Results for the d695 benchmark circuit

Area estimate

The BIST circuit was coded in Verilog and synthesized using Faraday 180nm library. The area

estimate of the individual components are given in Table 4.3. Table 4.4 compares the area

overhead of the proposed approach compared to the other approaches. The table 4.4 shows that

the proposed test architecture is far better than the dedicated (parallel) BIST approach and also

better than one proposed by Liu [59] where they assumed BISTed cores. However, the proposed

approach falls behind Liu’s technique when non-BISTed cores are assumed. The reason being

Liu’s approach requires one controller whereas the proposed approach requires two controllers

in the case of d695 circuit mapping.

Table 4.3: Area estimate of the BIST controller synthesized in 180nm library

Component Area (µm2)

Controller 95

Test Pattern Generator 607

4.4 Experimental results 71

Table 4.4: Comparison of the BIST area overhead

BIST Technique Area overhead (µm2)

Dedicated BIST 7030

Li etal. [59] (BISTed cores) 6070

Li etal. [59](non-BISTed cores) 703

Proposed 1406

Power variation

Figure 4.7 illustrates the read and write power variations for the parallel BIST scheme (each

core with dedicated BIST) for 10 different mappings of the cores of d695 to 4x3 mesh type NoC

during the (rw) March operation. During the (rw) operation, simultaneous read is performed on

all the 10 cores followed by simultaneous write on all 10 cores. Figure 4.7 shows that during

Figure 4.7: Test Power variation during (rw) March operation on ITC’02 benchmark circuit.

simultaneous reads (‘r’ operation) on all 10 cores the total read power remains within the power

72 Chapter 4 Network-on-Chip based MBIST

Figure 4.8: Test Power variation during (rw) March operation on ITC’02 benchmark circuit.

budget. However, during the (‘w’) operation the total write power for all the cores exceeds the

power constraint.

Figure 4.8 shows the power variation for the proposed scheduling technique with two BIST

controllers for 10 different mappings of the cores to the NoC. In the graph, it shows that for

each mapping of the cores the total power dissipation for (rw) operation is within the power con-

straint. The justification for such power constrained test results is explained using the mapping

of d695 circuit to a 4x3 mesh type NoC as shown in Figure 4.6. According to the proposed

test scheduling algorithm, for the mapping as shown in Figure 4.6, two groups of memories are

formed. Memory cores 1,3,5,9 form one group and the rest the other group. According to the

data in Table 4.2, core 5 has the highest test time, and thus BIST controller of the group contain-

ing core 5 is the one which receives the March element level instructions first. Thus, during the

(rw) operation, when the group with core 5 performs read operation, the other group performs

4.5 Summary 73

write operation. Thus at any instant of time, the total power dissipation will be :

Pd =
∑

i=3,5,9

Pr(i) +
∑

j=1,2,4,6,7,8,10

Pw(j) (4.8)

where Pd : total power dissipation, Pr(i) : read power for core i, and Pw(j) : write power for

core j. We assume that the power values of the cores given in Table 4.2 are the power values

during write operation to the core and that read power for each core is approximately half of

write power [33]. Thus, power dissipation Pd, calculated using the read and write power values

remains within power budget. As shown in Figure 4.8, for the other mappings also Pd remains

below power constraint.

Test time estimate

We provide a time estimate of test for the mapping of Figure 4.6 and use the data of Table 4.2.

We assume a March test with two March elements. According to the proposed test scheduling

algorithm, the Memory cores 1,3,5,9 form one group (say group 1). The rest of the cores form

the other group (say group 2). The test time of group 1 is given by core 5 (core having the

largest test time in the group) while for group 2 the test time is the same as test time for core 6.

Thus, the total test time is calculated as

T = Tg1 + Tg2 = 12192 + 11978 = 24170.

For the parallel BIST scheme, as all cores are tested in parallel, the total test time is given by the

core with largest test time. For the mapping of Figure 4.6, test time for parallel BIST scheme is

same as test time of core 5 and is equal to 11292. Thus, compared to parallel BIST scheme, our

proposed test technique requires additional test time equal to the test time of group 2.

4.5 Summary

In this chapter, a distributed BIST based test architecture has been proposed for memories in-

terconnected using NoC that utilizes a hybrid test technique. Memory cores were grouped in

clusters based on a heuristic which ensured that the test time and power dissipation was mini-

mum during test. Experiments were performed on ITC’02 benchmark circuit where it was shown

that the BIST area overhead for the proposed architecture was much less compared to other re-

ported techniques. Experiments on the benchmark circuit for the proposed test schedule have

shown that the proposed test schedule performs a more power constrained test than the dedicated

BIST technique. The second direction to achieve the research objective has been utilization of

on-chip resources for test purpose. This approach has been targeted with the aim to overcome

74 Chapter 4 Network-on-Chip based MBIST

the additional area overhead of the DFT hardware. Both off-line and on-line test techniques have

been proposed for test of DRAMs which utilize the refresh circuit for test purpose in Chapter 5

and Chapter 6 respectively.

Chapter 5

Re-using Refresh for Off-line Test of
DRAMs

Dynamic Random Access Memories (DRAMs) are preferred over Static Random Access Mem-

ories (SRAMs) in most computer systems as DRAMs provide a reliable and low-cost mem-

ory solution. DRAMs require only one transistor and an intrinsic capacitor to store each data

bit compared to six transistors required in SRAMs. Due to this structural simplicity, DRAMs

achieve very high density resulting in large capacities. For small form factor systems requiring

large amounts of memory such as gaming consoles or mobile phones, embedded DRAMs are

preferred to embedded SRAMs. However, high packaging density make DRAMs more suscepti-

ble to faults than SRAMs. The faults which cause DRAM failures can be classified as Permanent

faults (corrupt bits in a persistent manner due to a physical defect such as stuck-at-faults), Tran-

sient faults (occur randomly and without significant physical damage) and Intermittent faults

(caused by non-environmental conditions such as loose connection, aging components) [83].

As density is increasing by four times for every new generation, test cost of memory is

increasing proportionately. Built-In Self-Test (BIST) has emerged as an essential and neces-

sary technology which can enable low- cost manufacturing test for eDRAMs. However, for

Systems-on-Chip (SoCs) with hundreds of eDRAMs, dedicated BIST for each DRAM leads to

high routing and gate area overhead. To reduce the BIST area and routing overhead, distributed

approaches for testing memory cores are necessary. In distributed approach of test, memory

cores are placed in different groups and each group is tested by a dedicated BIST circuit. All

the cores in a group share the BIST circuit, and thus avoid the requirement of dedicated BIST

wrappers which in turn brings down the area ovehead. However, the number of memories that

can share the BIST circuit is limited by the maximum power dissipation of the chip.

75

76 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

5.1 Motivation

Contemporary NoC based SoCs employ a number of DRAMs on-chip. The overall real estate

to be devoted to the BIST circuitry is significant. There is, therefore, a major incentive to reduce

this area overhead which is the focus of the work described in this chapter. Refresh operations

are periodic and require reading the contents of a memory location and writing them back to the

same location. March test [13], the most popular tests for detecting functional faults in memo-

ries, also require writing some patterns in-to the memory and reading them back. Thus, there is

a similarity in the operations performed on the memory during both refresh and March test. The

manner in which the operations need to be performed are also similar. Both require scanning the

entire memory row by row and performing read followed by write operation on each row. These

similarities in refresh and March test has been the motivation for re-use of the refresh circuit for

test purpose.

In this chapter, a Built-In-Self test technique has been proposed that utilizes refresh circuit

to perform functional tests on DRAMs. A two-pronged approach has been adopted in this work.

First, the refresh circuit of the DRAM is leveraged to participate in the BIST. Next, the BIST

specific circuitry is shared between neighboring memories. The refresh re-use technique over-

comes the requirement of additional Design-For-Testability hardware as tests are performed via

the on-chip refresh circuit. Moreover, to perform test read followed by test write operations on a

DRAM, each read operation gets completed within the refresh operation of the DRAM, avoiding

separate test read cycles. As a result, the entire time between two refresh cycles is allowed for

write operation. This increase in write cycle time is utilized in performing power aware test of a

number of DRAM cores embedded in NoC based SoCs.

5.2 Fault Models and Test Algorithm

An industrial test set for DRAMs functional test requires a series of different test algorithms to

ensure its complete functionality and coverage [91]. In [53], the authors mention that not all

faults in SRAM apply to DRAM. For example, stuck-open faults in SRAM behave as stuck-

at-faults in DRAM as the cells are not implemented as bistable elements. Moreover, the data

retention faults do not occur in DRAM due to the absence of pull-up devices. The faults in

SRAMs that also apply to DRAMs are stuck-at-faults (SAF), Transition faults (TF) coupling

faults (CF) and address decoder faults (AF).

To consider the test budget a simple fault model has been considered involving cell array

faults and leaving out address decoder faults. Thus, the faults considered have been stuck-at

faults, transition faults and coupling faults. Neighborhood pattern sensitive faults have not been

5.3 Refresh re-use based test technique 77

considered due to the complexity and vast number of ways in which the fault can occur as

mentioned in [44]. It has been mentioned in [13] and [89] that March test has been the most

preferred test algorithm for detecting the above mentioned faults and hence the proposed BIST

architecture has been designed to support the March based tests. Since, the focus has been to

re-use the refresh circuit for test purpose, and refreshing involves reading a complete row of a

memory array, word-oriented March tests [89] have been used instead of standard March tests.

However, March test for word-oriented memories leads to the problem in detecting Coupling

Faults. Dekker et al. in [26] and Goor et al. in [88] have proposed solutions to overcome this

problem by repeating the test using (dlg2we+1) different data backgrounds, where w represents

the word-width of the memory under test. Therefore, the proposed BIST architecture of this

work has been designed to support word-oriented March tests with different data backgrounds.

In the next section, the proposed technique has been explained using the word-oriented

MATS+ test. However, other March tests could have well be used for the same. The MATS+

test has been chosen due to the smaller number of March elements involved in it. As a result, it

is easier to explain its operation on the proposed technique. Moreover, the test covers all the cell

array faults considered in the work. The test is represented as :

{⇑ (wa);⇑ (ra, wb);⇓ (rb, wa)}

where, a is the data background and b is the complement of the data background. The word-

oriented MATS+ test has been formed from the bit-oriented MATS+ test using the systematic

technique described in [89].

5.3 Refresh re-use based test technique

Rows are repeatedly refreshed one after another in DRAMs. As already mentioned in Chapter

2, the refresh of a row involves reading contents of all cells of the row and writing them back.

Read and write operations are synchronized with the refresh operation of that row. In the work

described in this chapter, the reading operation during refresh have been utilized to double as

the read operation of the test cycle, thus avoiding separate read cycles for performing the March

test. The MATS+ instruction for word-oriented memory is a sequence of three March elements

M1, M2 and M3 to be performed on each row using a suitable data background. M1 is a write

operation (wa). M2 is a read followed by a write (ra wb) and M3 is write followed by a read (ra

wa).

Fig. 5.4 shows the interleaved refresh and test cycles. The cycles shown without shade in

Fig. 5.4 are the Refresh Cycles (Read Cycles) while the cycles shown in shade are the Write

78 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

Refresh

Refresh Time

trf0

Refresh of n rows (for row number 0 to n-1)

M1 element : (wa) operation

for n rows (for row number 0 to n-1)

W0 W0(wa) operation
over row 0

(wb) operation
over row 0

M2 element : (ra wb) operation
of MATS+ test
for rows 0 to n-1

time

time tr0
(ra) operation
over row 0

of the MATS+ test

trfn−1

trf0

Wn−1
(wa) operation
over row 0

Cycles

Test

Cycles

trf
Refresh Cycle

tr
Read Cycle

W
Write Cycle

refresh of
Row 0 refresh of

Row n-1
refresh of
Row 0

Figure 5.1: Interleaving of DRAM Refresh and Test Cycles

cycles. A Write cycle exists between two Refresh Cycles (Read Cycles). We assume the DRAM

to be tested has n rows. Thus, refreshing the DRAM requires n number of refresh cycles within

the Refresh time of Tn. The n number of refresh cycles are numbered as trf0 to trfn−1. These n

cycles repeat after every Tn time. The Write cycles are also numbered asW0 toWn−1 represent-

ing write operation on Row number 0 through Row number n-1. During the first n cycles, data

read from each row during each refresh cycle is loaded in the refreshment register but instead

of writing the same data in the row, the test data required for M1 element of the MATS+ test,

residing in a data register is loaded (wa in this case, a being the data background). Thus, the M1

element of the MATS+ test gets performed in the first n cycles.

In the next n cycles, when a refresh is performed, the data read from each row is loaded in

the refreshment register. After the data gets loaded in the refreshment register, its contents are

compared with the contents of a data register. The data register holds the expected data from the

previous write operation (during M1 operation). Any difference of result detects a stuck-at fault.

However, to detect all stuck-at faults and transition faults a repeat of the M2 operation needs

5.4 Proposed BIST Architecture 79

to be performed with different data background. During M2 operation, the data that is written

back is the complement of the data that was read (complement of the data register). Thus, the

successive refresh and write operations performed completes the required (ra wb) operation of

the M2 element of the MATS+ test.

The M3 operation, performed in another n refresh cycles, is a repeat of the M2 operation

with a data background which is the complement of the data register used during M2 operation.

Thus, at the end of the 3n refresh cycles, each row of the DRAM has been successively tested

by writing a pattern, reading it, writing the complement and reading it once again. These four

operations on each row guarantees detection of all stuck-at and transition faults.

To detect coupling faults, in addition to M1, M2 and M3, the M2 and M3 cycles are repeated

in reverse address order of refresh (similar to the March C- test [13]). Thus, an additional

2n refresh cycles are required to perform the test of coupling faults. Reversing the addressing

sequence for refresh of rows can easily be handled by making a minor change in the memory

controller hardware.

5.4 Proposed BIST Architecture

Figure 5.2 illustrates the proposed BIST architecture based on the refresh-reuse technique. It

includes the following modules:

1. Memory Controller : Generates control signals for memory read and write operations

as well as control for periodic refresh operations. The proposed architecture requires

modifying the normal DRAM controller (allow to have variable refresh rate, normal and

reverse addressing sequence)

2. BIST controller : A Finite State Machine (FSM) which receives test instruction and ac-

cordingly initiates the test process.

3. Glue Logic: It includes storage registers (data register), combinational logic (gates, mul-

tiplexers, comparator).

The operations performed by the BIST hardware during refresh and test cycles are as fol-

lows.

1. a) Refresh Cycle : In this cycle, the contents of the row addressed by the refadd is loaded

in the Refreshment register and then written back to the same address. The refadd is gen-

erated by the Refresh Address Generator as shown in Figure 5.2. The refresh circuit in

80 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

Test en

Pass/Fail

Instruction

IR

FSM

up/down

Data

Refresh
Count

Controller

Refresh Time
Counter

Refresh Address
Generator

Row
Decoder

Column
Decoder

Data

Register

Refreshment
Register

Comparator

DRAM

r/w
Test start

CAS

Column
Address

ln/lc

on/oc

on/ocln/lc

Row

Address

March

Element Dec

elements

elements

elements

elements

BIST Controller

next

RAS

row add

ref add

Memory Controller

M

U
X

M
U

X

Figure 5.2: The Proposed BIST Architecture

the memory controller consists of Refresh Time Counter (RTC) , Refresh Counter (RC)

and Refresh Address Generator (RAG). The RTC generates a tick called refreq to mark

the start of the Refresh cycle. RTC is initialized with a count corresponding to the time

between two refresh cycles. RC is a self decrementing counter which is initialized to num-

ber of refresh cycles that occur within the Refresh time or in other words to the number

of rows. On reaching zero, RC wraps around to mark the completion of refresh of the

all rows once. On receiving refreq, RC decrements itself by one count and wraps around

once the count reaches zero.

2. b) Test Cycle : March Read/Write operations are performed on the row addressed by

refadd. The test cycle involves the following sequence of steps:

(a) The Test cycle is initiated by the Testen signal from the external environment.

(b) The encoded MATS+ instruction is loaded in the Instruction Register (IR) of the

BIST controller which is passed on to the Decoder.

(c) The Decoder scans the March test instruction and finds the number of constituent

March elements in it and passes this information to the Finite State Machine (FSM).

5.5 Experimental results for commodity DRAM 81

The FSM maintains a count of the number of March elements in the March instruc-

tion.

(d) The Decoder then loads the data background for the first March elements in the Data

Register on the assertion of the Teststart signal by the FSM. For each March element

that is being performed on the DRAM, the FSM decrements the element count by

one and when all elements have been tested it makes the element line high.

(e) March elements involving interleaved DRAM refresh and write operations are per-

formed. To perform the required operations, during the refresh cycle the Refresh

Address Generator generates refresh address refadd. The row decoder decodes the

address and refresh (read) is done on the row addressed by refadd. Following the re-

fresh cycle, the data from the data register is written to the row addressed by refadd.

Since the Row decoder holds the address until the beginning of the next refresh cy-

cle, the data written during the write cycle is written to the same location from where

the data is read. On completion of the M1 element, the Memory controller sets a high

on the next line to request BIST controller to send the next March element.

5.5 Experimental results for commodity DRAM

The proposed BIST architecture implementation was described in Verilog. Then it was synthe-

sized on a commercial 90nm standard cell library and the area of the synthesized BIST architec-

ture was estimated. The DRAM considered was of size 4M×1 with refresh time of 16ms. The

considered DRAM requires 1024 refresh cycles to refresh all rows within the refresh time at a

rate of 15.6µs and at a refresh cycle time of 130ns [2].

5.5.1 Area estimation

The Verilog description of the comprehensive BIST architecture consists of three main blocks.

The memory controller including the refresh circuit, the BIST controller and the combinational

logic circuits. The BIST controller consists of the March decoder, the IR and Finite State Ma-

chine based controller. The FSM based BIST controller was implemented similar to the one

proposed in [14]. The logic circuits block includes the Refreshment register, the Data register,

the comparator and the AND gate. Table 5.1 reports the area occupancy of the blocks in the

proposed BIST module.

Evaluation :
Memory BIST (MBIST) executing a March element requires an address generator to generate

82 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

Table 5.1: Area estimate of the proposed BIST architecture

Blocks Number of gates Area (µm2)

Memory controller 266 2661

BIST Controller 114 703

Registers and Logic circuits 71 984

the required address sequence. Researchers have proposed different implementations for the

address generators; up/down counter, gray code based address generator [100], Linear Feed-

back Shift Register (LFSR)([42], [85] and [101]). The proposed BIST architecture presented

in this chapter does not require any address generator circuit and hence scores over all the three

techniques of address generation found in literature in terms of area overhead as shown in the

Table 5.2 for a DRAM of size 4M×1. The %Overhead mentioned in Table 5.2 is the % area

overhead in using each of the address generation techniques and is calculated as follows:

%Overhead =
Area of the block used as Address generator

Area of the proposed BIST architecture
(5.1)

Each of the Address generator blocks used in techniques listed in Table 5.2 have also been

implemented in Verilog and synthesized using the same 90nm standard cell library. In fact,

Table 5.2 can also be viewed as % Improvement in using our proposed BIST technique compared

to the other address generation techniques.

Table 5.2: Area overhead of existing approaches with respect to the proposed BIST technique

Address generation technique %Overhead

LFSR 7.00%

Binary Counter 9.61 %

Gray code counter 23.24%

5.5.2 Test time analysis

The DRAM considered for analysis is of size 4M×1 with a distributed technique of refreshment.

The number of cycles to be refreshed within the refresh time is 1024. Using the proposed refresh

re-use technique, it requires 5*1024 = refresh cycles to complete the MATS+ test for detecting

the cell array faults (SAF,TF and CF). With refresh rate of 15.6µs and at a refresh cycle time of

5.6 Refresh re-use technique for e-DRAMs interconnected using the NoC infrastructure 83

130ns [2], the total time of the MATS+ test performed on the DRAM is approximately 80ms.

The high test time for this method is due to dependence of the test on the refresh time. This

increase in test time is a problem when considering an isolated commodity DRAM. However,

when performing test over a number of eDRAMS, the increase in test time can be effectively

utilized to schedule the test of groups of eDRAMs so that power dissipation during parallel test

of a number of eDRAMs remains within the power budget. The extension of the refresh re-use

technique for testing e-DRAMs is discussed next.

5.6 Refresh re-use technique for e-DRAMs interconnected using
the NoC infrastructure

Figure 5.3 shows extension of the refresh re-use technique in performing tests on a number of

DRAMs interconnected by the NoC communication infrastructure. As shown in Figure 5.3, the

DRAM cores are grouped to form clusters. The memory grouping criteria and memory grouping

algorithm are those that have been discussed in Chapter 4. The e-DRAMs of a cluster share a

BIST controller (BIST CTR) as shown in Cluster 1 of Figure 5.3. 1 The architecture of the BIST

controller is as shown in Figure 5.2. The Mem Ctr module associated with each e-DRAM is the

Memory Controller responsible for performing the read and write operations of the e-DRAM.

DRAM

Mem Ctr

DRAM

Mem Ctr

BIST
CTR

Test en

Arbiter

Cluster 1
Cluster 2

Cluster 3

Cluster 4

CTRL.

Test
Instruction

P/F

P/F

P/F

P/F

P/F
P/F

Test en

Test en
Test en

up/down

Test Result

P/F

Figure 5.3: Refresh reuse technique for eDRAMs

The March test instruction is received by a top level controller (CTRL). To perform a read

followed by a write instruction, CTRL enables Test en signal of all clusters during read. How-

ever, during write, based on a test schedule, the arbiter enables the Test en signal of any one

cluster and the test instruction is transferred from the top-level controller to the BIST controller

1For clarity the grouping has been shown only for Cluster 1 and the other clusters follow the same.

84 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

of the cluster. 2 Once the BIST controller receives the instruction, it initiates the test process

by activating the refresh circuit of the Memory controllers for each DRAM. On completion of

the test, the DRAMs report the result of the test, Pass or Fail (P/F) to the BIST controller. The

BIST controller then passes on the information to CTRL which delivers the result through the

Test Result output.

5.6.1 Impact of refresh re-use on test of eDRAMs

Overall chip area overhead reduction

The experimental results shown in the last section reveal real estate benefits of using the refresh

re-use on commodity DRAMs. For single commodity DRAM, the area overhead of few Kilo

gates may not be an issue. However, for NoCs (where the communication infrastructure already

brings about an area overhead) with a number of e-DRAMs, avoiding address generators for

each e-DRAM will reduce the area of the BIST wrapper associated with each DRAM and hence

the area overhead of the entire chip gets reduced substantially.

Power aware parallel test of e-DRAMs

The refresh time dependence of the refresh re-use technique is effectively utilized to facilitate

parallel test of number of eDRAMs without exceeding the power budget.

Refresh

write operation
over row 0

time

Cycles

Test

Cycles

refresh of
Row 0 refresh of

Row 1

read operation
over row 0

of Cluster 1

write operation
over row 0
of Cluster 2

write operation
over row 0
of Cluster 3

Figure 5.4: Scheduling the write operation over Row 0 for different clusters of eDRAMs

Figure 5.4 illustrates the write operation over Row 0 for the clusters of eDRAMs. For

simplifying the explanation, the following assumptions are made. There are 10 eDRAMs that

2For clarity of the figure this interface has not been shown

5.7 Summary 85

need to be tested (a read followed by write is performed), the refresh cycle (read cycle) time

is 50ns, the time between two refresh cycles (refresh rate) is 300ns, each core dissipates 50µw

during write, and the maximum allowed peak power dissipation during write is 250µw.

If no refresh reuse is used, the refresh rate of 300ns is utilized by a read followed by a

write. The read cycle takes up 50ns leaving the write to be performed on all DRAMs within

250ns. Suppose a test schedule forms two clusters of eDRAMs with five cores in each cluster.

Cluster 1 has maximum write time of 125ns and write power of 250µw. Similarly cluster 2 also

has maximum write time of 125ns and write power of 250µw. Thus, write of all DRAMs are

completed by 250ns at a maximum peak power dissipation of 250µw,

However, if the refresh re-use technique is used on the DRAMs, then read cycle is performed

during refresh and the entire 300ns between two refresh is utilized for write operation. Since

an additional 50ns is available for write, the memory groupings in the former case is modified.

eDRAMs with minimum test time within each cluster are moved from the clusters and grouped

to form a separate cluster 3 of two cores. Removing the core with minimum test time does not

affect the test time of each cluster but reduces the maximum power dissipation of each group

by 50µw. In such a scenario, the test schedule forms three clusters with four cores in cluster

1, four cores in cluster 2 and two cores in cluster 3. Cluster 1 requires write time of 125ns

with maximum power dissipation of 200µw, cluster 2 also requires write time of 125ns with

maximum power dissipation of 200µw and cluster 3 requires write time of 50ns with maximum

power dissipation of 200µw. Thus, write of all DRAMs are completed by 300ns at a maximum

peak power dissipation of 200µw, a 20% improvement compared to the case when no refresh

re-use technique was used.

5.7 Summary

One of the research direction of the thesis has been effective utilization of on-chip resources for

test purpose. To this effect, the refresh circuit of DRAMs have been used for testing of DRAMs.

This chapter presented an offline BIST based technique for testing DRAMs interconnected us-

ing NoCs. The proposed technique has been initially developed for commodity DRAMs and

then extended to e-DRAMs connected using NoC. The proposed BIST architecture avoids use

of address generators, typical of MBIST architecture. Experimental results show that about 7%

area overhead can be reduced using the proposed technique compared to MBIST architectures

which use LFSR based address generators. At minimum area overhead, the proposed MBIST

technique for a single DRAM when extended for test of number of eDRAMs, allows larger test

write cycle time which allows more clusters of eDRAMs to be accommodated. Distributing the

86 Chapter 5 Re-using Refresh for Off-line Test of DRAMs

write cycle time over large number of clusters reduces the peak power dissipation during test.

The off-line technique proposed in this chapter reduces area overhead. However, the pro-

posed technique is suitable for detection of manufacturing faults and cannot be utilized for run-

time fault detection. To target detection of faults developed during in-field operation of DRAMs,

the detection technique must involve an on-line test mechanism. One such on-line BIST tech-

nique has been discussed in the next chapter where the refresh circuit of the DRAMs have been

used to perform the on-line test of DRAMs.

Chapter 6

Refresh Re-Use for Online test of
DRAMs

Since last two decades, a lot of research has been devoted in devising efficient fault detection

techniques for DRAMs. The fault detection techniques are broadly classified into two cate-

gories. The first category targets permanent faults developed during manufacturing process

while the second category targets occasional run-time faults in DRAMs which are either tran-

sient (affecting different location) or intermittent faults (affecting the same location) in nature.

The detection techniques targeting permanent faults developed during manufacturing process

are hardware based. These techniques are performed either using memory testers built with

very complex test algorithms or using on-chip built-in-self test (BIST) circuitry running popular

memory test algorithms [13]. The detection techniques for run-time faults in DRAMs are soft-

ware test techniques involving memory diagnostic software programs used to check for memory

failures on a computer such as ECC [81], Chipkill [27], or memory scrubbers [68].

Though run-time faults are either transient or intermittent, the detection techniques for run-

time faults reported in literature mainly focus on detection of transient faults such as soft errors.

However, for deeply scaled CMOS based DRAMs, the occasional run-time faults in DRAMs

which are a result of physical effects such as environmental susceptibility, aging and low supply

voltage, are intermittent faults [11]. These intermittent faults usually exhibit a relatively high

occurrence rate and eventually tend to become permanent [11]. Moreover, wear out of DRAM

can also cause intermittent faults to become frequent enough to be classified as permanent [20].

Thus, there is a need for on-line test technique that can detect the run-time faults which are

intermittent in nature but gradually become permanent over time.

87

88 Chapter 6 Refresh Re-Use for Online test of DRAMs

6.1 Motivation for this work

Recent studies of DRAM failures in field ([49], [78] and [83]) provide strong evidence that

DRAMs experience both transient (soft) faults and permanent (hard) faults in field but perma-

nent faults constitute bulk of all DRAM failures. The field study published by Schroeder et

al. [78] has been based on Google’s server fleet with data collected over a period of 2.5 years

while the one published by Sridharan et al. [83] has been based on Jaguar’s memory system

with data collected over 11 months. The study published in [49] has been based on data col-

lected from four different production systems. The most important conclusion drawn from those

studies is the presence of hard faults along with soft errors during field operation of DRAM.

Thus, it is essential to develop test techniques that can detect these hard faults. The soft error

data detection and protection schemes used by system designers are not sufficient for testing

in-field permanent faults in DRAMs due to the following reasons.

• Soft error detection schemes such as ECC, memory scrubbing or signature based schemes

are concerned with the integrity of stored data, without caring about functionality of the

memory. They do not perform active test - they do not alter the contents of the memory.

Therefore, they cannot find functional faults in memories [87].

• ECC systems rely on redundancy and extra computation to detect faults. This extra com-

putation has negative impact on cost, power and performance of the system [105].

• Memories with error detection and data protection schemes are costlier than those without

them.

It is therefore necessary to find a cost-effective test technique that can detect hard faults dur-

ing field operation of DRAM. Such a test technique must possess the following characteristics:

• The test must be an active test so that functional defects are uncovered.

• The test must be performed periodically to ensure that no fault gets accumulated.

• The test hardware must be cost-effective.

To perform an active test on field operative DRAM, March based tests are mostly preferred due to

their high fault coverage [13]. Performing a March test involves writing pre-defined test patterns

into the DRAM and reading the same patterns. However, writing test patterns into the DRAM

means the initial contents of the DRAM are lost after test. Such a technique is allowed during

manufacturing test but cannot be afforded for in-field operation where the normal operation of

DRAM resumes after test. Thus, we prefer Transparent March tests [102] in place of standard

6.2 Fault Models Considered in this Work 89

March tests. Transparent testing is a technique where the original contents of the memory remain

unchanged after test.

However, Transparent testing also has a limitation. Transparent tests are interrupted by

normal operation leading to increase in test time. One way to overcome this problem is to allow

un-interrupted Transparent testing. To achieve this goal, we were motivated to utilize the DRAM

refresh in performing the Transparent March tests on DRAM because refresh is an un-interrupted

process and if tests are performed during refresh then tests are performed un-interrupted.

Refresh operations require reading the contents of a memory location and writing them back

to the same location. March tests for detecting functional faults in memories also require writing

some patterns in to the memory and reading them back. There is a similarity in the operations

performed on the memory during both refresh and word-oriented Transparent March test. The

manner in which the operations need to be performed are also similar. Both require scanning

the entire memory row by row and performing read followed by write operation on each row.

These similarities in refresh and word-oriented Transparent March test further motivated us to

re-use the refresh circuit for test purpose. Moreover, DRAM is refreshed periodically. Thus

tests performed with refresh will also be periodical and will prevent fault accumulation. Further,

utilizing refresh circuit for test purpose overcomes additional DFT overhead due to test circuit.

In this chapter a BIST architecture is being proposed which re-uses the refresh circuit of

DRAM in performing periodic Transparent March tests on the DRAMs targeting permanent

faults developed during DRAM operation. Re-using refresh allows periodic testing of DRAM

without interruption and test finishes within a definite time. Most importantly, reusing the on-

chip refresh circuitry for test purpose overcomes additional DFT area overhead due to BIST

hardware. The refresh-reuse concept can be extended to even embedded memory cores of SoCs

or those which are interconnected using NoCs.

6.2 Fault Models Considered in this Work

The runtime permanent faults considered in this work are assumed to be intermittent faults

which have become permanent over time. Consequently, the fault models considered in this pa-

per are that of intermittent faults. The factors which lead to intermittent faults are variations of

temperature, voltage and aging effects such as Time Dependent Dielectric Breakdown (TDDB),

Electro-migration, Negative bias temperature instability (NBI) and hot carrier injection (HCI).

TDDB is a phenomena where the oxide underneath the gate material of a MOSFET de-

grades over time resulting in a short circuit. As technology scales down, the oxide becomes

thinner and more fragile allowing the effects of TDDB to become more severe. TDDB causes

90 Chapter 6 Refresh Re-Use for Online test of DRAMs

hard gate shorts which are modeled as stuck-at-faults. Electro-migration reduces interconnect

conductivity with passage of time and leads to open circuit [31]. The open circuits caused

by electro-migration are modeled as stuck-open faults. However, stuck-open faults behave as

stuck-at faults in DRAM as cells are not implemented as bistable elements [87]. Negative bias

temperature instability (NBI) and hot carrier injection (HCI) [31] increase threshold voltage of

transistors leading to decrease in mobility. As a result, performance of the memory core de-

creases bringing in read and write failures. We model these read and write failures as read

disturb fault and write disturb faults respectively. However, read disturb faults are predominant

in SRAMs, where a defective SRAM loses its data state on a read and behaves as a dynamic

cell. Since DRAMs refresh data after every read operisation, read disturb faults are less likely to

occur in DRAMs. Thus, we consider only write disturb faults for our work.

The changes in temperature and voltage affect the overall speed of the memory by modifying

the circuit delay and also reduces the robustness [31]. However, in this work, we consider only

the functional faults, and hence the effects of temperature and voltage change are not considered.

Also, the data retention faults do not occur in DRAM due to the absence of pull-up devices [87].

To summarize, the target fault models considered for this work are stuck-at faults and write

disturb fault. Detailed behavior of these faults are as follows.

1. Stuck-at-Fault (SAF) - the defective cell permanently contains a 0 (SA0) or 1 (SA1) and

cannot be changed. To detect a stuck-at-fault, a write operation at the cell must be followed

by a read operation. For example, to detect SA0, a write 1 must be followed by a read 1.

Similarly, to detect SA1, a write 0 must be followed by a read 0.

2. Write-Disturb Fault - if a non transition write operation is performed on the defective cell,

it causes a transition in the cell. To detect a write-disturb fault, each cell should be read

after a non-transition write. For example, with a cell initially holding a 0 value, if a write

0 is performed, then the cell must be read for a 0 immediately after the read. Similarly,

with a cell initially holding a 1 value, if a write 1 is performed, then the cell must be read

for a 1 immediately after the read.

6.3 Proposed Transparent Test Generation Technique for DRAMs
without ECC

March tests are the most widely accepted tests for detection of permanent faults due to their high

fault coverage and linear relation of their test time with respect to the memory size [36]. A March

instruction consists of sequence of operations applied to each cell before proceeding to the next

6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC 91

cell. An operation can be reading or writing of 0 or 1. Application of March tests involves

writing patterns into the memory and reading them back. As a result, the memory contents are

destroyed. However, on-line memory test techniques require restoration of the memory contents

after test. Thus, researchers have modified the March tests to Transparent March test so that tests

can be performed without the requirement of external data background and the memory contents

can be restored after test.

In this section, we describe our proposed technique to convert a word-oriented March test

into a Transparent March test so that stuck-at faults and write-disturb faults mentioned in the

previous section can be detected. Since we tried to re-use the refresh circuit for test purpose,

and refreshing involves reading a complete row of a memory array, we were motivated to use

word-oriented March tests and transform them to their respective Transparent versions.

Nicolaidis et al. in [71] first proposed Transparent March test for memories and gave a

systematic way to convert a standard March test to Transparent March test. As mentioned in [71],

Transparent test consist of two testing phases: signature prediction phase in which the golden

signature is obtained, and the fault testing phase where the fault is activated. Since our proposed

test technique involves performing active test, use of signature based scheme is avoided and

hence the signature prediction phase in the Transparent test generation is not required.

6.3.1 Transparent March test

The proposed Transparent test generation technique for word-oriented memories is explained

using the word-oriented March X test [89] as it covers fault models considered in this chapter.

However, other March tests such as MATS+, MATS++, etc. which also cover single cell faults

can also be used for the same. The procedure to convert a bit-oriented March X test to word-

oriented March X test is assumed to be the one mentioned in [89]. The word-oriented March X

test is represented as

{l (wa); ↑ (ra, wb); ↓ (rb, wa)}; l (ra)}

where, a and b are the data background and its complement respectively. ↑ and ↓ are increasing

and decreasing addressing order of memory respectively. l means memory addressing can be

either increasing or decreasing.

The first element of the test, (wa) is the initialization step meant for writing to each row

of the memory a finite data background. The next two elements, (ra,wb) and (rb,wa) perform

read and write operations on the known data background. The element (ra, wb) reads the data

and writes its invert before proceeding to the next row while (rb,wa) reads the invert and writes

the re-invert on each row. At this point of the test, each bit of each row gets flipped in both

directions. The last element (ra) reads each row and expects the same data background as the

92 Chapter 6 Refresh Re-Use for Online test of DRAMs

initial phase. Any mismatch ensures detection of stuck-at-fault at the particular row. The March

X test mentioned above is non-Transparent . The modifications made to the test to generate its

Transparent version is discussed next.

Since the operations performed by the elements (ra,wb) followed by (rb,wa) of the March

X test involve inversion and re-inversion of data irrespective of the order of scan, restoration

of the original data background after the operations is guaranteed. Hence, the test can easily

be performed with any data background. Thus, a modification in the test has been proposed

where instead of using any specific data background, the operations will be performed on the

data already present in each memory location. This makes the test independent of the test data.

To convert the March X test to Transparent March X test, the following steps need to be

performed.

• a) Drop the initial element; Since the Transparent test is independent of any background

data, no initialization step is required.

• b) Replace the a and b in the March X test representation (given above) by x and x respec-

tively, where x indicates the data value at a row prior to performing the March test on the

row and x indicates the complement of x.

Thus, the Transparent March X test generated can be represented as :

{↑ (rx,wx̄); ↓ (rx̄, wx); ↑ (rx)}

where, the read access (rx) and (rx̄) expects (x) and x̄ to be read respectively from the row to be

tested while (wx) and (wx̄) refers to writing x and x̄ to the row that is tested.

6.3.2 Modified transparent March test - proposed technique

The Transparent March X (TMX) test generated from the March X test is modified to suite its

implementation using the refresh circuit. Following are the modifications made to the TMX test.

Since refresh cycles involve read followed by write operations, the TMX test is structured

such that each element consist of a read followed by write operation. Thus, we add a write op-

eration to the last read operation of the TMX test. In TMX test, same operations are performed

on each row during execution of a March element. However, in the proposed Modified TMX

(MTMX) test, operations performed on the row targeted for test is different from the operations

performed on rest of the rows. Moreover, in MTMX test, addresses are scanned in the same

order for each test element.

6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC 93

Thus, the steps involved in transforming Transparent March X test (TMX) to Modified

Transparent March X (MTMX) test are as follows.

• a) Insert a write operation (wx) after the read operation of the last element in the TMX

test. On adding the write operation, the last March element also has two operations to

perform (read followed by a write).

{↑ (rx,wx̄); ↓ (rx̄, wx); ↑ (rx,wx)}

• b) (i) Shift the address order sequence (the up / down arrows in the representation) to the

right of each element

{(rx,wx̄) ↑; (rx̄, wx) ↓; (rx,wx) ↑}

(ii) Add (rx,wx) after the arrow.

{(rx,wx̄) ↑ (rx,wx); (rx̄, wx) ↓ (rx,wx); (rx,wx)} ↑ (rx,wx)}

The representation used in (ii) means the following. The test has three March elements

M1, M2 and M3. March elements are separated by semicolons. For each March element,

the part to the left of address order sequence (up/down arrows) represents operations per-

formed on the first row addressed during the test cycle while the part to the right of the

address order sequence represents operations performed on the rest of the rows.

• c) Replace all down order and up down order of address scan to up order of address scan.

The modified Transparent March X Test (MTMX) thus generated is

{(rx,wx̄) ↑ (rx,wx); (rx̄, wx) ↑ (rx,wx); (rx,wx)} ↑ (rx,wx)}

In the Modified Transparent March X Test, the pair of read / write operations performed

during March elements M1, M2 and M3 represent three phases of the test namely invert phase,

restore phase and refresh phase as shown in Table 7.1.

The pair (rx,wx̄) represents the invert phase where the initial contents of the row under test

are read and its complement is written back to the same row. The invert phase is followed by

restore phase where the inverted contents of the row under test are re-inverted and written back

(rx̄, wx). The pair (rx,wx) is the refresh phase where the contents of the row addressed is read

94 Chapter 6 Refresh Re-Use for Online test of DRAMs

Table 6.1: Phases in MTMX test

Phase Operation

Invert (rx, wx̄)

Restore (rx̄, wx)

Refresh (rx,wx)

and the same is written back to the row.

The interesting thing to note is the similarity of the operations performed in each phase; a

read followed by a write. While in invert and the restore phase the data which is written back

is the invert of the one read, in refresh phase it is the same data for both the read and the write

operations.

6.3.3 Modified transparent March X algorithm

The Modified Transparent March X Test Algorithm is described in Algorithm 3. The algorithm

requires three inputs : the number of rows of the DRAM (N), address targeted for stuck-at-fault

test (saf test address) and address targeted for write-disturb fault test (wdf test address).

However, the algorithm considerswdf test address to be the location following saf test address.

Thus, wdf test address = saf test address +1. The tests required for Algorithm 3 and their

order of execution have been listed in Table 6.2.

Table 6.2: MTMX test for Stuck-at-fault and Write Disturb Fault

Run Address Phase Element Test Operation

Run1 saf test address Invert M1 T1 (rx, wx̄)

Run1 wdf test address Refresh M1 T3 (rx,wx)

Run1 other addresses Refresh M1 T3 (rx,wx)

Run2 saf test address Restore M2 T2 (rx̄, wx)

Run2 wdf test address Refresh M2 T3 (rx,wx)

Run2 other addresses Refresh M2 T3 (rx,wx)

Run3 saf test address Refresh M3 T3 (rx,wx)

According to Table 6.2, test for stuck-at-fault test for location saf test address and write-

6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC 95

disturb-fault test for location wdf test address requires three address runs, 1,2 and 3. In runs

1 and 2, the DRAM is scanned for all rows. In run 3, only the row with address given by

saf test address is operated. Thus, for a DRAM with N rows, the total number of test cycles

required to cover run 1,2 and 3 of the MTMX test is 2N + 1.

In address run 1, the test T1 is applied to saf test address and T3 is applied to the rest

of the locations. T1 excites stuck-at-fault for data in saf test address (invert phase) while

T3 excites write-disturb-fault for location wdf test address. For the rest of the locations, ap-

plying T3 means regular refresh operation. During address run 2, the test T2 is applied to

saf test address (restore phase) to restore the original data prior to run 1 and to detect the

stuck-at-fault excited during run 1. The write-disturb fault excited atwdf test address during

run 1 is detected during run 2 by applying of T3 to wdf test address again. For the rest of

the locations of DRAM, T3 is applied during run2. Run 3 is a single address scan where T3 is

performed on saf test address.

Algorithm 3 begins with initialization of two variables J and COUNT . The variable J

holds the current address of the DRAM while COUNT keeps track of the 2N + 1 test cycles

required for performing the MTMX test on the DRAM. COUNT starts with a zero value and

J is initialized to the address meant for test of stuck-at-fault (saf test address). Thus, the

scan of the memory during test cycles begins with saf test address. The data read from a

memory location is first loaded in the ref reg variable (line5). Depending on whether the data

is required for performing a stuck-at fault test or write-disturb fault test, it is either backed-up in

data register 1 or data register 2 (lines 8 and 11).

For the first N cycles of COUNT i.e. COUNT = 0 to N-1 (run1), J is first checked for its

match with saf test address. If the two match, it marks the invert phase for saf test address.

The data loaded in the refresh register ref reg is backed up in data register 1 and complement

of the data is written in J(lines 7-9). If J and saf test address do not match, J is then checked

for match withwdf test address. If J matches towdf test address, data loaded in the refresh

register ref reg is backed up in data register 2 and the same data is written back to location

addressed by J (lines 10-12). If J neither matches saf test address nor wdf test address,

the data residing in ref reg is loaded back to J (line 14).

The next N cycles of COUNT , i.e. COUNT = N to 2N − 1 (run 2) are a repeat of the

first N cycles, except that if J = saf test address, then the data read from address J into

ref reg is compared with data register 1 (line 17-19). An ex-or operation of both should

result in all 1’s as the result. Deviation from the all 1 result at any bit will mean a stuck-at fault

at that bit. Similarly, if J = wdf test address, then the data read from address J into ref reg

is compared with data register 2 (line 20-22). An ex-or operation of both should result in all

96 Chapter 6 Refresh Re-Use for Online test of DRAMs

Algorithm 3 Modified Transparent March X Algorithm
Input: N = number of rows of DRAM

saf test address = row to be tested for stuck-at-fault

wdf test address = row to be tested for write data fault

——————————————————————————

1: J ← saf test address

2: COUNT ← 0

3: while COUNT ≤ 2N do
4: J ← JMODN

5: ref reg ← read(J)

6: if (0 ≤ COUNT < N) then
7: if (J = saf test address) then
8: data reg1← ref reg

9: write(J, !ref reg)

10: else if (J = wdf test address) then
11: data reg2← ref reg

12: write(J, ref reg)

13: else
14: write(J, ref reg)

15: end if
16: else if (N ≤ COUNT < 2N) then
17: if (J = saf test address) then
18: compare(data reg1, ref reg)

19: write(J, !ref reg)

20: else if (J = wdf test address) then
21: compare(data reg2, ref reg)

22: write(J, ref reg)

23: else
24: write(J, ref reg)

25: end if
26: else
27: compare(data reg1, ref reg)

28: write(J, ref reg)

29: end if
30: COUNT ← COUNT + 1

31: J ← J + 1

32: end while
33: saf test address← saf test address+ 1

6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC 97

0’s as the result. Deviation from the all 0 result at any bit will mean a write disturb fault at that

bit position.

6.3.4 Fault coverage of the proposed MTMX algorithm

The MTMX algorithm is intended for test of stuck-at fault and write disturb fault tests developed

during field operation DRAMs. The fault coverage of the algorithm is illustrated in Figures 6.1,

6.2 and 6.3. In all figures, the word size of each row of DRAM is assumed to be of 4 bits. The

text in italics against the arrows indicate the operation performed as mentioned in Algorithm 3.

The text in normal font indicate the name of the storage as used in Algorithm 3.

1 0 1 0

1 0 1 0

0 1 0 1

1

Stuck-at-1 bit

0 1 1 1

faulty bit
detected

data register1

saf test address

ref reg

1 0 1 0

1 1 0 1

ref reg ← read(J) ref reg ← read(J)

write(J, !ref reg)

compare(data reg1, ref reg)

COUNT = 0
COUNT = N

data reg1← ref reg

Faulty value

Figure 6.1: Stuck-at-1 Fault Detection using MTMX test

98 Chapter 6 Refresh Re-Use for Online test of DRAMs

Stuck-at fault detection

As shown in Figure 6.1, assume the data present in the DRAM row addressed by saf test address

be “1010”. The test cycles begin with the invert phase (COUNT= 0 value) during which

the data addressed by saf test address is read into the ref reg register and then backed-

up in the data register1. The data written back to saf test address is the complement of

data that is read in the ref reg. Thus, at the end of the cycle, the data present in ref reg

and data register 1 is “1010” while the data in location addressed by saf test address is

“0101”. Assume a stuck-at-1 fault at the most significant bit (MSB) position of the word stored

in saf test address. Thus, instead of storing “0101”, it actually stores “1101” and as a result

the stuck-at-fault at the MSB gets excited.

After N cycles (COUNT= N), when row saf test address is re-addressed, the data now

read in to ref reg is “1101”. At this point, the data present in ref reg and data register1 is

bit-wise ex-ored. Since, the data in the data register1 and the one stored in saf test address

during COUNT= 0 were complementary, it is expected that for a fault-free case, ex-oring their

contents would result in a all-1 pattern. Any 0 within the pattern would mean a stuck-at fault at

that bit position. This situation is illustrated in Figure 6.1, where the ex-or of “1010” and “1101”

yields a 0 at the MSB position of the result indicating a stuck-at-fault at the MSB position.

If a stuck-at-fault is not excited during theCOUNT = N , it is excited during theCOUNT =

2N phase as shown in Figure 6.2. It is assumed that the target memory location has a stuck-at-0

fault at the MSB position. During COUNT = N , since “0101” is written into location, the

stuck-at-0 fault is not excited. However, during the COUNT = 2N phase, when the com-

plement of “0101” i.e. “1010” is written to the target memory location, the stuck-at-0 fault at

the MSB gets excited and the value read into the ref reg thereafter is “0010”. Thus, during the

following ex-or operation of the data reg1 and ref reg, a 1 is obtained at the MSB of the result

indicating detection of the faulty bit at the MSB.

Write-Disturb fault Detection

The detection of the write-disturb fault is explained in Figure 6.3. Assume a write disturb fault

exists at the MSB of the location addressed by wdf test address. At COUNT = 1 value, the

data stored in the location addressed by wdf test address undergoes a refresh cycle. Thus,

the data read from the location wdf test address is copied in ref reg as well as backed-up in

data regsiter2. The same data is also written back to the row addressed by wdf test address.

Thus, at the end ofCOUNT = 1, the data present in ref reg, data regsiter2 andwdf test address

are all “1010” as illustrated in Figure 6.3. However, as the same data is written to the MSB of

6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC 99

1 0 1 0

1 0 1 0

0 1 0 1 1 0 1 0

1 1 1 1

saf test address

1 0 1 0

0 1 0 1 0 0 1 0

Stuck-at-0 bit

0

1 0 0 0

faulty bit
detected

ref reg ← read(J) ref reg ← read(J)

write(J, !ref reg)

compare(data reg1, ref reg)

ref reg ← read(J)

compare(data reg1, ref reg)

write(J, !ref reg)

COUNT = 0
COUNT = N COUNT = 2N

data reg1← ref reg

Faulty value

Figure 6.2: Stuck-at-0 Fault Detection using MTMX test

the location addressed by wdf test address, the write-disturb fault gets excited and instead of

storing “1010”, it stores “0010”.

During cycle numberN+1, the data read from the the location addressed bywdf test address

is loaded in the ref reg. This data is then compared (bit-wise ex-ored) with data stored in

data register2 (stored during COUNT = 1). For a fault-free case an all zero pattern is ex-

pected as result. Presence of any 1 at any bit position of the result would mean presence of a

write-disturb fault at that bit position. For example as shown in Figure 6.3, at the N + 1 cy-

cle, bit wise ex-or of ref reg holding “1010” and data regster2 holding “0010” would result

in “1000” meaning a write-disturb fault detected at MSB of the data in location addressed by

wdf test address.

100 Chapter 6 Refresh Re-Use for Online test of DRAMs

1 0 1 0

1 0 1 0

1 0 1 0

0

Write-disturb- bit

1 0 0 0

faulty bit
detected

wdf test address

ref reg

1 0 1 0

0 0 1 0

ref reg ← read(J) ref reg ← read(J)

write(J, ref reg)

compare(data reg2, ref reg)

COUNT = 1
COUNT = N+1

data reg2← ref reg

data register2

Faulty value

Figure 6.3: Write Disturb Fault Detection using MTMX test

6.4 Refresh re-use based test technique

To prevent the contents of a DRAM from being lost, the DRAM must be refreshed. Refresh is

the process of recharging, or re-energizing the cells in a DRAM. Cells are refreshed one row

at a time (usually one row per refresh cycle). Refresh in DRAMs has already been covered

in Chapter 2. However, before we proceed any further, it is worth reviewing some concepts

regarding refresh since they will be used during the subsequent discussions.

6.4.1 Review of DRAM refresh

Refresh cycle refers to the time required to refresh one row. The refresh of a row of bit cells

involves reading all cells of that row and writing them back to the same bit cells. Read and write

operations on a row are synchronized with the refresh operations of that row.

For a DRAM array to operate correctly, all rows need to be refreshed within certain interval

6.4 Refresh re-use based test technique 101

of time called Refresh Time. In other words, Refresh Time is how often a row can go without

being refreshed before it is in danger of losing its contents. Assume, a DRAM with 512 rows

and requiring Refresh Time of 10ms. Thus, 512 refresh operations need to be performed within

10 ms period and it means an average of 1 row is refreshed every 1.95x105 ms.

Refresh rate is the total number of rows it takes to refresh the entire DRAM array. It is

determined by the total number of rows that have to be refreshed in a DRAM. DRAM chips are

designed for a particular type of refresh. For example, chips using 4K refresh will have about

4000 rows, which means it will take about 4000 cycles to refresh the entire array. Chips using

2K refresh will have about 2000 rows and chips with 1K refresh will have 1000 rows.

Table 6.3 lists the commonly used refresh rates for DRAMs, where all DRAM chips in Table

6.3 have same total capacity of 16Mb. However, the number of rows and columns are different

depending on the type of refresh used.

Table 6.3: Different types of DRAM refresh

DRAM Size 4K refresh 2K refresh 1K refresh
4MX4 4000 rows / 1000 columns 2000 rows / 2000 columns 1000 rows / 4000 columns

2MX8 4000 rows / 500 columns 2000 rows / 1000 columns 1000 rows / 2000 columns

1MX16 4000 rows / 250 columns 2000 rows / 500 columns 1000 rows / 1000 columns

In addition to various refresh rates, there are different refresh methods. The two most basic

methods of refresh are Distributed Refresh and Burst Refresh [2]. In Burst refresh, a series

of refresh cycles are performed one after another until all the rows have been refreshed, after

which normal memory accesses occur until the next refresh is required. In Distributed refresh,

refresh cycles are performed at regular intervals, interspersed with memory accesses [2]. In the

presented work, burst refresh cycles are considered as shown in Fig 6.4. The time between two

refresh bursts is allowed for normal memory operation (random access) shown as the shaded

block in Fig 6.4.

6.4.2 Implementing the MTMX Test using refresh

According to the MTMX test explained in the previous section, the total number of test cycles

for test of stuck-at-fault at a location and test of write-disturb fault at the next location requires

2N + 1 test cycles for a DRAM with N rows. During each test cycle, a read followed by a

write operation is performed similar to refresh cycle of a refresh burst. However, the number

of refresh cycles in one refresh burst is N for a DRAM with N rows. Thus, to use the refresh

102 Chapter 6 Refresh Re-Use for Online test of DRAMs

Refresh

Refresh

time

Cycles

Normal

read / write
cycles

Normal
operation

Refresh time Refresh timeof
a row (refresh cycle)

Figure 6.4: Interleaved random accesses and burst refresh cycles

cycles as test cyles for the MTMX test, the refresh burst is extended to cover 2N + 1 refresh

cycles.

The basic idea of the test technique is explained using Figure 6.5. The DRAM considered

is assumed to have four locations, with addresses ranging from 0 to 3 as shown in Figure 6.5(i).

The numbers 0, 1, 2 and 3 correspond to the variable J in Algorithm 1. These addresses are

generated by a modulo − N counter (here N = 4). Thus, for total count of 2 ∗ 4 + 1 = 9

refresh cycles, the address counter wraps around twice. As shown in Figure 6.5(i), after every

four refresh cycle, the addresses are repeated.

The initial contents of the memory (just before the refresh operations) is shown in Figure 6.5

(iii). The data bytes for rows 0,1,2,3 are a,b,c and d respectively. We assume the rows targeted

for test of stuck-at-fault and write-disturb-fault are row 0 and row 1 respectively. Out of the 9

refresh cycles, the first cycle is a test cycle involving the invert phase of the test as shown in

Figure 6.5 (ii). The data in row 0 is backed-up in data register1 and the complement is written

back to row 0. Thus, at the end of the first refresh cycle, the contents of the DRAM are ā, b, c

and d as shown in Figure 6.5 (iii). The second refresh cycle involves the refresh phase where

row 1 is addressed. The data in row 1 is backed-up in data register 2 and same data is written

back to row 1. Thus, at the end of the second cycle, the contents of DRAM remain same as the

DRAM contents after the first cycle, that is ā, b, c and d. For rest of the rows, it is a repeat of the

process for row 1 except backing up data in data register2

After the address counter reaches count 3, the address counter wraps around to again start

addressing from row 0. Thus, the fourth refresh cycle is again a test cycle for row 0, where the

present contents of row 0 is read and its complement is written back to row 0. Thus, at the end

of the fourth refresh cycle, the contents of the DRAM are a,b,c and d. At the end of this test

cycle, original contents of the row 0 is restored and thus is the restore phase of the test.

6.4 Refresh re-use based test technique 103

Refresh

time

Address

cycles

Normal
operation

Test
cycle

Refresh

0 1 2 3 0 1 2 3 0 1 2 3

Test / Refresh

0 1 2 3

Initial content
of

(rx)(wx)
operation

refresh

test

operation
(rx)(wx)

(i)

(ii)

(iii)

Memory

Contents

cycle
Test

Refresh

Refresh

0 1 2 3 0 1

DRAM

0 1 2 3 0 1 2 3 0 1 2 3 0

test

refresh

test

Normal
operation

Test

Refresh Refresh

Refresh

refresh

(random access)

(random access)

a a a aa a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b b b b b

c c c c c c c c c c c c c c c c c c c

d d d d d d d d d d d d d d d d d d d

1

Figure 6.5: (i)Refresh address (ii) Interleaved test and refresh cycles (iii) Memory contents after
a Test/Refresh cycle

104 Chapter 6 Refresh Re-Use for Online test of DRAMs

The next three refresh cycles involve refresh phases where the same data is written back to

the row which is read. Thus, at the end of the eighth refresh cycle, the contents of the DRAM

are a,b,c and d and the address counter once again wraps around to point to row 0. By this time,

the original data in row 0 has been flipped and then restored to account for detection of any

stuck-at-fault that exists in any bit of row 0. At the same time, data in row 1 has also been read

twice and written back to the same location. This ensures detection of write-disturb fault at row

1. If any stuck-at-fault is not excited during the first test cycle, it is definitely excited during the

second test cycle. In such a situation, one more read followed by write cycle (rw) is required for

the stuck-at-fault detection. Thus, the ninth refresh cycle, meant for refresh of row 0, involves

the normal refresh cycle of reading the content of row 0 and writing it to the same row.

At the end of nine refresh cycles, DRAM assumes normal operation. The address counter

generating refresh addresses releases control of the address bus of the DRAM while increment-

ing itself with its next value and holds it till the next refresh burst. After a certain time (according

to the specification of the DRAM), the refresh circuit is again enabled and a new refresh burst

of 2N + 1 refresh cycles is repeated as shown in Figure 6.5 (ii) and (iii). However, this time,

the target stuck-at-fault address becomes row 1 and target write-disturb-fault address becomes

row 2. The second refresh burst starts with refresh address equal to row 1 and thus is a test cycle

meant for row 1.

At the end of the first refresh cycle of the second refresh burst, the contents of DRAM are

(a, b̄, c and d) as shown in Figure 6.5 (iii). The rest of the three refresh cycles (meant for row 2,

row 3 and row 0) are normal refresh cycles. The fourth refresh cycle is again a test cycle for row

1, at the end of which the original contents of row 1 are restored. The next five refresh cycles

are normal refresh cycles which ensure detection of stuck-at-fault (if any) for row 1 and write-

disturb fault (if any) for row 2. The second refresh burst ends with address counter pointing to

row 2 and releasing the hold of address bus to allow normal operation to proceed.

Continuing in this way, after four refresh burst, all the rows have been tested for stuck-at-

fault and write-disturb fault at least once. The fifth burst would again be the same as first refresh

burst targeting the same row 0 for stuck-at-fault and row 1 for write-disturb fault. The sixth

refresh burst is same as the second refresh burst and so on. Thus, after every four refresh bursts,

the same rows are targeted for stuck-at-fault and write-disturb fault. This periodic testing of

every row prevents accumulation of faults for all rows including rows which are less frequently

accessed during normal operation and are more prone to faults.

6.5 Hardware implementation of the proposed approach 105

6.5 Hardware implementation of the proposed approach

6.5.1 BIST hardware

Figure 6.6 (a) illustrates the proposed Memory Built-In-Self-Test architecture based on the

refresh-reuse technique. It includes the following modules.

1. Memory Controller : Issues memory read and write controls during normal operation of

the memory and during periodic refresh cycles.The memory controller consist of Con-

troller and Refresh circuit.

• a) Controller : It is a Finite State Machine (FSM) responsible for generating control

signals during different states of operation of the proposed Memory Controller. The

State diagram of the controller is shown in Figure 6.6 (b) and its operation based on

the state diagram explained later.

• b)Refresh circuit: It consists of Refresh Time Counter(RTC), Refresh Counter (RC)

and Refresh Address Generator (RAG).

– (i) RTC : It is a self-decrementing counter initialized with a count correspond-

ing to the time between two refresh bursts . Normally, the time between two

refresh burst is the sum of the refresh time for all rows and the time of normal

operation. However, to suite our proposed technique of refresh based MTMX

test, we have extended the count of RTC to cover the time for two refresh burst,

one refresh cycle and time for normal operation. Once RTC count reaches zero,

it wraps around and generates refresh request to mark the start of a refresh

burst.

– (ii) Refresh Count : It is a modulo− (2N + 1) counter, where N is the number

of rows in the DRAM. Refresh Count corresponds to the number of refresh

cycles required to complete the MTMX test for a target row. Refresh Count

is initialized to zero value and on receiving refresh request from RTC, the

counter starts incrementing at every clock. On reaching the maximum count, it

wraps around and stops.

– (iii) Refresh Address Counter : It is amodulo−N counter (N being the number

of rows of the DRAM) that generates the refresh addresses for the DRAM. Dur-

ing refresh bursts, the Refresh Address Counter is initialized with the address

targeted for detection of stuck-at-fault. On receiving the enable signal (EN)

from the Controller, this modulo−N counter starts counting and on complet-

ing N cycles, wraps around to mark the completion of refresh of the all rows

106 Chapter 6 Refresh Re-Use for Online test of DRAMs

once.

2. Refreshment register: The data fetched during read cycle is temporarily stored in this

register. During normal read operation, data is delivered from refreshment register to data

register while during refresh, the data read into the refreshment register is written back to

the same location from where it is read.

Backup Registers: Two back-up registers data register1 and data register2 are used to

hold back up data during the invert and restore phases of the MTMX test when performed

on the DRAM.

3. Glue Logic: Includes combinational logic like multiplexers and comparators. Multiplex-

ers act as switches for selecting modes of operation (refresh /normal), selecting back-up

registers, selecting data to be written in normal or complementary form. Comparators

used are mainly ex-or/ex-nor gates performing bit-wise ex-or/ex-nor of refreshment regis-

ter and data registers depending on the phase of the MTMX test.

6.5.2 Operation of the controller

The operations performed by the BIST hardware during refresh and test cycles are explained

next with the help of the state diagram of the Controller illustrated in Figure 6.6(b).

• a) Normal Operation : It is the usual random access read and write operations carried

out on a DRAM. The read and write control signals in this state are the ones initiated by

the CPU. These signals are routed through the multiplexers (M1 and M2) on de-assertion

of refresh/normal signal by the Controller as shown in Figure 6.6(b). The data read

from the DRAM is routed through the de-multiplexer (DM1) to the Data-In-Out Buffer.

On receiving the refresh request from the RTC, the Controller moves from Normal State

to Test State.

• b) SAF Test State : In this state, the invert phase and the restore phase of the MTMX test

is carried out for detection of stuck-at-fault at a location. The refresh/normal signal

is asserted high to allow ref add generated from the Refresh Address Counter to be the

row address as shown in Figure 6.6(b). The inv/noinv line is asserted high to allow

complement of the data read from a location to be written to the same location.

During the invert phase, the test/ref and saf/wdf is asserted high to allow the data read

in the refreshment register to be backed-up in data register1. During restore phase, the

control lines E1 and CE1 are asserted high. Asserting CE1, allows data register1 to

deliver its content to the Comparator while assertion of E1 enables the Comparator so

6.6 Analysis and Comparison 107

that comparison of contents of data register1 and emphrefreshment register can be

performed. The result of comparison is delivered as high or low on the stuck-at-fault

pass/fail line. A high denotes no fault while a low denotes faulty. When the Controller

is in SAF Test state and COUNT reaches 2N , it marks end of the refresh burst and the

Controller switches back to Normal Operation.

• c) WDF Test State : On completion of the invert phase of the test cycle, if COUNT=1,

the Controller moves from SAF Test state to WDF Test state. In WDF Test State, the test

/ref is asserted high and saf/wdf is low to allow the data in the refreshment register to

be backed-up in Data Register2 and written back without inversion to the same location.

The Controller moves to WDF Test State again during COUNT= N + 1 value.

At this time, E2 and CE2 are asserted high. Asserting CE2, allows Data Register2 to

deliver its content to the Comparator while assertion of E2 enables the Comparator so that

comparison of contents of data register2 and refreshment register can be performed.

The result of comparison is delivered as high or low on the Write-disturb-fault test pass/fail

line. A high denotes no fault while a low denotes faulty.

• d) Refresh State : In this state, the data read in the refreshment register is written back

to the same location by asserting the refresh/normal signal high and inv / noinv low.

The Controller remains in the refresh state as long as COUNT is not equal to N or 2N .

6.6 Analysis and Comparison

6.6.1 Hardware overhead

The proposed BIST architecture implementation has been described in Verilog, synthesized on

a commercial 90nm standard cell library and the area of the synthesized BIST architecture esti-

mated. The DRAM considered was of size 4M×16 with refresh time of 16ms. The considered

DRAM requires 4096 refresh cycles to refresh all rows within the refresh time at a refresh cycle

time of 130ns [2]. The area estimate of different modules in the modified controller architecture

is illustrated in Table 6.4.

As shown in Figure 6.6 and as mentioned in the previous section, during normal operation

of the DRAM, the modules used are the Memory Controller and Refresh Register. Thus, we can

assume that a DRAM without test circuit would only consist of these two modules. However,

when refresh cycles are used as test cycles, along with the Memory Controller and Refreshment

register, the modules used are Data Registers and Glue logic (multiplexers and comparators).

Thus, the area overhead during test is due to the additional modules mentioned above. The area

108 Chapter 6 Refresh Re-Use for Online test of DRAMs

Table 6.4: Area estimate of the modified Memory Controller

Blocks cells(comb) cells(seq) Area(µm2))

Controller 31 14 461

refresh time counter 22 17 562

refresh count 22 14 496

refresh address generator 21 14 497

row decoder 19 0 311

column decoder 19 0 311

M1, M2 and M3 in Fig. 6.6 3*1 0 21

Total 137 59 2659

overhead for the DRAM of size 4M×16 is estimated in Table 6.5.

Table 6.5: Area overhead estimate

Blocks cells Area(µm2)

Comparator 2*16 288

Data Registers 2*9 211

De-mux(DM1 and DM2 in Fig. 6.6) 2*1 14

Mux(M5 in Fig. 6.6) 1 7

Total area overhead 53 530

The area of all the blocks listed in Table 6.5 depend on the data width of the DRAM. There-

fore, we varied the data widths of the DRAM and estimated the area overhead in each case as

shown in Table 6.6. The results confirm that the area overhead of the proposed test hardware

varies linearly with data width. Mathematically, we can put it as A(n) = c1× n with, A = area

overhead, n = data width and c1 = constant.

The only published work reporting hardware implementation of a Transparent on-line mem-

ory avoiding signature prediction and aliasing has been reported in [87]. Since our proposed

architecture also avoids signature prediction and aliasing, we compare the area overhead of our

proposed test hardware to that of hardware proposed in [87]. The area overhead of the TOMT

hardware proposed in [87] was estimated as

6.6 Analysis and Comparison 109

Table 6.6: Comparison of Area overhead for different data width

Data width Area(µm2)

4MX16 530

4MX32 1060

4MX64 2120

4MX128 4240

A(N,n, cb) = c2×N + c3× (n+ cb) + c4 (6.1)

with A = area overhead, n = data width, cb = number of check bits and c2,c3 and c4 =

constants If we only consider active fault test by the TOMT hardware proposed in [87], we can

simplify equation (2) as

A(N,n) = c2×N + c3× (n) + c4 (6.2)

Comparing equations 6.1 and 6.2, it can be concluded that area overhead of the hardware for the

proposed MTMX test of DRAM is independent of number of rows (N) of the DRAM and hence

is more area efficient as compared to the one proposed in [87].

Moreover, the proposed architecture is area efficient compared to off-line test techniques as

well. MBIST executing a March element is required to generate either ascending or descend-

ing address sequence and thus requires an address generator to generate the required address

sequence. The address generator is typically implemented with an up/down counter,gray code

based address generator [100] or using Linear Feedback Shift Register (LFSR) [85]. Thus, every

implementation of DRAM Memory BIST require some address generation technique as a part of

the BIST circuitry and thus add to the area overhead associated with the overall BIST. However,

our proposed BIST architecture does not require any address generator circuit and hence brings

down the overall area overhead of the Memory BIST substantially.

6.6.2 Test cycle time

Consider a N×B-bit DRAM and a word-oriented March test with P Read/Write operations. We

assume that B is power of two. As described in section 6.3.1, when the March test is con-

verted into its Transparent version, the initial write operation is dropped. Thus, the number of

read/write operations required by the Transparent March test is (P-1). However, during transfor-

mation of Transparent March test (TMX) to MTMX test, a write operation is added after the last

110 Chapter 6 Refresh Re-Use for Online test of DRAMs

read operation bringing back the number of Read / Write operations again to P. According to

Algorithm 3, out of the P Read/Write operations, (P-2) operations are performed during the first

2N cycles while the last two operations are performed in the (2N+1)th cycle. Thus, the number

of memory accesses required for test of a location for stuck-at-fault (including write-disturb fault

test for a different location) = (P-2)(2N) + 2.

Since our proposed MTMX test targets DRAMs without ECC, we compared the test time

of our proposed algorithm with that of works where Transparent test scheme avoiding ECC for

memories were proposed as in [87] and [58]. However, our proposed MTMX test starts assum-

ing an available word-oriented March test unlike the algorithms proposed in both [87] and [58]

where they assume availability of a bit-oriented March test. Thus, the test cycle times for [87]

and [58] include the time for bit-oriented March test to word-oriented March test conversion.

This is reflected in Table 6.7, where both cycles times for Scheme 1 and Scheme 2 are O(BN).

The bit-oriented to word-oriented conversion for our proposed MTMX test involves replacing

every bit in the bit-oriented March test by the data word (or its complement) of the row targeted

for stuck-at-fault test. Thus, the bit-oriented to word-oriented test conversion for our proposed

MTMX test is O(1).

Table 6.7: Comparison of Different Transparent Test Schemes

Scheme Test Cycles

Scheme1 [87] (4+8B)*N

Scheme2 without ECC [58] (P+5log2B+2)*N

Proposed MTMX Test (2N(P-2) + 2)*N

As shown in Table 6.7, the running time of MTMX test is O(N2) when considered for test

of all rows. This is large considering Schemes 1 and 2 which have running time of O(BN).

However, Schemes 1 and 2 are performed during idle times of the processor, which can be

small or large depending on the application run by the processor. Thus, for cases where idle time

of processor is small, the Transparent test performed in Schemes 1 and 2 would get interrupted

frequently and the total test time would get prolonged. However, when the proposed MTMX

test is implemented using the refresh circuit, the test time is governed by a constant refresh time

of the DRAM. Thus, the tests would be performed periodically without interruption and would

finish after a definite time as shown in Table 6.8.

A refresh cycle involves read followed by write operation. Therefore, each refresh cycle

involves two memory accesses. Thus, when MTMX test is performed using the refresh circuit,

6.6 Analysis and Comparison 111

the number of memory accesses required for test of stuck-at-fault at a row and write-disturb fault

test at the next row is {(P − 2)(2N) + 2}/2.

Therefore, the test cycle time is calculated as follows.

Test cycle time = no. of memory accesses required *no. of refresh cycles * refresh cycle time.

Therefore, Test cycle time = {(P − 2) ∗ (N) + 1}*N * refresh cycle time where, N and P have

the same definitions as mentioned above. The MTMX Test cycle time for different refresh rates

of a 16Mb DRAM tested for Stuck-at-fault/Write-Disturb-Fault is illustrated in Table 6.8 . The

refresh cycle time has been assumed to be 130 ns.

Table 6.8: MTMX Test cycle time for different refresh rates of a 16Mb DRAM

#(r/w) operations Refresh rate Test cycle time

6 4K 4.16 sec

6 2K 1.04 sec

6 1K 0.26 sec

6.6.3 Other features

1. Refresh re-use for memory cores interconnected using NoC : The refresh re-use based

online detection technique for a commodity DRAM can be extended to a number of em-

bedded DRAM cores interconnected using NoC. Since the proposed technique utilizes

DRAM controller as BIST hardware, no additional test hardware will be required for the

DRAM cores as each will be tested by its own DRAM controller. However, to further re-

duce the area overhead, the DRAMs core can be grouped with each group sharing a single

DRAM controller and tests being performed on all cores in a group concurrently.

2. Multiple fault detection per row: Stuck-at-faults occurring at more than one bit of a row

can also be detected using MTMX test. The test involves bit wise ex-or of data register1

(or data register 2) with ref reg. Deviation of ex-or/ex-nor operation result in any bit

from the expected result would mean fault at that bit. Since intra-bit coupling effects are

not valid for field deployed DRAMs, there is no chance that the fault effect at a bit would

be masked by any other bit of the same row. Thus, even if more than one bit suffer from

stuck-at-fault effect, each can be detected by just observing the ex-or/ex-nor result at each

bit position.

112 Chapter 6 Refresh Re-Use for Online test of DRAMs

6.7 Summary

The Modified transparent March Test proposed in this chapter has been shown to be a cost ef-

fective technique that can detect errors developed in DRAMs during field operation. We have

shown that the MTMX test technique performs an active test of DRAM by uncovering func-

tional defects such as stuck-at-faults and write-disturb faults. The refresh cycles of DRAM have

been re-used to act as test cycles while performing MTMX test on a DRAM. Since DRAM is

refreshed periodically, using refresh cycles for test implies periodic testing. Thus, in the refresh

re-use based implementation of the MTMX test, it was shown that the test would be repeated

periodically and thus would avoid accumulation of faults.

Since the focus of the thesis has been on test of NoC based memory core systems, the dis-

cussion remains incomplete without the coverage of test techniques for memory cores which are

part of the NoC infrastructure. The next chapter (Chapter 7) highlights the importance of test-

ing SRAM based FIFO buffers present in the routers of the NoC. It also discusses the proposed

on-line test technique for testing these FIFO buffers.

6.7 Summary 113

Refresh Count

Controller

Refresh Time Counter

Refresh Address
Generator

Row
Decoder

Column
Decoder

refreshment
register

DRAM

column
address

Row Address

RAS

ref add

(MOD 2N+1 counter)

refresh request

(MOD N counter)

Inverter1

0

Data Register

Data Register

read data

row
address

CAS

CE1

CE2

read write

External

1

0

1

0

refresh read

refresh write

read from CPU (normal operation)

write from CPU
(normal operation)

Comparator
(xor/xnor)

Stuck-at-fault test
pass / fail

Write disturb
fault test

pass / fail

1 0

1

0

refresh request

CLK

write data

EN

COUNT

E1

E2

refresh/normal

refresh/normal

inv/noinv

test/ref

NORMAL REFRESH

RESET

!refresh request

COUNT=2N+1

refresh request

(COUNT! = N
OR

COUNT != 2N)

(COUNT=N OR COUNT=2N)

(a)

(b)

1

2

Memory
Controller

RESET

Data In-Out
bufferExternal Data

01

1 0

Comparator
(xor/xnor)

saf / wdf

DM1

DM2

M1

M2

M3

M4

M5

SAF

TEST

WDF

TEST

COUNT=1
OR

COUNT=N+1

COUNT=2
OR

COUNT=N+2

Figure 6.6: (a) The Proposed Memory BIST Architecture (b) State diagram of the Controller

Chapter 7

Test of FIFO Buffers in NoC Routers

A major design issue during test of cores interconnected using NoC is the choice of Test Ac-

cess Mechanism (TAM). The re-use of the NoC to act as Test Access Mechanism (TAM) as

proposed by Cota et al. in [23] and [24] is a very attractive solution as it overcomes the prob-

lem of additional TAM area overhead . However, to use the NoC as TAM, it must be ensured

that the elements of NoC are fault free. Testing the elements of the NoC infrastructure involves

testing routers and inter-router links [43], [72]. A generic router of a NoC infrastructure is com-

posed of combinational part and FIFO buffers. The combinational part is responsible for routing

data from source to destination while FIFO buffers are present at every input port to receive

incoming data and at every output port data to store these data before they are put on the output

port. Considering the router architecture, proposals for test of NoC routers reported in literature

have considered separate test strategies for combinational part and FIFO buffers as in [34], [43]

and [52].

Significant amount of area of the routers present in the NoC data transport medium is oc-

cupied by FIFO buffers. Accordingly, the probabilities of faults or defects occurring in buffers

are significantly higher compared to the other components of the NoC. Thus, test process for the

NoC infrastructure must begin with test of the FIFO buffers. Conventional FIFO buffer designs

are based on SRAMs as they offer an area efficient bit cell [98]. Thus, FIFO buffers are tested

with functional defects similar to SRAMs using either dedicated BIST architectures as proposed

by Wielage et al. in [98] and Prinetto et al. in [75] or distributed BIST architectures proposed

by Grecu et al. in [34]. The functional faults which develop in SRAM based FIFO buffers are of

two types. The first type are the permanent faults such as stuck-at-faults. The second type are

the run-time faults which are developed when the buffer is in operation. These run-time faults

are either transient faults or intermittent faults. A discussion on both these faults has already

been provided in the last chapter.

115

116 Chapter 7 Test of FIFO Buffers in NoC Routers

7.1 Motivation

Though researchers have given importance to detection of functional faults in FIFO buffers, the

detection of run-time permanent functional faults have been overlooked. One probable reason

could be the belief that with advent of deep sub-micron technology (DSM), permanent faults

developed during run-time are not as frequent as transient faults [62]. However, as already

discussed in the motivation section of Chapter 6 that studies done in [49], [78] and [83] revealed

the true picture that memories experience both transient fault (soft error) and permanent (hard

error) faults in-field. Moreover, soft error data detection and protection schemes have not proven

to be effective for testing in field permanent faults in FIFO buffers as they do not alter the

contents of the memory and therefore cannot find functional faults in memories as mentioned

in [87].

It is therefore necessary to find a cost-effective test technique that can detect permanent

faults developed during field operation of FIFO buffers. Such a test technique must possess the

following characteristics :

• The test must be an active test so that functional defects are uncovered.

• The test must be performed periodically to ensure that no fault gets accumulated; this

necessitates on-line test technique.

• The on-line test must ensure that the contents of the buffer are not destroyed during test

• The test hardware must be cost effective in terms of area.

The work presented in this chapter is about the proposed on-line Transparent test technique

for FIFO buffers present within the routers of the NoC infrastructure. The proposal involves

generation of a SOA-MATS++ test generation algorithm targeting in-field permanent faults de-

veloped in SRAM based FIFO memories and repeating the test periodically to perform active

fault detection over the entire FIFO buffer.

7.2 Fault Models Considered

The runtime permanent faults considered in this work are assumed to be intermittent faults which

have become permanent over time. Consequently, the fault models considered in this chapter

are that of intermittent faults. The factors which lead to intermittent faults are variations of

temperature, voltage and aging effects such as Time Dependent Dielectric Breakdown (TDDB),

Electro-migration, Negative bias temperature instability (NBI) and hot carrier injection (HCI) as

7.3 Proposed Transparent Test Generation Technique 117

mentioned in [97]. A brief discussion of each of the physical effects mentioned above and their

effect on the logical behavior of the system have already been discussed in Chapter 6. The target

fault models considered for this work are stuck-at fault, stuck-open fault, read disturb fault and

transition fault. Detailed behavior of these faults are as follows.

1. stuck-at-fault (SAF) - the defective SRAM cell permanently contains a 0 (SA0) or 1 (SA1)

and cannot be changed. To detect a stuck-at-fault, a write operation at the cell must be

followed by a read operation. For example, to detect SA0, a write 1 must be followed by

a read 1. Similarly, to detect SA1, a write 0 must be followed by a read 0 [13].

2. stuck-open-faults (SOF) - the defective cell cannot be accessed due to an open word line

or bit line. A stuck-open fault is detected as if it were a stuck-at fault if the sense amplifier

is combinational and thus passing a proper defined logical value to the output pin [26].

3. transition fault (TF) - A memory cell with a transition fault fails to undergo at least one of

the transitions 0 → 1 (up transition) or 1→ 0 (down transition) when it is written with 0

or 1 respectively [13]. To detect a transition fault, each cell must undergo an up transition

and down transition and be read after each.

4. read disturb fault (RDF) - a read operation performed on the defective cell changes the

data in the cell and returns an incorrect value on the output [12]. To detect read disturb

fault, a 1 and a 0 should be read from each cell.

All faults considered in this work are single port, static and simple faults as mentioned

in [38]. These faults can be detected using standard March tests such as MATS++, March C-

test [13] or special March test such as March SS test [38] for SRAMs. However, to ensure

restoration of contents after test, the March tests to be applied are modified to their Transparent

versions as discussed in the next section.

7.3 Proposed Transparent Test Generation Technique

All faults considered in this chapter, if applied for SRAMs or DRAMs, can be detected using

standard March tests mentioned in Chapter 2. However, if the same set of faults are considered

for SRAM type FIFOs, then March test cannot be used directly due to the restriction in SRAM

type FIFOs mentioned in [93] and stated below.

On completion of read or write operation in a FIFO, the address increments. This implicit

address modification (increment) restricts each March element to a maximum of one read and/or

one write operation. Thus, the addressing order of test that suits the above restriction for SRAM

118 Chapter 7 Test of FIFO Buffers in NoC Routers

type FIFOs is single address order (SOA) because the addresses are specified implicitly and ad-

dress modification in the form of incrementing is also performed implicitly in SOA. The address

order restriction for SRAM type FIFOs and the choice of single order addressing motivated us

to choose single order address MATS++ test (SOA-MATS++) [93] for detection of faults con-

sidered in this work. The SOA-MATS++ test is represented as

{↑ (w0); ↑ (r0, w1); ↑ (r1, w0)}; ↑ (r0)}

Since we considered word-oriented March test, we converted the bit-oriented SOA-MATS++

test to word-oriented SOA-MATS++ test. The procedure to convert a bit-oriented March test

to word-oriented March test is assumed to be the one mentioned in [89]. The word-oriented

SOA-MATS++ test is represented as

{l (wa); ↑ (ra, wb); ↓ (rb, wa)}; l (ra)}

where, a is the data background and b is the complement of the data background. ↑ and ↓ are

increasing and decreasing addressing order of memory respectively. l means memory address-

ing can be increasing or decreasing. Unlike the proposal in [89], we did not consider varying the

data backgrounds as coupling faults are not considered in this work.

The first element of the test, (wa) is the initialization step meant for writing to each row of

the memory a finite data background. The next two elements, (ra,wb) and (rb,wa) perform read

and write operations on the known data background. The element (ra, wb) reads the data and

writes its invert before proceeding to the next row while (rb,wa) reads the invert and writes the

re-invert on each row. After (rb,wa) operation on each row of the memory, each bit of each row

has been flipped in both directions. The last element (ra) reads each row and expects the same

data background as the initial phase. Any mismatch ensures detection of fault at the particular

row.

Application of SOA-MATS++ test to the FIFO involves writing patterns into the FIFO mem-

ory and reading them back. As a result, the memory contents are destroyed. However, on-line

memory test techniques require restoration of the memory contents after test. Thus, researchers

have modified the March tests to Transparent March test so that tests can be performed without

the requirement of external data background and the memory contents can be restored after test.

To convert the SOA-MATS++ test to Transparent SOA-MATS++ (TSOA-MATS++) test, the

following steps have been performed.

a) Dropping the initial element - Since the Transparent test is independent of any background

data, no initialization step is required.

7.3 Proposed Transparent Test Generation Technique 119

b) Replacing a and b in the SOA-MATS++ test representation (given above) by x and x

respectively, where x indicates the data value at a row prior to performing the March test

on the row and x indicates the complement of x. At this point, the SOA-MATS++ test can

be represented as :

{↑ (rx,wx̄); ↑ (rx̄, wx); ↑ (rx)}

The SOA-MATS++ test has three March elements M1, M2 and M3 (separated by semi-

colons). For each March element, up/down arrows represent the address order sequence

of the test. The read / write operations following the up / down arrows represent the par-

ticular operation performed at an address before moving on to the next address. The read

access (rx) and (rx̄) expects x and x̄ to be read respectively from the row to be tested while

(wx) and (wx̄) refers to writing x and x̄ to the row that is tested.

c) All three March elements from step 2 are merged to form a single March element with

addressing order same as each of M1, M2 and M3.

Thus, the Transparent SOA-MATS++ test generated is represented as

{↑ (rx,wx̄, rx̄, wx, rx)}

The operations performed during the test represent three phases of the test namely invert phase,

restore phase and read phase as shown in Table 7.1.

Table 7.1: Phases in MTMX test

Phase Operation Test Run

Invert (rx, wx̄) Run 1

Restore (rx̄, wx) Run 2

Read (rx) Run 3

The first two operations forms a read write pair (rx,wx) representing the invert phase where

the initial content (content before start of test) of the FIFO buffer location under test (lut) is read

and its complement is written back to the same location. The invert phase is followed by restore

phase involving the operations (rx̄, wx), where the content of lut are read and re-inverted. At

120 Chapter 7 Test of FIFO Buffers in NoC Routers

this point of the test, the contents of lut have been flipped twice to get back the original content.

The last phase (rx) involves reading the content of lut without any write operation to follow.

7.3.1 The test algorithm

The algorithmic interpretation of the Transparent SOA-MATS++ test is presented in Algorithm

4. It describes the step by step procedure to perform the three phases of the Transparent SOA-

MATS++ test for each location of the FIFO memory. The target location for test is given by

the loop index i which varies from 0 to (N-1), where N is the number of locations in the FIFO

memory. In other words, i represents the address of the FIFO memory location presently under

test. For each location, the three test runs mentioned in Table 7.1 are performed during three

iterations of the loop index j.

Algorithm 4 : Transparent SOA-MATS++ Test Algorithm
Input: N = number of rows of the FIFO memory

1: i← 0; /* Initialization */

2: while (i ≤ N − 1) do
3: j ← 0;

4: while (j ≤ 2) do
5: temp← read(j);

6: if (j = 0) then
7: original← temp;

8: write(j, !temp);

9: else if (j = 1) then
10: result← compare(temp, original);

11: write(i, !temp);

12: else
13: result← compare(temp, original);

14: end if
15: j ← j + 1;

16: end while
17: i← i+ 1;

18: end while

For a particular FIFO memory location (present value of i), the first iteration of j performs the

invert phase, where the content of the FIFO location is inverted. The invert test phase involves

the following operations. The content of location under test (lut) is read into a temporary variable

temp and then backed-up in variable called original. Then, the inverted content of temp is written

back to lut. At this point, the content of lut is invert of content of original.

7.3 Proposed Transparent Test Generation Technique 121

In the next iteration of j, the restore phase is performed. The content of lut is re-read into

temp and compared with content of original. The comparison should result in all 1’s pattern.

However, deviation from the all 1’s pattern at any bit position indicates fault at that particular bit

position. Next, the inverted content of temp is written back to lut. Thus, the content of lut which

were inverted after the first iteration get restored after the second.

The third iteration of j performs only a read operation of lut, where the content of lut is read

into temp and compared with contents of original. At this stage of the test, all 0’s pattern in the

result signifies fault-free location while deviation at any bit position from all 0’s pattern means

fault at that particular bit position. The last read operation ensures detection of faults which

remained undetected during the earlier two test runs. At the end of the three test runs (iterations

of j), the loop index i is incremented by one to mark the start of test for the next location.

7.3.2 Fault coverage of the proposed algorithm

The Transparent SOA-MATS++ algorithm is intended for test of SAF, TF and RDF fault tests

developed during field operation of FIFO memories. The fault coverage of the algorithm is

illustrated in Figures 7.1 and 7.2. In both the figures, the word size of FIFO memory is assumed

to be of 4 bits. The text in italics against the arrows indicate the operation performed while the

text in bold font correspond to the variables used in Algorithm 4.

Fault detection during invert and restore phase

With reference to Figure 7.1, assume the data word present in location under test (lut) addressed

by i be “1010”. The test cycles begin with the invert phase (j= 0 value) during which the content

of location addressed by i is read into temp and then backed-up in the original. The data written

back to lut is the complement of content of temp. Thus, at the end of the cycle, the data present

in temp and original is “1010” while lut contains “0101”. Assume a stuck-at-1 fault at the most

significant bit (MSB) position of the word stored in lut. Thus, instead of storing “0101”, it

actually stores “1101” and as a result, the stuck-at-fault at the MSB gets excited.

During the second iteration of j, when lut is re-addressed, the data read in to temp is “1101”.

At this point, the data present in temp and original are compared (bit-wise exor-ed). An all 1’s

pattern is expected as result. Any 0 within the pattern would mean a stuck-at fault at that bit

position. This situation is illustrated in Figure 7.1, where the ex-or of “1010” and “1101” yields

a 0 at the MSB position of the result indicating a stuck-at-fault at the MSB position.

However, for cases where the initial data for a bit position is different from the faulty bit value,

the stuck-at-fault cannot be detected for the bit position after the restore phase of the test. For

example for Figure 7.1, if lut initially contains “0010”, then the stuck-at-one fault at MSB does

122 Chapter 7 Test of FIFO Buffers in NoC Routers

1 0 1 0

1 0 1 0

0 1 0 1

1

Faulty bit

0 1 1 1

faulty bit
detected

lut

temp

1 0 1 0

1 1 0 1

temp← read(J)

write(j, !temp)

compare(temp, original)

j = 0
j = 1

original← temp

original

Faulty value

temp← read(J)

result

lut

temp

Figure 7.1: Fault Detection during invert phase and restore phase of the Transparent SOA-
MATS++ test

not get excited during the second iteration of j. It thus requires one more test cycle to excite

such faults. Moreover, read disturb faults and transition faults which require flipping bits in both

directions also remain undetected after the restore phase.

Fault detection during the read phase

If a stuck-at-fault is not excited during the first two phases, it is excited during the last read phase

(j = 2) phase of the SOA-MATS++ test. Such a situation is shown in Figure 7.2. In Figure 7.2,

it is assumed that the target memory location has a stuck-at-0 fault at the MSB position. During

the invert phase, since “0101” is written into lut, the stuck-at-0 fault is not excited. However,

during the restore phase, when the complement of (“1010”) is written to the lut, the stuck-at-0

fault at the MSB position gets excited and thereafter, the value read into temp is “0010”. Thus,

during the following ex-or operation of temp and original, a 1 is obtained at the MSB of the

result indicating presence of a faulty bit at the MSB position.

The detection of RDF and TF requires writing to each bit a 0 and 1 and reading them after

each write. Thus, the Transparent version of the test for RDF and TF requires flipping bits of the

memory location in both directions and reading them after each flip. Since the test process for

7.4 Proposed test technique 123

1 0 1 0

1 0 1 0

0 1 0 1 1 0 1 0

1 1 1 1

1 0 1 0

0 1 0 1 0 0 1 0

faulty bit

0

1 0 0 0

faulty bit
detected

temp← read(J)

write(J, !temp)

compare(original, temp)

j = 0
j =1 j = 2

original← temp

Faulty value

lut

temp

original

temp← read(J) temp← read(J)

compare(original, temp)

result

write(J, !temp)

lut

temp

lut

temp

result

Figure 7.2: Fault Detection during read phase of the Transparent SOA-MATS++ test

detection of stuck-at-faults involves bit flips in both directions, the detection technique for RDF

and TF are same as for SAFs and thus is not detailed out.

7.4 Proposed test technique

In this section, we present the implementation of the Transparent SOA-MATS++ test on a 2x2

mesh type NoC as shown in Figure 7.3 (a). The network has four cores, namely, c1, c2, c3

and c4 connected to the four routers, r1, r2, r3, and r4 respectively. The switching technique

is assumed to be wormhole switching [25]. Accordingly, data packets are divided into flow

control units (flits) such as header flit, payload flit and tailer flit and are transmitted in pipeline

fashion [25]. The flit movement in the considered NoC infrastructure is assumed to require

buffering only at the input channels of routers. Thus, FIFO buffers are required only at the input

channels as shown in Figure 7.3(b).

Assume an application requires data traffic movement from core c1 to core c2 (shown by

124 Chapter 7 Test of FIFO Buffers in NoC Routers

c1 c2

c3 c4

Routing
Logic

Routing
Logic

(a)

(b)

data path

data path

From c1
To c2

r1 r2

r3 r4

r1 r2

Figure 7.3: (a) data traffic movement in 2x2 mesh type NoC (b) FIFO buffers involved during
the data movement

dotted lines in Figure 7.3 (a)). As data moves from c1 to c2, it crosses routers r1 and emphr2

(shown by dark circles in Figure 7.3 (a)) along the path. Considering wormhole switching for

data movement from c1 to c2 via the NoC, flits will have to be buffered along the path at inter-

mediate nodes before passing on to the next node. The storage will be done at the input FIFO

buffers of the routers r1 and r2 (shown by dark rectangles in Figure 7.3 (b)). This movement of

flits from c1 to core c2 along the NoC infrastructure is the normal operational cycle of the NoC

and will be henceforth referred to as normal mode of the FIFO buffers. The normal mode and

test mode of operation of a FIFO buffer are synchronized with two different clocks. The clock

used for test purpose (referred as test clk in the chapter) is a faster clock compared to the clock

required for normal mode (router clock).

The FIFO buffers are allowed to be operative in normal mode for sufficient amount of time

before initiating their test process. This delay in test initiation provides sufficient time for run-

time intermittent faults developed in FIFO buffers to transform into permanent faults. The test

7.4 Proposed test technique 125

process of a targeted FIFO buffer is initiated by a counter which switches the FIFO buffer from

normal mode to test mode by asserting a test control line (test ctrl signal) as shown in Figure

7.4. As long as the test ctrl signal remains high, the FIFO buffer remains in test mode and on

asserting the test ctrl signal low, the buffer is switched back to normal mode.

The test initiating counter is a decrementing counter synchronized with the router clock.

It is initialized with a count value corresponding to the pre-determined allowed normal cycle

time shown in Figure 7.5. On reaching the count value zero, the counter wraps around, gets

de-activated and asserts the test ctrl signal to mark the start of the test process. On completion

of the test process, the counter is activated and it starts the down count until the next test burst.

The switching of FIFO buffers from normal mode to test mode occurs after a certain pe-

riod of time without caring about the present state of the FIFO buffer. It may be argued that at

the instant of switching, the buffer may not be full, and as a result not all locations would be

tested during the test cycle. However, test initiation after the buffer gets full would cause the

following problems. First, waiting for the buffer to get full would unnecessarily delay the test

initiation process and would allow faults to get accumulated. Second, test of the entire buffer

would prolong the test time and would negatively affect the normal mode of operation. More-

over, as coupling faults are not considered in this work, the fault effect in a buffer location due to

faults in neighboring locations need not be considered. The problem of testing the entire buffer

is solved by repeating the test periodically and is explained later in this section.

NORMAL TEST

Reset test ctrl=1

test ctrl != 1
test ctrl=1

test ctrl=0

Figure 7.4: State diagram representation of the test process

7.4.1 The test process : periodic and on-line

A test burst involves series of test read and write cycles as shown in Figure 7.5. The read

and write cycles are performed respectively on the rising and falling edges of the test clock.

Consequently, a number of test clock cycles can be accommodated within the time the test ctrl

signal remains high. It requires three read and two write cycles, or in other words three cycles of

126 Chapter 7 Test of FIFO Buffers in NoC Routers

the faster test clock to perform a Transparent SOA-MATS++ test on a single location of a FIFO

buffer. However, as shown in Figure 7.5, the number of test cycles accommodated within the

test time interval is more than three. This allows performing the SOA-MATS++ test on more

than one location of the buffer. However, it may be argued that during a test burst, not all FIFO

buffer locations are tested or a test of a location can get interrupted as the test ctrl signal gets

asserted low. Such a situation is shown in Figure 7.5.

TEST

NORMAL
CTRL

RDCTRL

WRCTRL

Test Read Cycles

Test Write Cycles

Figure 7.5: Interleaved test and normal cycles

These two problems can be avoided by periodically testing the FIFO buffers. Periodic testing

of a FIFO buffer allows test of a different set of locations of the FIFO buffer in each test burst.

Every time the buffer is switched to test mode, the normal process gets interrupted. The FIFO

memory location currently addressed in normal mode, at the instant of switching, becomes the

target location for test. Since, normal operation is interrupted at different instants in different test

bursts, the locations tested in each burst would be different. Thus, repeating the test bursts for a

number times on a FIFO buffer would cover the test of each location as the number of locations

in a FIFO buffer are few (4 or 6 or 8). Periodic testing also prevents accumulation of fault in the

buffer. Periodic testing of a FIFO buffer using the Transparent SOA-MATS++ test is illustrated

in Figure 7.5. The periodicity of test bursts is maintained by the test initiation counter.

As long as the FIFO buffer remains in test mode, no data from the input channel is allowed to

be written to the buffer. Consequently, flits traveling through r1 and heading towards r2 as shown

in Figure 7.3 (a) and (b) have to wait until the test of input FIFO buffer (represented by dark

rectangles in Figure 7.3 (b)) is over. However, other FIFO buffers which are not considered for

test at that instant, continue to remain in normal mode. For example in Figure 7.3 (b), the buffers

in router r1 and r2 represented by shaded rectangles continue to be in normal mode. Thus, flits

traveling through r1 and heading towards a direction other than r2 will travel undisturbed. This

feature of the proposed test process justifies it to be an on-line test process.

7.4 Proposed test technique 127

7.4.2 Test architecture

The FIFO buffer present in each input channel of a NoC router consist of a SRAM based FIFO

memory of certain depth. During normal operation, data flits arrive through a data in line of the

buffer and are subsequently stored in different locations of the FIFO memory. On request by

the neighboring router, the data flits stored are passed on to the output port through the data out

line. Figure 7.6 (a) shows the FIFO memory with data in and data out line.

To perform the Transparent SOA-MATS++ test on the FIFO buffer, we added a test circuit,

few multiplexers and logic gates to the existing hardware as illustrated in Figure 7.6 (a). The

details of the test circuit are shown in Figure 7.6 (b). The read and write operations on the FIFO

buffer are controlled by the read enable (read en) and write enable (write en) lines respectively.

The multiplexers mu6 and mu7 select the read and write enable during the normal and test

process. During normal operation when the test ctrl is asserted low, the internal write and read

enable lines, wen int and ren int, synchronized with the router clock, provide the write and the

read enable respectively. However, during test process, the write enable and read enable are

synchronized with the test clock.

As mentioned earlier, the read and write operations during test are performed at alternate

edges of a test clock. The read operations are synchronized with the positive edges as shown

in Figure 7.6 (a). The write clk is obtained by inverting the test clock. In test mode (test ctrl

high), the test read and write addresses are generated by test address generators implemented

using gray code counters similar to the normal address generation. MUXes m4 and m5 are used

to select between normal addresses and test addresses.

Consider the situation when the FIFO buffer is in normal mode with flits being transferred

from the memory to the data out line. After a few normal cycles, the test ctrl is asserted high,

switching the buffer to test mode. As long as the buffer is in test mode, no external data is

allowed to be written to the buffer, or in other words, the buffer is locked for the test period.

As a result, the input data line for the FIFO memory is switched from the external data in line

to test data line available from the test circuit. At the switching instant, the flit which was in

the process of being transferred to the data out line is simultaneously read into the Test Circuit.

However, a one clock cycle delay is created for the flit to move to the data out line. This delay

ensures that the flit is not lost during the switching instant and is properly received by the router

which requests for it. The single cycle delay in the path of the traveling flit is created by the

D-type flip flop and the multiplexer m3 as shown in Figure 7.6 (a). The flit which is read in the

test circuit is stored in a temporary register temp and the test process begins with this flit.

The test circuit consist of a test controller, storage registers (temp, original and result), logic

circuit (comparator and inverter) and multiplexers as illustrated in Figure 7.6 (b). The operation

128 Chapter 7 Test of FIFO Buffers in NoC Routers

FIFO
MEMORY

Write Address

Normal

Generator
Write Address
Generator

Test Normal
Read Address
Generator

Test
Read Address
Generator

Register
Read Address
Register

from
inputchannel

TEST

CIRCUIT

test data

wr en

rd en
0

1
D
Q

test clk

Data out

INVALID

FLIT

test ctrl

wen int

ren int

test ctrl

test ctrl

test ctrl

test ctrl

Write Address

1 1

1

0 0

0

1

0

data

data

mu1

mu4 mu5

mu2

mu3

tmp test ctrl

1
0

1

0

wr clk

rd addr test raddrwr addr test waddr

data in

write address

read address

(a)

test clk

test clk

Controller

result

compar-
ator

test ctrl

test clk

tempdata

original

test databuff

1 0
IEbuf

inv/restore read

IEt OEt

OEr

inv/restore read
OEr

IEr

OEt

EN

(b)

Test

TEST CIRCUIT

no fault/faulty

Logic

no fault/faulty

data in

inv

OEbuf

IEr

EN

IEt

IEbuf

OEbuf

Figure 7.6: (a) Hardware implementation of the test process for the FIFO buffers (b) Implemen-
tation of test circuit

of the test circuit is explained with the help of Figure7.7. The three phases of the test process

namely invert, restore and read, discussed in the last section are represented as three states.

When the test ctrl is asserted high, the test controller moves from normal state to invert state. In

this state, the inv/restore refresh select line of the multiplexer is asserted low. This allows

the data from the data in line to be stored in temp and then backed-up in register original during

read cycle of the test clk. In the next write cycle, the contents of temp are inverted and fed to the

test data line which writes it to the FIFO buffer location. The necessary input and output enable

lines for the registers are provided by the test controller.

With test ctrl asserted high, the test controller moves from invert state to the restore state at

the end of one test clk cycle. In restore state, the contents of the temp register during the read

7.5 Experimental Results 129

cycle is delivered to the comparator by asserting the inv/restore refresh select line high.

The comparator performs bit-wise ex-or operation on the contents of temp and original and

stores the result in result register. The result register is then checked for an all-1 pattern. Any

deviation from all one pattern is reported back to the test controller which asserts a high on the

no fault/faulty denoting presence of fault in the FIFO buffer. Similar to invert state, during

the write cycle, the contents of temp are inverted and put on the test data line which writes them

in the location under test of the FIFO memory.

At the end of the second test clk cycle, with test ctrl remaining high, the test controller

moves from restore state to the read state. In this state, only a read operation is performed. The

operations are similar to the operations performed during read cycle of the restore state, except

that the contents of the result register is checked for all-0 pattern. Any deviation, is reported to

the controller which asserts the no fault/faulty high.

Reset

NORMAL

test ctrl=1

test ctrl=0

test ctrl=0

test ctrl=1

test ctrl=1

INVERT RESTORE

READ

test ctrl=0

test ctrl=1

Figure 7.7: State diagram representing operation of the test controller

7.5 Experimental Results

The performance of the mesh based NoC after addition of the test circuit is investigated in terms

of throughput using a System C based NoC simulator [57]. A prototype implementation of the

proposed test circuit has been integrated into the router-channel interface. On-line Transparent

SOA-MATS++ test is performed with synthetic self-similar data traffic. Test cost estimation of

the router has been performed in terms of the silicon area overhead of the test hardware. The

130 Chapter 7 Test of FIFO Buffers in NoC Routers

router design considered in this chapter has been taken from [57]. Each router has the following

configuration.

a) Number of global ports : 2 for corner routers, 3 for edge routers, 4 for others.

b) Number of virtual channels per link : 4

c) Number of flits per packet : 64

d) Arbitration : Round robin; Frequency : 1.5 GHz

e) Buffers : Nil in output channel.

However, for input channel, three different FIFO depth values have been considered.

Three simulation runs are performed considering input channel FIFO buffer depth of 4, 6

and 8 respectively. All routers are assumed to operate at the same speed.

7.5.1 Area estimation of the test hardware

The router design considered for this paper is taken from [57]. Therefore, the area occupied by

each router is obtained from the synthesis results provided in [57] and is shown in Table7.2.

Table 7.2: Area estimate of a router considered for the mesh type network [57]

Position Connectivity Area (mm2)

Center 5 0.331

Edge 4 0.242

Corner 3 0.22

Depending on the connectivity, the routers of the mesh network considered in [57] have been

classified as (i) center, having node degree 5, (ii) edge, having node degree 4, and (iii) corner,

having node degree 3. The three position entries of Table 7.2 correspond to the three types of

routers.

The proposed hardware for the test circuit has been described in Verilog HDL and synthe-

sized using Synopsys Design Vision supporting 90nm CMOS technology. We used the same

target technology as in [57] to ensure fair comparison of test hardware and router in terms of

area. The area estimate of different modules in the test circuit is illustrated in Table 7.3.

Each input channel of a router requires the test hardware. Table 7.4 gives the total area

occupied by additional circuitry in each input channel used for test purpose.

7.5 Experimental Results 131

Table 7.3: Area estimate of test circuit

Module Area (µm2)

32-bit register with chip enable 679

multiplexer 230

comparator (xor) 288

address generator 35

controller 488

Table 7.4: Area occupied by test hardware for each input channel

Module No. of modules Area (µm2)

register 4 2716

multiplexer 8 1840

comparator (xor) 1 288

address generator 2 70

controller 1 488

Total 5402

The area occupied by the additional test hardware is an overhead when compared to the

area of each router. Table 7.5 gives the area overhead estimates considering the three different

types of routers mentioned in [57]. Larger the connectivity of a router, more is the number of

input channels present. Thus, a router centrally located in NoC would have more number of

input channels than the ones at the side or corner. Since each input channel has a test circuit

associated with it, the area overhead due to test circuit would be larger for a centrally located

router than routers located at side or corner positions in a NoC. This situation is reflected in

entries of Table 7.5.

From Table 7.5, it is inferred that the proposed on-line test hardware for the FIFO buffers

incurs 7-9 % area overhead in each router. It may seem that for a NoC system with a number of

routers, the area overhead due to test hardware would be significant. Thus, we tried to estimate

the overall area occupied by test hardware in a NoC of a particular size. Such an estimate is

provided for a NoC of size 4x8 and presented in Table 7.6. The overall area overhead due to test

hardware is calculated using the following relation:

132 Chapter 7 Test of FIFO Buffers in NoC Routers

Table 7.5: Area overhead estimate of different routers located at different positions in a NoC

Router position area occupied by test h/w (mm2) area overhead

center 0.0270 8.1%

edge 0.0216 8.9 %

corner 0.0162 7.3%

Area overhead = (area occupied by test hardware)/ (area occupied by routers) *100 %

Thus, the calculated area overhead comes out as

Area overhead = (0.7344/ 8.724)*100% = 8.41%

The above result suggests that the increase in area of the routers due to test hardware (area

overhead) is 8.41%, which is comparable to that of area overhead associated with a single router.

Next, we consider the area overhead for the entire NoC. The area occupied by routers in a NoC

is an overhead compared to the area of the cores. Assuming each core in the 4x8 size NoC to

be of size 1 mm2, the area overhead for all routers without test hardware turns out to be 27.2%

while with test hardware the router area overhead is 29.53%.

Table 7.6: Estimate of area occupied by test hardware for a 4x8 size NoC

Router position No. of routers router area (mm2) test h/w area (mm2)

center 12 3.972 0.324

edge 16 3.872 0.3456

corner 4 0.88 0.0648

Total 8.724 0.7344

7.5.2 Throughput estimation

For evaluating the performance of a NoC based network, an System C based cycle-accurate NoC

simulator [57] has been utilized. The simulator works at the granularity of individual architec-

tural components of the router. It supports mesochronous clocking strategy where the routers are

driven by same clock frequency with varying phase. Synthetic self-similar traffic has been used

during simulation, guided by the communication requirement of cores in the application. Self

similar traffic has been observed in the burst traffic between on-chip modules in typical video

and networking applications [77]. Detailed description of such traffic can be found in [94]. The

7.5 Experimental Results 133

simulator has been utilized to compute the throughput of the network with and without the test

circuit. The results are then compared to estimate the effect of inclusion of the test circuit on the

performance of the network. The definition of Throughput considered in this chapter is the same

as in [57], i.e. Throughput = PC* PL
IP* T

where PC (total packets completed) refers to number of packets that successfully arrive at their

destination IP cores, PL (packet length) is measured in terms of number of flits, IP (number of

IP blocks) is the number of IP blocks involved in the communication and T(total time) denotes

the simulation time (in clock cycles). Hence, the throughput is represented as flits/cycle/IP.

Table 7.7 shows the throughput results for a mesh type NoC of size 4x8. Packets sent refers

to number of packets sent from a source core during a particular application. Packets received

is the number of packets received at the destination core after the required number of simulation

cycles. The difference of packets sent and received gives the number of packets in transit, or in

other words, flits that have not yet reached the destination core.

Simulations have been performed with self similar traffic with the routers having specifica-

tions as mentioned above. FIFO depth (number of locations of FIFO memory) is varied as 4, 6

and 8. Each simulation has been run for 200,000 clock cycles. As FIFO depth increases, more

packets are stored in FIFO memory of the routers. As a result, the number of packets received

at the destination core increases, eventually increasing the throughput as reflected in Table 7.7.

Then, we tried to investigate the effect on overall throughput by including the test circuit

within the routers. Table 7.8 shows the throughput results for the same 4x8 size NoC with self-

similar traffic. However, the routers considered in this case included the test circuit and tests

were performed at periodic intervals. We varied the periodicity of tests to judge the effect of

frequent testing on performance of the NoC. The periodicity of test was chosen judiciously to

explore the effects due to frequent tests (5000ms), not so frequent (20,000ms) and delayed test

period (100000 ms). Moreover, tests were repeated for varying FIFO depths.

From the definition of throughput mentioned earlier, it can be observed that the throughput

of the NoC during an application run is influenced by the number of participating IP blocks

(cores). Thus, we were motivated to study the effect of number of cores participating in the

on-line test on overall throughput of the NoC. To perform the experiment, we partitioned the

NoC in two partitions and allowed the SOA-MATS++ test to be operated on the partitions at

different times. The throughput was estimated after both partitions were tested. The experiment

was repeated for four partitions. The throughput estimation results for two partitions and four

partitions are illustrated in Table 7.9 and Table 7.10 respectively. The inferences drawn from the

results of Table 7.7, 7.8, 7.9 and 7.10 are discussed in the next subsection.

134 Chapter 7 Test of FIFO Buffers in NoC Routers

Table 7.7: Throughput estimation of the NoC without test circuit

FIFO depth Packets sent Packets received Throughput

4 4908 4885 0.244

6 5646 5625 0.281

8 5974 5949 0.297

7.5.3 Analysis

Comparing the first row entries of Table 7.7 and Table 7.8, we observe that for FIFO depth 4, the

throughput drops by 5.3% in case FIFO memory is tested after every 5000ms period. However,

as periodicity of test is delayed, the throughput becomes comparable to result obtained when no

tests were performed. This is reflected by comparing first row entry of Table 7.7 with second and

third row entries of Table 7.8. Similar nature of test is observed for FIFO depths of 6 and 8 as

reflected by the data in Table 7.8. Thus, it may be concluded that if on-line Transparent March

tests are frequently performed on FIFO memory, the overall throughput of the NoC decreases.

However, the interval between occurrence of two run-time permanent faults is large enough to

avoid frequent test of the buffers.

When we consider performing test on two partitions of the NoC at different times, the

throughput results after test were almost comparable with the results when no partitioning was

done. No significant changes in the throughput results were obtained even by partitioning the

NoC into four partitions. The probable reason for such results is that even if the NoC was parti-

tioned into two or four partitions, the source and the destination cores were included in the same

partition. Thus, all cores which participated during a test cycle belonged to the same partition.

As a result, the throughput results obtained after partitioning the NoC remained same as results

without partition.

7.6 Summary

This chapter highlighted the requirement of in-field testing of FIFO buffers present within the

routers of the NoC infrastructure and discussed an efficient on-line test proposal for the same.

The proposal applied a two pronged approach. First, a Transparent SOA-MATS++ test genera-

tion algorithm has been proposed that can detect run-time permanent faults developed in SRAM

based FIFO memories. Next, the proposed Transparent test is utilized to perform on-line and

periodic test of FIFO memory present within the routers of the NoC. Periodic testing of buffers

7.6 Summary 135

Table 7.8: Throughput estimation of the NoC with test circuit

FIFO depth interval of test (ms) Packets sent Packets received Throughput

4 5000 4749 4680 0.231

4 20000 4874 4842 0.241

4 100000 4929 4903 0.245

6 5000 5527 5466 0.270

6 20000 5660 5628 0.280

6 100000 5652 5637 0.281

8 5000 5942 5839 0.289

8 20000 5998 5944 0.296

8 100000 6078 6078 0.302

Table 7.9: Throughput estimation of the NoC having two partitions with different test start times

FIFO depth Interval of test (ms) Packets sent Packets received Throughput

4 5000 4792 4704 0.232

4 20000 4865 4823 0.239

4 100000 4899 4826 0.241

6 5000 5649 5560 0.275

6 20000 5706 5667 0.282

6 100000 5738 5715 0.285

8 5000 5821 5721 0.282

8 20000 5872 5822 0.289

8 100000 6024 6037 0.299

136 Chapter 7 Test of FIFO Buffers in NoC Routers

Table 7.10: Throughput estimation of the NoC having four partitions with different test start
times

FIFO depth Interval of test (ms) Packets sent Packets received Throughput

4 5000 4783 4696 0.223

4 20000 4941 4896 0.244

4 100000 4945 4920 0.245

6 5000 5530 5443 0.268

6 20000 5703 5664 0.282

6 100000 5726 5699 0.284

8 5000 5899 5798 0.286

8 20000 5872 5822 0.293

8 100000 6024 6037 0.301

prevents accumulation of faults and also allows test of each location of the buffer. On-line test-

ing allows modules of NoC which do not participate in test to function normally.

Simulation results reveal that periodic testing of FIFO buffers do not have much effect on the

overall throughput of the NoC except when buffers are tested too frequently. Even when buffers

are frequently tested, throughput drops only by 5%. The test hardware for the proposed on-line

test of the FIFO buffers incurs 7-9 % area overhead in each router. However, when compared

to the overall area of all routers in the NoC, the area overhead due to test hardware increases by

only 8%. Thus, the proposed Transparent SOA-MATS++ test and its implementation in test of

FIFO buffers of routers provides a cost effective solution for detection of run-time permanent

faults in FIFO buffers of routers. The throughput results obtained after partitioning the NoC

remained same as results without partition. As already discussed, the probable reason could be

presence of sender and receiver core in the same partition.

The previous chapters have covered improved test techniques for memory cores intercon-

nected using NoC, either by improving the test mechanism or by re-using on-chip resources for

test and the present chapter covers testing of memory cores present in the NoC infrastructure.

Thus, the focus of the thesis to provide a system level test solution for NoC based memory

cores has been provided. The next chapter provides the summary of contributions of thesis and

provides directions for future work.

Chapter 8

Conclusions and Future Work

The focus of the thesis has been to devise improved test techniques for NoC based memory

systems which include SRAM or DRAM cores interconnected using NoC and FIFO buffers

which are present within the routers of the NoC infrastructure. The objective of the presented

work has been to find the research gap in the existing works related to the topic and bring about

improvements in them by reducing the test cost. The test cost estimation has been done in terms

of area overhead, test time and power dissipation during test.

Three directions of improvement have been proposed in the thesis. The first direction has

been innovations in test architectures involving efficient re-use of the communication medium

for test purpose while keeping test time and power under check, such as the distributed and

hybrid testing scheme proposed in Chapter 4. The second direction of improvement has been

the re-use of on-chip circuit for test purpose to perform both off-line and on-line test of DRAMs,

such as the techniques proposed in Chapter 5 and 6. The third direction of improvement has been

along the algorithmic way. The standard March based tests have been modified to transparent

tests and then structured accordingly to suit their application on DRAMs and FIFO buffers as

proposed in Chapter 7.

8.1 Summary of the Contributions

A chapter-wise summary of the contributions of the thesis is presented as follows.

8.1.1 NoC based MBIST

In Chapter 4, a two-level test architecture has been proposed for memory cores interconnected

by a mesh type NoC. The contributions of the chapter are as follows:

137

138 Chapter 8 Conclusions and Future Work

a) Test Architecture: A distributed MBIST architecture has been proposed for testing mem-

ory cores interconnected using NoC. The memory cores form different groups based on

distance and timing constraints and each group has a dedicated BIST controller. A fixed

number of BIST controllers are placed at calculated locations and each controller is shared

by a group of memory cores. The BIST controller performs utilizes a hybrid test technique

where March test is perfromed on all on all the cores in a group parallely while the groups

are tested in a pipeline fashion. The hybrid test technique and the distributed BIST achi-

tecture allows the test of memory cores to be performed at much lesser time than required

in dedicated BIST architectures.

b) Memory Grouping Algorithm: The efficient utilization of the distributed and hybrid test

technique depends on the judicious choice of the memory grouping algorithm which is

governed by a test objective. Initially the memory grouping problem is treated as a place-

ment problem considering reduction of test instruction transport latency as the only ob-

jective. The locations of the BIST controllers are computed using the Particle Swarm Op-

timization(PSO) algorithm and memory cores are assigned to the controllers based on a

greedy approach. Experimental results for transport latency obtained from the PSO based

approach is compared with heuristic allocation technique of assigning cores which are

physically close to the controllers for reduced test time and referred to as Neighbourhood

Allocation (NA) technique.

c) Power Aware Test Schedule: A test schedule for the proposed BIST architecture has been

proposed such that the test power is kept within the power budget. Experiments performed

on ITC’02 benchmark circuit confirms that the proposed test schedule performs a more

power constrained test as compared to dedicated BIST technique.

8.1.2 Re-using refresh for off-line test of DRAMs

Chapter 5 presents a BIST architecture for DRAMs has been proposed that utilizes the exisiting

on-chip refresh circuitry of DRAM. The contributions are follows.

a) The refresh re-use technique overcomes the requirement of additional Design-For-Testability

hardware as tests are performed via the on-chip refresh circuit.

b) The read cycles during the DRAM testing are avoided as read cycles get performed during

refresh cyles. As a result, the entire time between two refresh cycles is allowed for write

operation.

8.1 Summary of the Contributions 139

c) The increase in write cycle time is utilized in performing power aware test of a number

of DRAM cores embedded in SoCs. Analytic predictions indicate that the refresh re-use

technique when applied for testing a number of DRAMs, allows parallel write operation

on a larger number of DRAMs within a given test power budget as compared to normal

BIST approaches.

8.1.3 Refresh re-use for on-line test of DRAMs

Chapter 6 presents a proposal which involves extension of the refresh re-use based technique to

perform performing periodic transparent testing of DRAMs. The contributions are as follows.

a) A transparent March test generation algorithm has been proposed for DRAMs targeting

permanent faults developed during DRAM operation. The proposed algorithm generates a

more efficient word-oriented transparent March tests compared to the conventional trans-

parent test generation techniques by avoiding signature based prediction phase.

b) The read followed by write operations performed during the refresh burst cycles of the

DRAM are re-used for the proposed transparent March tests. Re-using the the refresh

cycles for test purpose avoids waiting for idle cycles of the processor to perform the test

as required in other proposed online transparent test techniques. Re-using refresh allows

periodic testing of DRAM without interruption and test finishes within a definite time.

c) A prototype implementation of the refresh re-use based test circuit is proposed. Re-using

the refresh circuit overcomes requirement of additional DFT hardware. Therefore, the

proposed refresh re-use based transparent test technique provides a cost effective solution

by providing facility for periodic tests of DRAM without requiring costly test such as

ECC and without additional test hardware.

8.1.4 Test of FIFO buffers in NoC routers

Chapter 7 provides a cost-effective solution for detection of run-time permanent faults in FIFO

buffers of routers. An on-line transparent test technique has been proposed that is repeated

periodically to performs active fault detection over the entire FIFO buffer. The contributions

have been as follows.

a) A transparent SOA-MATS++ test generation algorithm is proposed targeting in-field per-

manent faults developed in SRAM based FIFO memories.

b) The proposed transparent test is utilized to perform online and periodic test of FIFO mem-

ory present within the routers of the NoC.

140 Chapter 8 Conclusions and Future Work

c) The performance of the NoC after addition of the test circuit is investigated in terms of

throughput using cycle accurate SystemC based simulator. Simulation results show that

periodic testing of FIFO buffers do not have much effect on the overall throughput of

the NoC except when buffers are tested too frequently. Even when buffers are frequently

tested, throughput drops only by 5%.

d) The area overhead of the test circuit is compared with respect to the area of an individual

router and the overall area of the NoC infrastructure. The test hardware for the proposed

on-line test of the FIFO buffers incurs 7-9% area overhead in each router. However, when

compared with the overall area of all routers in the NoC, the area overhead due to test

hardware increases by only 8%.

8.2 Directions of future work

The presented thesis aimed at providing an offline and online cost effective solution for testing

NoC based memory cores. However, during the course of the research work, it has been realized

that there have been issues that were left unattended and further research needs to be done. These

issues have been listed as follows.

a) Experiments on the benchmark circuit for the proposed test schedule in Chapter 4 have

been performed for only March elements with alternate read and write operations. The test

schedule needs to be tested for more complex March tests involving elements consisting

of more than one read write elements.

b) The test scheduling algorithm of Chapter 4 needs to be applied on a number of benchmark

circuits involving more than two memory groups.

c) Testing without repair is incomplete. To this effect, the future work should be directed

towards repair schemes for memories, including the FIFO buffers, detected with run-time

permanent faults.

Bibliography

[1] On-Chip Networks Bibliography. http://www.cl.cam.ac.uk/∼rdm34/onChipNetBib/
browser.htm#Jantsch:2003:NOC. Accessed: 2014-05-30.

[2] Various Methods of DRAM Refresh. In Technical Note TN-04-30. Micron Technology,
Inc., 1999.

[3] R. D. Adams. High Performance Memory Testing: Design Principles, Fault Modeling
and Self Test. New York, USA, 2002.

[4] R. Aitken. A Modular Wrapper Enabling High Speed BIST and Repair for Small Wide
Memories. In Proceedings of International Test Conference, pages 997 – 1005, October
2004.

[5] A. M. Amory, C. Lazzari, M. Lubaszewski, and F. G. Moraes. A New Test Scheduling
Algorithm Based on Networks-on-Chip as Test Access Mechanisms. Journal of Parallel
Distributed Computing, 71(5):675–686, 2011.

[6] S. Bahl and V. Srivastava. Self-Programmable Shared BIST for Testing Multiple Memo-
ries. In 13th European Test Symposium (ETS), pages 91 –96, May 2008.

[7] S. Barbagallo, M. L. Bodoni, D. Medina, G. de Blasio, M. Ferloni, F. Fummi, and D. Sci-
uto. A Parametric Design of a Built-in Self-Test FIFO Embedded Memory. In Proceed-
ings of the Workshop on Defect and Fault-Tolerance in VLSI Systems (DFT ’96), pages
221–229, 1996.

[8] L. Benini and G. D. Micheli. Chapter 1 - Networks on Chip. In Networks on Chips, pages
1 – 22. Morgan Kaufmann, San Francisco, 2006.

[9] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and M. Bodoni. Programmable Built-in
Self-Testing of Embedded RAM Clusters in System-on-Chip Architectures. Communi-
cations Magazine, IEEE, 41(9):90 – 97, September 2003.

[10] P. Bernardi, M. Grosso, M. Reorda, and Y. Zhang. A Programmable BIST for DRAM
Testing and Diagnosis. In Proceedings of International Test Conference, pages 1 –10,
November 2010.

[11] A. Bondavalli, S. Chiaradonna, F. D. Giandomenico, and F. Grandoni. Threshold-Based
Mechanisms to Discriminate Transient from Intermittent Faults. IEEE Transaction on
Computers, 49(3):230–245, 1998.

141

http://www.cl.cam.ac.uk/~rdm34/onChipNetBib/browser.htm#Jantsch:2003:NOC
http://www.cl.cam.ac.uk/~rdm34/onChipNetBib/browser.htm#Jantsch:2003:NOC

142 BIBLIOGRAPHY

[12] S. Borri, M. Hage-Hassan, L. Dilillo, P. Girard, S. Pravossoudovitch, and A. Virazel.
Analysis of Dynamic Faults in Embedded-SRAMs: Implications for Memory Test. Jour-
nal of Electronic Testing, 21(2):169–179, April 2005.

[13] M. Bushnell and V. Agrawal. Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits. Springer, 2000.

[14] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai. BRAINS: A
BIST Compiler for Embedded Memories. In Proceedings of International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), pages 299 –307, 2000.

[15] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu. Auto-
matic Generation of Memory Built-In Self-Test Cores for System-on-Chip. In Proceed-
ings of the 10th Asian Test Symposium, pages 91 –96, 2001.

[16] H. Cheung and S. Gupta. A BIST Methodology for Comprehensive Testing of RAM
with Reduced Heat Dissipation. In Proceedings of International Test Conference, pages
386–395, Oct 1996.

[17] T.-F. Chien, W.-C. Chao, C.-M. Li, Y.-W. Chang, K.-Y. Liao, M.-T. Chang, M.-H. Tsai,
and C.-M. Tseng. BIST Design Optimization for Large-Scale Embedded Memory Cores.
In IEEE/ACM International Conference on Computer-Aided Design, pages 197–200,
November 2009.

[18] B. Cockburn and Y.-F. Sat. A Transparent Built-In Self-Test Scheme for Detecting Single
V-Coupling Faults in RAMs. In Proceedings of the International Workshop on Memory
Technology, Design and Testing, pages 119–124, 1994.

[19] B. Cockburn and Y.-F. Sat. Synthesized Transparent BIST for Detecting Scrambled
Pattern-Sensitive Faults in RAMs. In Proceedings of International Test Conference, pages
23 –32, October 1995.

[20] C. Constantinescu. Impact of Intermittent Faults on Nanocomputing Devices. In Pro-
ceedings of the Workshop on Dependable and Secure Nanocomputing (DSN 2007), 2007.

[21] F. Corno, M. Damiani, L. Impagliazzo, P. Prinetto, M. Rebaudengo, G.Sartore, and
M. Reorda. On-Line Testing of An Off-The-Shelf Microprocessor Board for Safety-
Critical Applications. In Second European Dependable Computing Conference (EDCC-
2), pages 190–201. 1996.

[22] E. Cota, L. Carro, F. Wagner, M. Lubaszewski, F. W. M. Lubaszewski, P. Depto, and E. El-
trica. BISTed Cores and Test Time Minimization in NOC-based Systems. In Proceedings
of International Workshop on Test Resource Partioning (TRP), pages 1–6, 2003.

[23] E. Cota, M. Kreutz, C. Zeferino, L. Carro, M. Lubaszewski, and A. Susin. The Impact of
NoC Reuse on the Testing of Core-Based Systems. In Proceedings of the 21st VLSI Test
Symposium, pages 128 – 133, April- May 2003.

[24] E. Cota and C. Liu. Constraint-Driven Test Scheduling for NoC-Based Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(11):2465–2478, November 2006.

BIBLIOGRAPHY 143

[25] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks.
In Proceedings of the 38th Annual Design Automation Conference, pages 684–689, 2001.

[26] R. Dekker, F. Beenker, and L. Thijssen. A Realistic Fault Model and Test Algorithms
for Static Random Access Memories. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 9(6):567–572, June 1990.

[27] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory. IBM Microelectronics Division, July 1997.

[28] L.-M. Denq and C.-W. Wu. A Hybrid BIST Scheme for Multiple Heterogeneous Em-
bedded Memories. In Proceedings of the 16th Asian Test Symposium, pages 349–354,
October 2007.

[29] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and M. B. Hage-Hassan. Data
Retention Fault in SRAM Memories: Analysis and Detection Procedures. In Proceedings
of the 31st VLSI Test Symposium (VTS), pages 183–188, 2005.

[30] B. H. Fang and N. Nicolici. Power-Constrained Embedded Memory BIST Architecture.
In Proceedings of the 18th International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT), pages 451–458, November 2003.

[31] S. Ghosh and K. Roy. Parameter Variation Tolerance and Error Resiliency: New Design
Paradigm for the Nanoscale Era. Proceedings of the IEEE, 98(10):1718–1751, 2010.

[32] A. Goor. Testing Semiconductor Memories: Theory and Practice. J. Wiley & Sons, 1991.

[33] M. Gottscho, A. Kagalwalla, and P. Gupta. Power Variability in Contemporary DRAMs.
IEEE Embedded Systems Letters, 4(2):37–40, 2012.

[34] C. Grecu, P. P. Pande, B. Wang, A. Ivanov, and R. Saleh. Methodologies and Algorithms
for Testing Switch-Based NoC Interconnects. In Proceedings of the 20th International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT), pages 238–246, 2005.

[35] A. R. Guner and M. Sevkli. A discrete particle swarm optimization algorithm for un-
capacitated facility location problem. Journal of Artificial Evol. App., 2008:10:1–10:9,
January 2008.

[36] S. Hamdioui. Testing Static Random Access Memories: Defects, Fault Models and Test
Patterns. Frontiers in Electronic Testing. Springer, 2010.

[37] S. Hamdioui, Z. Al-ars, Ad, J. Van, D. Goor, M. Rodgers, and A. Ivanov. Dynamic Faults
in Random-Access-Memories:Concept, Fault Models and Tests. Journal of Electronic
Testing: Theory and Applications, 19(2):2003, 2003.

[38] S. Hamdioui, A. J. Van de Goor, and M. Rodgers. March SS: A Test for All Static Simple
RAM Faults. In Proceedings of the IEEE International Workshop on Memory Technology,
Design and Testing (MTDT 2002), pages 95–100, 2002.

[39] S. Hamdioui, R. Wadsworth, J. D. Reyes, and A. J. Van De Goor. Memory fault modeling
trends: A case study. Journal of Electronic Testing : Theory and Applications, 20(3):245–
255, June 2004.

144 BIBLIOGRAPHY

[40] R. Hassan, B. E. Cohanim, and O. L. de Weck. Comparison of Particle Swarm Optimiza-
tion and the Genetic Algorithm. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, number AIAA-2005-1897, Austin, Texas,
April 18-21 2005. American Institute of Aeronautics and Astronautics.

[41] S. Hellebrand, H. Wunderlich, A. Ivaniuk, Y. Klimets, and V. Yarmolik. Efficient Online
and Offline Testing of Embedded DRAMs. IEEE Transactions on Computers, 51(7):801–
809, July 2002.

[42] S. Hellebrand, H.-J. Wunderlich, A. Ivaniuk, Y. Klimets, and V. Yarmolik. Error Detecting
Refreshment for Embedded DRAMs. In Proceedings of the 17th VLSI Test Symposium,
pages 384 –390, April 1999.

[43] M. Herve, P. Almeida, F. Kastensmidt, E. Cota, and M. Lubaszewski. Concurrent Test
of Network-on-Chip Interconnects and Routers. In 11th Latin American Test Workshop
(LATW), pages 1–6, 2010.

[44] D. Huang, W.-B. Jone, and S. Das. An Efficient Parallel Transparent BIST Method for
Multiple Embedded Memory Buffers. In Proceedings of the Fourteenth International
Conference onVLSI Design, pages 379–384, 2001.

[45] D. C. Huang and W. B. Jone. A Parallel Transparent BIST Method for Embedded Mem-
ory Arrays by Tolerating Redundant Operations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(5):617–628, November 2006.

[46] Y.-J. Huang, C.-W. Chou, and J.-F. Li. A Low-Cost Built-in Self-Test Scheme for an
Array of Memories. In Proceedings of the 15th European Test Symposium (ETS), pages
75 –80, May 2010.

[47] Y.-J. Huang and J.-F. Li. A Low-Cost Pipelined BIST Scheme for Homogeneous RAMs
in Multicore Chips. In Proceedings of the 17th Asian Test Symposium, pages 357–362,
2008.

[48] Y.-J. Huang, Y.-C. You, and J.-F. Li. Enhanced IEEE 1500 Test Wrapper for Testing
Small RAMs in SOCs. In Proceedings of the International SOC Conference (SOCC),
pages 236 –240, September 2010.

[49] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic Rays Don’t Strike Twice:
Understanding the Nature of DRAM Errors and the Implications for System Design. In
Proceedings of the 17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 111–122, 2012.

[50] J. e. Inoue. Parallel Testing Technology for VLSI Memories. In Proceedings of Interna-
tional Test Conference, pages 1,066–1,071, 1987.

[51] W. Jone, D. Huang, S. Wu, and K. Lee. An Efficient BIST Method for Distributed Small
Buffers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(4):512
–515, August 2002.

BIBLIOGRAPHY 145

[52] M. R. Kakoee, V. Bertacco, and L. Benini. A Distributed and Topology-Agnostic Ap-
proach for On-Line NoC Testing. In Proceedings of the Fifth ACM/IEEE International
Symposium on Networks-on-Chip, pages 113–120, 2011.

[53] M. G. Karpovsky, A. J. van de Goor, and V. N. Yarmolik. Pseudo-Exhaustive Word-
oriented DRAM Testing. In Proceedings of the European Design and Test Conference,
1995.

[54] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proceedings of IEEE
International Conference on Neural Networks, volume 4, pages 1942 –1948, Novem-
ber/December 1995.

[55] A. Kokrady, C. Ravikumar, and N. Chandrachoodan. Layout-Aware and Programmable
Memory BIST Synthesis for Nanoscale System-on-Chip Designs. In Proceedings of the
17th Asian Test Symposium (ATS ’08), pages 351 –356, November 2008.

[56] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and
A. Hemani. A Network-on-Chip Architecture and Design Methodology. In Proceedings
of the IEEE Computer Society Annual Symposium on VLSI, ISVLSI ’02, pages 105–112,
2002.

[57] S. Kundu, J. Soumya, and S. Chattopadhyay. Design and Evaluation of Mesh-of-Tree
Based Network-on-Chip Using Virtual Channel Router. Microprocessors and Microsys-
tems, 36(6):471–488, August 2012.

[58] J.-F. Li. Transparent-Test Methodologies for Random Access Memories Without/With
ECC. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
26(10):1888–1893, 2007.

[59] H.-N. Liu, Y.-J. Huang, and J.-F. Li. Memory Built-In Self Test In Multicore Chips With
Mesh-Based Networks. IEEE Micro, 29(5):46–55, September-October 2009.

[60] H.-C. Lu and J.-F. Li. A Programmable Online/Off-Line Built-In Self-Test Scheme for
RAMs with ECC. In Proceedings of the International Symposium on Circuits and Systems
(ISCAS), pages 1997–2000, 2009.

[61] X. W. Luang-Terng Wang, Chenh-Wen Wu, editor. VLSI Test Principles and Architec-
tures. Morgan Kaufmann, New York, NY, USA, 2006.

[62] A. Maheshwari, W. Burleson, and R. Tessier. Trading off Transient Fault Tolerance and
Power Consumption in Deep Submicron (DSM) VLSI Circuits. IEEE Transactions on
Very Large Scale Integrated Systems, 12(3):299–311, March 2004.

[63] E. Marinissen, V. Iyengar, and K. Chakrabarty. A Set of Benchmarks for Modular Testing
of SoCs. In Proceedings of the International Test Conference, pages 519 – 528, 2002.

[64] M.G.Karpovsky and V.N.Yarmolik. Transparent Memory BIST. In Proceedings of the In-
ternational Workshop on Memory Technology, Design and Testing, pages 106–111, 1994.

[65] G. Micheli, P. Pande, C. G. A. Ivanov, and R. Saleh. Design, Synthesis and Test of
Networks-on-Chips. IEEE Design and Test of Computers, 22(5):404–413, September
2005.

146 BIBLIOGRAPHY

[66] T. Mitra. Dynamic Random Access Memory: A Survey. Research Proficiency Examina-
tion Report, SUNY at Stony Brook, March 1999.

[67] M. Miyazaki, T. Yoneda, and H. Fujiwara. A Memory Grouping Method for Sharing
Memory BIST Logic. In Proceedings of the Asia and South Pacific Conference on Design
Automation (ASPDAC), pages 671–676, January 2006.

[68] S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt. Cache Scrubbing in Micropro-
cessors: Myth or Necessity? In Proceedings of the 10th IEEE Pacific Rim International
Symposium on Dependable Computing, pages 37–42, 2004.

[69] B. Nadeau-Dostie, A. Silburt, and V. Agarwal. A Serial Interfacing Technique for Built-In
and External Testing of Embedded Memories. In Proceedings of the Custom Integrated
Circuits Conference, pages 22.2/1 –22.2/5, May 1989.

[70] G. Nazarian. On-Line Testing of Routers in Networks-on-Chip. Master’s thesis, Electrical
Engineering, Delft University of Technology, 2008.

[71] M. Nicolaidis. Theory of Transparent BIST for RAMs. IEEE Transactions on Computers,
45(10):1141–1156, October 1996.

[72] R. Nourmandi-Pour, N. Mousavian, and A. Khadem-Zadeh. BIST for Network-on-
Chip Communication Infrastructure Based on Combination of Extended IEEE 1149.1
and IEEE 1500 Standards. Microelectronics Journal, 42(5):667–680, 2011.

[73] T. Ohsawa, T. Furuyama, Y. Watanabe, H. Tanaka, N. Kushiyama, K. Tsuchida, Y. Naga-
hama, S. Yamano, T. Tanaka, S. Shinozaki, and K. Natori. A 60-ns 4-mbit CMOS DRAM
with Built-in Self Test Function. IEEE Journal of Solid-State Circuits, 22(5):663 – 668,
October 1987.

[74] J. Pouget, E. Larsson, and Z. Peng. Multiple-Constraint Driven System-on-Chip Test
Time Optimization. Journal of Electronic Testing: Theory and Applications, 21(6):599–
611, 2005.

[75] P. Prinetto, F. Corno, and M. Sonza Reorda. Fault Tolerant and BIST Design of a FIFO
Cell. In Proceedings of the Conference on European Design Automation, pages 233–238,
1996.

[76] R. Sable, R. Saraf, R. Parekhji, and A. Chandorkar. Built-in Self-Test Technique for Se-
lective Detection of Neighbourhood Pattern Sensitive Faults in Memories. In Proceedings
of 17th International Conference on VLSI Design, pages 753 – 756, 2004.

[77] P. Sahu, T. Shah, K. Manna, and S. Chattopadhyay. Application Mapping Onto Mesh-
Based Network-on-Chip Using Discrete Particle Swarm Optimization. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 22(2):300–312, February 2014.

[78] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM Errors in the Wild : A Large-Scale
Field Study. In Proceedings of the 11th International Joint Conference on Measurement
and Modeling of Computer Systems, pages 193–204, 2009.

BIBLIOGRAPHY 147

[79] D. Sigüenza-Tortosa, T. Ahonen, and J. Nurmi. Issues in the Development of a Practical
NoC: The Proteo Concept. Integration VLSI Journal, 38(1):95–105, October 2004.

[80] S. P. Singh, S. Bhoj, D. Balasubramaniam, T. Nagda, D. Bhatia, and P. Balsara. Network
Interface for NoC Based Architectures. International Journal of Electronics, 94(5):531–
547, 2007.

[81] M. Spica and T. M. Mak. Do We Need Anything More Than Single Bit Error Correction
(ECC)? In Records of the International Workshop on Memory Technology, Design and
Testing, pages 111–116, 2004.

[82] T. Sridhar. A New Parallel Test Approach for Large Memories. IEEE Design and Test,
3(4):15–22, July 1986.

[83] V. Sridharan and D. Liberty. A Study of DRAM Failures in the Field. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–11, November 2012.

[84] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS Design
Styles. IEEE Design and Test of Computers, 24(5):418–428, 2007.

[85] M. Tehranipoor, M. Nourani, and N. Ahmed. Low Transition LFSR for BIST-Based
Applications. In Proceedings of the 14th Asian Test Symposium, ATS ’05, pages 138–
143, 2005.

[86] K. Thaller. A Highly-Efficient Transparent Online Memory Test. In Proceedings of IEEE
International Test Conference, pages 230–239, November 2001.

[87] K. Thaller and A. Steininger. A Transparent Online Memory Test for Simultaneous Detec-
tion of Functional Faults and Soft Errors in Memories. IEEE Transactions on Reliability,
52(4):413–422, 2003.

[88] A. van de Goor, M. Abadir, and A. Carlin. Minimal Test for Coupling Faults in Word-
Oriented Memories. In Proceedings of Design, Automation and Test in Europe (DATE),
pages 944–948, 2002.

[89] A. van de Goor and I. Tlili. March Tests for Word-oriented Memories. In Proceedings of
Design, Automation and Test in Europe, pages 501 –508, February 1998.

[90] A. J. van de Goor. Testing Semiconductor Memories: Theory and Practice. John Wiley
& Sons, Inc., New York, NY, USA, 1991.

[91] A. J. Van de Goor. An Industrial Evaluation of DRAM Tests. IEEE Design Test of
Computers, 21(5):430–440, September 2004.

[92] A. J. Van de Goor, I. Schanstra, and Y. Zorian. Functional Test for Shifting-Type FIFOs.
In Proceedings of European Design and Test Conference, pages 133–138, 1995.

[93] A. J. Van de Goor and Y. Zorian. Functional Tests for Arbitration SRAM-Type FIFOs.
In Proceedings of First Asian Test Symposium (ATS), pages 96–101, September 1992.

148 BIBLIOGRAPHY

[94] G. Varatkar and R. Marculescu. On-Chip Traffic Modeling and Synthesis for MPEG-2
Video Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
12(1):108–119, January 2004.

[95] B. Wang and Q. Xu. Test/Repair Area Overhead Reduction for Small Embedded SRAMs.
In Procedings of 15th Asian Test Symposium, pages 37 –44, November 2006.

[96] C.-W. Wang, R.-S. Tzeng, C.-F. Wu, C.-T. Huang, C.-W. Wu, S.-Y. Huang, S.-H. Lin, and
H.-P. Wang. A Built-in Self-Test and Self-Diagnosis Scheme for Heterogeneous SRAM
Clusters. In Proceedings of the Proceedings of 10th Asian Test Symposium (ATS), pages
103 –108, 2001.

[97] J. Wei, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Comparing the Effects of
Intermittent and Transient Hardware Faults on Programs. In Proceedings of the 41st
International Conference on Dependable Systems and Networks Workshops (DSN-W),
pages 53–58, 2011.

[98] P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters. Design and DFT of a High-
Speed Area-Effficient Embedded Asynchronous FIFO. In Proceedings of Design Au-
tomation and Test in Europe (DATE), pages 853–858, 2007.

[99] Y. Wu and A. Ivanov. Low Power SoC Memory BIST. In Proceedings of IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 197–205, October 2006.

[100] S. Yarmolik and V. Yarmolik. Modified Gray and Counter Sequences for Memory Test
Address Generation. In Proceedings of the International Conference on Mixed Design of
Integrated Circuits and System, pages 572 –576, June 2006.

[101] V. Yarmolik, S. Hellebrand, and H.-J. Wunderlich. Self-Aadjusting Output Data Cmpres-
sion: An Efficient BIST Technique for RAMs. In Proceedings of the Design, Automation
and Test in Europe (DATE), pages 173–179, February 1998.

[102] V. N. Yarmolik, I. V. Bykov, S. Hellebrand, and H.-J. Wunderlich. Transparent Word-
Oriented Memory BIST Based on Symmetric March Algorithms. In Third European
Dependable Computing Conference (EDCC-3), pages 339–350, 1999.

[103] D. Yeh, L.-S. Peh, S. Borkar, J. Darringer, A. Agarwal, and W.-m. Hwu. Thousand-Core
Chips. IEEE Design Test of Computers, 25(3):272 –278, May-June 2008.

[104] T. Yoneda, Y. Fukuda, and H. Fujiwara. Test Scheduling for Memory Cores with Built-In
Self-Repair. In Proceedings of the 16th Asian Test Symposium (ATS ’07), pages 199 –206,
oct. 2007.

[105] D. H. Yoon and M. Erez. Memory Mapped ECC: Low-Cost Error Protection for Last
Level Caches. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, pages 116–127, 2009.

[106] Y. You and J. Hayes. A Self-Testing Dynamic RAM Chip. IEEE Journal of Solid-State
Circuits, 20(1):428 –435, February 1985.

BIBLIOGRAPHY 149

[107] L. Zaourar, J. Chentoufi, Y. Kieffer, A. Wenzel, and F. Grandvaux. A Shared BIST Op-
timization Methodology for Memory Test. In Proceedings of the 15th European Test
Symposium (ETS), page 255, May 2010.

[108] L. Zaourar, Y. Kieffer, and A. Wenzel. A Multi-Objective Optimization for Memory BIST
Sharing using a Genetic Algorithm. In Proceeedings of the 17th International On-Line
Testing Symposium (IOLTS), pages 73 –78, July 2011.

[109] Y. Zorian, A. J. van de Goor, and I. Schanstra. An Effective BIST Scheme for Ring-
Address Type FIFOs. In Proceedings of International Test Conference (ITC), pages 378–
387, 1994.

	Title Page
	Title Page
	Approval Page
	Certificate Page
	Declaration
	Acknowledgments
	Abstract
	Table of Contents
	Author's Biography
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives of the thesis
	1.3 Contributions of the thesis
	1.3.1 Network-On-Chip based Memory BIST
	1.3.2 Re-using refresh circuit for test of NoC based eDRAMs
	1.3.3 On-line field test for permanent faults in NoC buffers

	1.4 Organization of the thesis

	2 Background
	2.1 Part I : Architecture and Working Principle
	2.1.1 SRAM operation
	2.1.2 DRAM operation
	2.1.3 FIFO buffer
	2.1.4 NoC based system

	2.2 Part II : Test Methods
	2.2.1 Faults in memories
	2.2.2 Testing Methods
	2.2.3 Functional Fault Models
	2.2.4 Memory test algorithms
	2.2.5 Test for word oriented memory
	2.2.6 Memory BIST architecture

	2.3 Summary

	3 Literature Review
	3.1 Studies on Network-on-chip based MBIST
	3.2 Studies on Memory BIST optimization
	3.3 Studies on re-using refresh for test of DRAM cores
	3.3.1 BIST for DRAM testing
	3.3.2 Refresh re-use for test
	3.3.3 Online test of memories

	3.4 Studies on Test of FIFO Buffers
	3.5 Summary

	4 Network-on-Chip based MBIST
	4.1 Motivation
	4.2 Proposed Method : Distributed and Hybrid Test Architecture
	4.2.1 PSO based memory grouping
	4.2.2 PSO based optimization algorithm
	4.2.3 Experimental results and evaluation

	4.3 Power Aware Memory Grouping Technique
	4.3.1 Test scheduling problem
	4.3.2 Memory grouping problem
	4.3.3 The memory grouping algorithm
	4.3.4 Placement problem for the BIST controller

	4.4 Experimental results
	4.4.1 Experimental setup
	4.4.2 Results for the d695 benchmark circuit

	4.5 Summary

	5 Re-using Refresh for Off-line Test of DRAMs
	5.1 Motivation
	5.2 Fault Models and Test Algorithm
	5.3 Refresh re-use based test technique
	5.4 Proposed BIST Architecture
	5.5 Experimental results for commodity DRAM
	5.5.1 Area estimation
	5.5.2 Test time analysis

	5.6 Refresh re-use technique for e-DRAMs interconnected using the NoC infrastructure
	5.6.1 Impact of refresh re-use on test of eDRAMs

	5.7 Summary

	6 Refresh Re-Use for Online test of DRAMs
	6.1 Motivation for this work
	6.2 Fault Models Considered in this Work
	6.3 Proposed Transparent Test Generation Technique for DRAMs without ECC
	6.3.1 Transparent March test
	6.3.2 Modified transparent March test - proposed technique
	6.3.3 Modified transparent March X algorithm
	6.3.4 Fault coverage of the proposed MTMX algorithm

	6.4 Refresh re-use based test technique
	6.4.1 Review of DRAM refresh
	6.4.2 Implementing the MTMX Test using refresh

	6.5 Hardware implementation of the proposed approach
	6.5.1 BIST hardware
	6.5.2 Operation of the controller

	6.6 Analysis and Comparison
	6.6.1 Hardware overhead
	6.6.2 Test cycle time
	6.6.3 Other features

	6.7 Summary

	7 Test of FIFO Buffers in NoC Routers
	7.1 Motivation
	7.2 Fault Models Considered
	7.3 Proposed Transparent Test Generation Technique
	7.3.1 The test algorithm
	7.3.2 Fault coverage of the proposed algorithm

	7.4 Proposed test technique
	7.4.1 The test process : periodic and on-line
	7.4.2 Test architecture

	7.5 Experimental Results
	7.5.1 Area estimation of the test hardware
	7.5.2 Throughput estimation
	7.5.3 Analysis

	7.6 Summary

	8 Conclusions and Future Work
	8.1 Summary of the Contributions
	8.1.1 NoC based MBIST
	8.1.2 Re-using refresh for off-line test of DRAMs
	8.1.3 Refresh re-use for on-line test of DRAMs
	8.1.4 Test of FIFO buffers in NoC routers

	8.2 Directions of future work

	Bibliography

