
Introduction to embedded and real-time systems 
 
 
 

Robert Oshana 
Engineering Manager 

Texas Instruments 
roshana@ti.com 



Overview of embedded systems 
An embedded system is a specialized computer system that is part of a larger system or 
machine.  Embedded systems can also be thought of as information processing 
subsystems integrated in a larger system.  As part of a larger system it largely determines 
its functionality.  An embedded system usually contains an embedded processor.  Many 
appliances that have a digital interface -- microwaves, VCRs, cars -- utilize embedded 
systems. Some embedded systems include an operating system.  Others are very 
specialized resulting in the entire logic being implemented as a single program. These 
systems are embedded into some device for some specific purpose other than to provide 
general purpose computing .  A typical embedded system is shown in Figure 1. 
 

 
Figure 1  A Typical Embedded System 

 
 
There are over 3 billion embedded CPUs sold each year.  Embedded CPUs are growing at 
a faster rate than desktop processors (Figure 2).  A large part of this growth is in smaller 
(4-, 8-, and 16-bit) CPUs  and DSPs.  
 
 
 
 



 
 
 
 

Figure 2  Embedded systems dominate the microprocessor landscape 
 
Embedded systems provide several functions (Figure 3); 
 

• Monitor the environment;  embedded systems read data from input sensors.  This 
data is then processed and the results displayed in some format to a user or users 

• Control the environment;  embedded systems generate and transmit commands for 
actuators. 

• Transform the information;  embedded systems transform the data collected in 
some meaningful way, such as data compression/decompression 

 
Although interaction with the external world via sensors and actuators is an important 
aspect of embedded systems, these systems also provide functionality specific to their 
applications.  Embedded systems typically execute applications such as control laws, 
finite state machines, and signal processing algorithms. These systems must also detect 
and react to faults in both the internal computing environment as well as the surrounding 
electromechanical systems.   
 

 
Figure 3  Sensors and Actuators in an Embedded System 

 
 
 
There are many categories of embedded systems, from communication devices to home 
appliances to control systems.  Examples include; 
 

• Communication devices 

Real-time
control system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor

Microprocessors annually sold

95%

5%

95%

5%

General purpose
computers 
(PCs, workstations,
mainframes)

General purpose
computers 
(PCs, workstations,
mainframes)

Embedded systems
(portable phones, cam-
corders, washing mach.)

Embedded systems
(portable phones, cam-
corders, washing mach.)



o modems, cellular phones  
• Home Appliances  

o CD player, VCR, microwave oven  
• Control Systems  

o Automobile anti-lock braking systems, robotics, satellite control 
 

Characteristics of Embedded Systems 
Embedded systems are characterized by a unique set of characteristics.  Each of these 
characteristics imposed a specific set of design constraints on embedded systems 
designers.  The challenge to designing embedded systems is to conform to the specific set 
of constraints for the application. 
 
Application Specific Systems  
Embedded systems are not general-purpose computers.  Embedded system designs are 
optimized for a specific application.  Many of the job characteristics are known before 
the hardware is designed.  This allows the designer to focus on the specific design 
constraints of a well defined application. As such, there is limited user re-
programmability.  Some embedded systems, however, require the flexibility of re-
programmability.  Programmable DSPs are common for such applications.   
 
Reactive Systems 
As mentioned earlier, a typical embedded systems model responds to the environment via 
sensors and control the environment using actuators.  This requires embedded systems to 
run at the speed of the environment.  This characteristic of embedded system is called 
“reactive”.  Reactive computation means that the system (primarily the software 
component) executes in response to external events.  External events can be either 
periodic or aperiodic.  Periodic events make it easier to schedule processing to guarantee 
performance.  Aperiodic events are harder to schedule.  The maximum event arrival rate 
must be estimated in order to accommodate worst case situations. Most embedded 
systems have a significant reactive component.   One of the biggest challenges for 
embedded system designers is performing an accurate worst case design analysis on 
systems with statistical performance characteristics (e.g., cache memory on a DSP or 
other embedded processor).  Real time system operation means that the correctness of a 
computation depends, in part, on the time at which it is delivered.  Systems with this 
requirement must often design to worst case performance.   But accurately predicting the 
worst case may be difficult on complicated architectures.  This often leads to overly 
pessimistic estimates erring on the side of caution.  Many embedded systems have a 
significant requirement for real time operation in order to meet external I/O and control 
stability requirements.  Many real-time systems are also reactive systems. 
 
Distributed Systems 
A common characteristic of an embedded system is one that consists of communicating 
processes executing on several CPUs or ASICs which are connected by communication 
links.  The reason for this is economy.  Economical  4 8-bit microcontrollers may be 
cheaper than a 32-bit processors.  Even after adding the cost of the communication links, 



this approach may be preferable.  In this approach, multiple processors are usually 
required to handle multiple time-critical tasks.  Devices under control of embedded 
systems may also be physically distributed. 
 
Heterogeneous Architectures 
Embedded systems often are composed of heterogeneous architectures (Figure 4).  They 
may contain different processors in the same system solution.  They may also be mixed 
signal systems.  The combination of I/O interfaces, local and remote memories, and 
sensors and actuators makes embedded system design truly unique.  Embedded systems 
also have tight design constraints, and heterogeneity provides better design flexibility. 
 

 
 
 

Figure 4.  Embedded Systems have Heterogeneous Architectures 
 
Harsh environment 
Many embedded systems do not operate in a controlled environment. Excessive heat is 
often a problem, especially in applications involving combustion (e.g., many 
transportation applications). Additional problems can be caused for embedded computing 
by a need for protection from vibration, shock, lightning, power supply 
fluctuations, water, corrosion, fire, and general physical abuse. For example, in the 
Mission Critical example application the computer must function for a guaranteed, 
but brief, period of time even under non-survivable fire conditions.  These constraints 
present a unique set of challenges to the embedded system designer, including accurately 
modeling the thermal conditions of these systems. 
 
System safety and reliability 
As embedded system complexity and computing power continue to grow, they are 
starting to control more and more of the safety aspects of the overall system.  These 
safety measures may be in the form of software as well as hardware control.  Mechanical 
safety backups are normally activated when the computer system loses control in order to 
safely shut down system operation. Software safety and reliability is a bigger issue. 
Software doesn't normally "break" in the sense of hardware.  However software may be 
so complex that a set of unexpected circumstances can cause software failures leading to 
unsafe situations. Discussion of this topic is outside the scope of this book, but the 
challenges for embedded designers include designing reliable software and building 
cheap, available systems using unreliable components.   The main challenge for 
embedded system designers is to obtain low-cost reliability with minimal redundancy. 

CPU ASIC TPU DSP
RAM

RAM I/O

CPU ASIC TPU DSP
RAM

RAM I/O

CPU ASIC TPU DSP
RAM

RAM I/O

CPU ASIC TPU DSP
RAM

RAM I/O



 
Control of physical systems 
One of the main reasons for embedding a computer is to interact with the environment.  
This is often done by monitoring and controlling external machinery.  Embedded 
computers transform the analog signals from sensors into digital form for processing.  
Outputs must be transformed back to analog signal levels. When controlling physical 
equipment, large current loads may need to be switched in order to operate motors and 
other actuators.  To meet these needs, embedded systems may need large computer 
circuit boards with many non-digital components.  Embedded system designers must 
carefully balance system tradeoffs among analog components, power, mechanical, 
network, and digital hardware with corresponding software.  
 
Small and low weight 
Many embedded computers are physically located within some larger system.  The form 
factor for the embedded system may be dictated by aesthetics.  For example, the form 
factor for a missile may have to fit inside the nose of the missile.  One of the challenges 
for embedded systems designers is to develop non-rectangular geometries for certain 
solutions.  Weight can also be a critical constraint.  Embedded automobile control 
systems, for example, must be light weight for fuel economy.  Portable CD players must 
be light weight for portability purposes.   
 
Cost sensitivity 
Cost is an issue in most systems, but the sensitivity to cost changes can vary dramatically 
in embedded systems. This is mainly due to the effect of computer costs have on 
profitability and is more a function of the proportion of cost changes compared to the 
total system cost.   
 
Power management 
Embedded systems have strict constraints on power.  Given the portability requirements 
of many embedded systems, the need to conserve power is important to maintain battery 
life as long as possible.  Minimization of heat production is another obvious concern for 
embedded systems.  
 

Requirements for Embedded Systems 
Embedded systems are unique in several ways, as described above.  When designing 
embedded systems, there are several categories of requirements that should be 
considered; 
 

• Functional Requirements  
• Temporal Requirements (Timeliness)  
• Dependability Requirements 

 



Functional Requirements 
Functional requirements describe the type of processing the system will perform.  This 
processing varies, based on the application.  Functional requirements include the 
following; 
 

• Data Collection requirements 
• Sensoring requirements 
• Signal conditioning requirements 
• Alarm monitoring  requirements 
• Direct Digital Control  requirements 
• Actuator control requirements 
• Man-Machine Interaction requirements (Informing the operator of the current 

state of a controlled object for example.  These interfaces can be as simple as a 
flashing LED or a very complex GUI-based system.  They include the ways that 
embedded systems assist the operator in controlling the object/system. 

 
Temporal Requirement 
Embedded systems have many tasks to perform, each having its own deadline.  Temporal 
requirements define the stringency in which these time-based tasks must complete. 
 
Examples include; 
 

• Minimal latency jitter  
• Minimal Error-detection latency  

 
Temporal requirements can be very tight (for example control-loops ) or less stringent 
(for example response time in a user interface). 
 
Dependability Requirements 
Most embedded systems also have a set of dependability requirements.  Examples of 
dependability requirements include; 
 

• Reliability; this is a complex concept that should always be considered at the 
system rather than the individual component level.  There are three dimensions to 
consider when specifying system reliability; 

 
o Hardware reliability; probability of a hardware component failing 
o Software reliability; probability that a software component will produce an 

incorrect result 
o Operator reliability; how likely that the operator of a system will make an 

error. 
 

There are several metrics used to determine system reliability; 
 

o Probability of failure on demand; likelihood that the system will fail when 
a service request is made. 



o Rate of failure occurrence; frequency of occurrence with which 
unexpected behavior is likely to occur. 

o Mean Time to Failure; the average time between observed system failures. 
 
 

• Safety;  describe the critical failure modes and what types of certification are 
required for the system  

 
• Maintainability;  describes constraints on the system such as type of Mean Time 

to Repair (MTTR). 
 

• Availability; the probability that the system is available for use at a given time.  
Availability is measured as; 

 
Availability = MTTF / (MTTF+MTTR)  

 
• Security; these requirements are often specified as “shall not” requirements that 

define unacceptable system behavior rather than required system functionality. 
 
Overview of real-time systems 
A real-time system is a system that is required to react to stimuli from the environment 
(including the passage of physical time) within time intervals dictated by the 
environment.   The Oxford dictionary defines a real-time system as “Any system in 
which the time at which output is produced is significant”.   This is usually because the 
input corresponds to some movement in the physical world, and the output has to relate to 
that same movement.  The lag from input time to output time must be sufficiently small 
for acceptable timeliness.  Another way of thinking of real-time systems is any 
information processing activity or system which has to respond to externally generated 
input stimuli within a finite and specified period.  Generally, real-time systems are 
systems that maintains a continuous timely interaction with its environment (Figure 5). 
 
Correctness of a computation depends not only upon its results but also upon the time at 
which its outputs are generated  A real-time system must satisfy bounded response time 
constraints or suffer severe consequences.   If the consequences consist of a degradation 
of performance, but not failure, the system is referred to as a soft real-time system (e.g. 
time adjusting system on computers over the network)  If the consequences are system 
failure, the system is referred to as a hard real-time system. (e.g. emergency patient 
management system in hospitals). 
 
There are two types of real-time systems: reactive and embedded.   Reactive real-time 
system involves a system that has constant interaction with its environment. (e.g. a pilot 
controlling an aircraft).   An embedded real-time system is used to control specialized 
hardware that is installed within a larger system. (e.g. a microprocessor that controls the 
fuel-to-air mixture for automobiles). 
 
 



 
Figure 5  A real-time system interacts with the environment 

 
Real time is a level of computer responsiveness that a user senses as sufficiently 
immediate or that enables the computer to keep up with some external process (for 
example, to present visualizations of the weather as it constantly changes). Real-time is 
an adjective pertaining to computers or processes that operate in real time. Real time 
describes a human rather than a machine sense of time.  
 
Examples of real-time systems include; 
 
•Software for cruise missile 
•Heads-up cockpit display 
•Airline reservation system 
•Industrial Process Control 
•Banking ATM 
 
Real-time systems can also be found in many industries; 
 
•Defense systems 
•Telecommunication systems 
•Automotive control 
•Signal processing systems 
•Radar systems 
•Automated manufacturing systems 
•Air traffic control 
•Satellite systems 
•Electrical utilities 
 
Real-Time Event Characteristics 
Real-time events fall into one of the three categories: asynchronous, synchronous, or 
isochronous.  
 

• Asynchronous events are entirely unpredictable. For example, the event that a user 
makes a telephone call. As far as the telephone company is concerned, the action 
of making a phone call cannot be predicted.  

• Synchronous events are predictable and occur with precise regularity if they are to 
occur. For example, the audio and video in a movie take place in synchronous 
fashion.  

environmentenvironment

inputsinputs outputsoutputs
Real-Time

System
(state)

outputs =  f (inputs, state)



• Isochronous events occur with regularity within a given window of time. For 
example, audio bytes in a distributed multimedia application must appear within a 
window of time when the corresponding video stream arrives.  Isochronous is a 
sub-class of asynchronous. 

 
Real-time systems are different from time shared systems in several ways (Table 1) 
 

• predictably fast response to urgent events 
• high degree of schedulability; timing requirements of the system must be satisfied 

at high degrees of resource usage. 
• stability under transient overload; when the system is overloaded by events and it 

is impossible to meet all deadlines, the deadlines of selected critical tasks must 
still be guaranteed. 

 
 

 
Table 1  Real-time systems are fundamentally different than time shared systems 

 

Characteristics of real-time systems 
Real-time systems have many special characteristics which are inherent or imposed.  This 
section will discuss some of these important characteristics. 
 
Large and Complex 
Most of the problems associated with developing software are those related to size and 
complexity.  Writing small programs presents no significant problem because they can be 
designed, coded, maintained and understood by a single person.  This largeness is related 
mostly to variety.The variety is that of needs and activities in the real world and their 
reflection in a program.  The real world is continuously changing.  It is evolving.  So too 
are, therefore, the needs and activities of society.  Thus large programs, like all complex 
systems, must continuously evolve.Software programs tend to exhibit the undesirable 
property of largeness.  This is mainly due to continuous change.  Real-time systems 

Metric Time-shared systems Real-time systems
Capacity High throughput Schedulability;  the ability

of system tasks to meet all
deadlines

Responsiveness Fast average response Ensured worst-case
latency; latency is the
worst-case response time
to events

Overload Fairness Stability; under overload
conditions, the system can
meet its important
deadlines even if other
deadlines cannot be met



undergo constant maintenance and enhancements during their lifetimes.  They must 
therefore be extensible. 
Manipulation of real numbers 
•Many real-time systems involve the control of some engineering activity.  For example, 
consider the model of a plant in Figure 6.  In this example, the plant is the controlled 
entity.  The plant produces a vector of output variables that change over time.  These 
outputs are compared to a desired or reference signal to produce an error signal.  The 
controller then uses the error signal to change the input variables. 
 
 

Figure 6  A simple real-time controller 
 
A mathematical model of this system is based on first order differential equations.  The 
output of the system is linked to the internal state of the system and its input variables.  A 
real-time requirement of this system is to move to a new point set within a fixed time 
period.  This adds to the complexity of the computations.  This is one reason real-time 
systems can be so complex. 
 
Reliable and safe 
The more society relinquishes control of its vital functions to computers, the more it 
becomes imperative that those computers do not fail.  Failure in ATM machine can result 
in millions of dollars lost irretrievably.  A faulty component in electricity generation 
could fail a life support system in an intensive care unit. In hostile environments such as 
the military, systems must be able to fail in a controlled way.  For operator interaction, 
we must minimize the possibility of human error.  The size and complexity of real-time 
systems exacerbates the reliability problem.  All expected difficulties inherent in the 
application must be taken into account (including those introduced by faulty software 
design!). 
 
Concurrent control of separate system components 
A typical real-time embedded system consists of computers and sensors and actuators. 
There are usually several co-existing external elements which the computer must interact 
with simultaneously.  The very nature of these external elements is that they exist in 
parallel.  Actions performed by the computer must be carried out in sequence but give the 
allusion of being simultaneous.  In some cases this is not possible.  An example of this is 
data that must be collected and processed at various geographical points.  In this case, a 
distributed multiprocessor system must be used.  A major problem for systems that must 

Delta Controller Plantr(t) e(t) u(t) y(t)



exhibit concurrency is how to express that concurrency in the structure of the program.  
In the past, it was left up to the programmer to deal with these problems.  Systems would 
be designed to involve the cyclic execution of a program sequence to handle the various 
concurrent tasks.  This was not advisable because is complicated the programmers task 
and forces consideration of structures that are irrelevant to the control of the tasks at 
hand. The resulting programs will be more obscure and inelegant.  This makes proving a 
program correctness more difficult.  It also makes decomposition of the problem more 
complex.  Also, parallel execution of the program on more than one processor will be 
much more difficult to achieve, and placement of code to deal with faults becomes more 
problematic.  We will discuss several approaches for handling these problems in the 
chapter on Real-Time operating systems. 
 
Real-time Facilities 
As we have been discussing, response time is crucial to any embedded system.  It is very 
difficult to design and implement systems which will guarantee the appropriate output 
will be generated at the appropriate times under all possible conditions.  Doing this and 
making use of all computing resources at all times is often impossible. 
Real-time systems usually constructed using processors with considerable space capacity.  
This ensures worst case behavior does not produce any unwelcome delays during critical 
periods of the systems operation.  The designer, however, must be cognizant of weight 
and power issues! 
Given adequate processing power, a good real-time programming language, and run-time 
support is required to enable the programmer; 
 

• to specify times at which actions are to be performed 
• to specify times at which actions are to be completed 
• to respond to situations where all timing requirements cannot be met 
• respond to situations where the timing requirements are changed dynamically 

(mode changes) 
 
Interaction with hardware devices 
Nature of embedded real-time systems requires them to interact with the external world.  
Sensors and actuators are used for a wide variety of real-world devices.  Many of the 
operational requirements for real-time systems are device and computer dependent.  
These devices may generate interrupts in response to certain events and errors.  Interrupts 
usually handled by assembly language (although more and more is now being done in 
higher level languages). 
 
Efficient execution and the execution environment 
Real-time systems are time critical.  Therefore, the efficiency of their implementation is 
more important than in other systems.  One of the main benefits of using a higher level 
language  is to allow the programmer to abstract away the details and concentrate on 
solving the problem.  This is not always true in the embedded system world. Some higher 
level languages have instruction 10 times slower than assembly language.  However, 
higher level languages can be used in real-time systems effectively.   
 


	Overview of embedded systems
	Figure 1  A Typical Embedded System
	Figure 2  Embedded systems dominate the microprocessor landscape

	Figure 3  Sensors and Actuators in an Embedded System
	There are many categories of embedded systems, from communication devices to home appliances to control systems.  Examples include;
	Characteristics of Embedded Systems
	Application Specific Systems
	Reactive Systems
	Distributed Systems
	Heterogeneous Architectures
	Figure 4.  Embedded Systems have Heterogeneous Architectures
	Harsh environment
	System safety and reliability
	Control of physical systems
	Small and low weight
	Cost sensitivity
	Power management

	Requirements for Embedded Systems
	Functional Requirements
	Temporal Requirement
	Dependability Requirements


	Overview of real-time systems
	
	Figure 5  A real-time system interacts with the environment
	Real-Time Event Characteristics
	Table 1  Real-time systems are fundamentally different than time shared systems


	Characteristics of real-time systems
	Large and Complex
	Most of the problems associated with developing software are those related to size and complexity.  Writing small programs presents no significant problem because they can be designed, coded, maintained and understood by a single person.  This largeness
	Manipulation of real numbers
	Figure 6  A simple real-time controller
	Reliable and safe
	Concurrent control of separate system components
	Real-time Facilities
	Interaction with hardware devices
	Efficient execution and the execution environment



	return: 


