MID-SEMESTER. EXAMINATION , D0IE SoL UTIONS

#—

CuIEeT — QOPERATANG g’\{gmq

void ¥ de_ sk —wo (veid *P"”‘ﬁ)

e oo (Yorstmaedy | Fpteand. vtz bR et
_ AZX) _ .J

Cnpl %M‘wva.lwg i Ovdea (1) Fvt maten (2) Ceond iz ol e
o .. Wféi},.m ?’,%Mcl-m le/wt*rw

" CA..___—_-———-—-————-W WE—*—% A Leb {% ; » Pl* 5y Pm} {;;f b\%’uﬁvx?ﬂ lswca/&:
gt ol Seoh Wb Bis wodivg fo Mamns L g)
P« w&/th,v_? «-ﬂ—m, vesoovee, Jaold bﬁ B gepiinr Pnrl ‘e wﬁ"‘;""‘f {f—av

————— R — —_

S\IQM Ml - 4 mm/ frnceen. CW—)M»/ WOy ttlen WC/C"f‘Q
built mbs & Kewel whith. brooide, «jLde b aceens
Seruntes FWAM ‘aa e ezgm\‘/w\:af éd&k/w\, A \ﬁgw Aol

yAYre ackloi Wes nelotcd e {’it& W'«a P W WM%W

prif aﬂt’ pretes &'L’L &y dvue ‘”‘HY‘J"@,.*",wwv:affxv _lads :,.,,T—é.," alce

— Lok Yy ¥Brorn Bl ~ Aonrirs A~ baadza MOPRIT T | BT S PR 50 T Ve e v Do e |

~— L ——— —

e —————

/¥ Cﬂp’ﬁ({ o C&F(T coutzubs of file mw? head owd sovile %mw#’/

#;M <”{‘OVLE£J\> /’f PO'Y O—RDDNLY? D,WQONL’)/,, O- CREAT ebe. */
H inelnde. <4/Jc/s.4mt.k> /% For S_TRUSR ,S_TWUCR., S_TRERP ek %/

142z @T&,. C’ Ponss vzl . EC’»K?, O- WEONLY ’D.-CKE‘AT‘IO.-—TQUNC)..
)
é .
u(e, (Cn-:. leead C—fsl_{) L_W\?&) T':SUFQ 2 9) > O)
ot (FA2, buef,) g

“ete (Gad) g
Cloge G{d ?..)3

6)0”" CO)j

Classical Synchronization Problems

>

/.5 Classical Synchronization Problems

103

The Producer-Consumer Problem

In this problem, two processes, one called the producer and the other called the
consumer, run concurrently and share a common buffer. The producer generates
items that it must pass to the consumer, who is to consume them. The producer
passes items to the consumer through the butfer. However, the producer must be
certain that it does not deposit an item into the buffer when the butter is full, and
the consumer must not extract an item from an empty butfer. The two processes
also must not access the buffer at the same time, for if the consumer tries to
extract an item from the slot into which the producer is depositing an item, the
consumer might get only part of the item. Any solution to this problem must
ensure none of the above three events occur. '

»~ A practical example of this problem is electronic mail. The process you use to

/
|

send the mail must not insert the letter into a full mailbox (otherwise the

recipient will never see it); similarly, the recipient must not read a letter from an

<
:

empty mailbox (or he might obtain something meaningless but that looks like a
letter). Also, the sender (producer) must not deposit a letter in the mailbox at the
same time the recipient extracts a letter from the mailbox; otherwise, the state of
the mailbox will be uncertain.

Because the buffer has a maximum size, this problem is often called the bounded
buffer problem. A (less common) variant of it is the unbounded butfer problem,
which assumes the buffer is infinite. This eliminates the problem of the producer
having to worry about the buffer filling up, but the other two concerns must be

dealt with.

The Readers-Writers Problem

In this problem, a number of concurrent processes require access to some object
(such as a file.) Some processes extract information from the object and are
called readers; others change or insert information in the object and are called

Friday 09 October 2015 01:27 PM

file:///home/bibhas/Desktop/Teaching/Operating_system/questio...

e e

e —
e ——

'__-____"—_ :

assical Synchronization Problems file+///home/bibhas/Desktop/Teaching/Operating_system/questio...

writers. The Bernstein conditions state that many readers may access the object
concurrently, but if a writer is accessing the object, no other processes (readers or
writers) may access the object. There are two possible policies for doing this:

1 First Readers-Writers Problem. Readers have priority over writers; that is,
unless a writer has permission to access the object, any reader requesting
access to the object will get it. Note this may result in a writer waiting

indefinitely to access the object.
9 Second Readers-Writers Problem. Writers have priority over readers; that

is, when a writer wishes to access the object, only readers which have
already obtained permission to access the object are allowed to complete
their access; any readers that request access after the writer has done so
must wait until the writer is done. Note this may result in readers waiting

indefinitely to access the object.

So there are two concerns: first, enforce the Bernstein conditions among the
processes, and secondly, enforcing the appropriate policy of whether the readers
or the writers have priority. é_{y_pfcal example of this occurs ‘with databases,
when several processes are accessing data; some will want only to read the data,
Sthers to change it. The database must implement some mechanism that solves

the readers-writers problem.

The Dining Philosophers Problem

In this problem, five philosophers sit around a circular table eating spaghetti and
thinking. In front of each philosopheris a plate and to the left of each plate 1s a
fork (so there are five forks, one to the right and one to the left of each
philosopher's plate; see the figure). When a philosopher wishes to eat, he picks
up the forks to the right and to the left of his plate. When done, he puts both
forks back on the table. The problem is to ensure that no philosopher will be
allowed to starve because he cannot ever pick up both forks. '

There are two issues here: first, deadlock (where each philosopher picks up one
fork so none can get the second) must never occur; and second, no set of
philosophers should be able to act to prevent another philosopher from ever

eating. A solution must prevent both.

20f 3 Friday 09 October 2015 01:27 PM

| LWLFY;::’*@ Haoun O
‘/\-a -E,dc/ms mrw
FW& CEY<

(W) Pnga
Y v g n o
i d/ Cﬂlbg"}nac& O
— Dividii

"\-8 M_F’h,u, Wﬁh (2
> E

‘A # j‘M

:’ oX Wij

/

‘me/bibhas/Desktop[Teaching...hreads_vs_kernel_level_threads Page 1 of 1

ﬁf
f//, éfi) User and kernel Level Threads

-—------------—--—--—---—-----

1. Kernel-Level Threads:

In this method, the kernel knows about and manages the threads. No runtime system is needed in this
Case. Instead of thread table in each process, the kernel has a thread table that keeps track of all
threads in the system. In addition, the kernel also maintains the traditional process table to keep

e

track of processes. Operating Systems kernel provides system call to create and manage threads.

Advantages:

Because kernel has full knowledge of all threads, Scheduler may decide to give more time to a
process having large number of threads than process having small number of threads. Kernel-level
threads are especially good for applications that frequently block.

Disadvantages:

The kernel-level threads are slow and inefficient. For instance, threads operations are hundreds
of times slower than that of user-level threads.

Since kernel must manage and schedule threads as well as processes. It require a full thread
control block (TCB) for each thread to maintain information about threads. As a result there is
significant overhead and increased in kernel complexity.

2. User-Level Threads

Kernel-Level threads make concurrency much Cheaper than process because, much less state to allocate
and initialize. However, for fine-grained concurrency, kernel-level threads still suffer from too much
overhead. Thread operations still require system calls. Ideally, we require thread operations to be as
fast as a procedure call. Kernel-Level threads have to be general to support the needs of all
programmers, languages, runtimes, etc. For such fine grained concurrency we need still "Cheaper"
threads. To make threads cheap and fast, they need to be implemented at user level. User-Level threads
are managed entirely by the run-time system (user-level library).The kernel knows nothing about user-
fEQEI“fﬁFeads and manages them as if they were single-threaded processes.User-Level threads are small
and fast, each thread is represented by a PC,register,stack, and small thread control block. Creating
a new thread, switiching between threads, and synchronizing threads are done via procedure call. i.e
no kernel involvement. User-Level threads are hundred times faster than Kernel-Level threads.

Advantages:

The most obvious advantage of this technique is that a user-level threads package can be

implemented on an Operating System that does not support threads.
User-level threads does not require modification to operating systems.

Simple Representation: Each thread is represented simply by a-PC, registers, stack and a small
control block, all stored in the user process address space.
Simple Management: This simply means that creating a thread, switching between threads and
synchronization between threads can all be done without
intervention ofthe kernel. d
Fast and Efficient: Thread switching is not much more expensive than a procedure call.

Disadvantages:

User-Level threads are not a perfect solution as with everything else, they are a trade off.
Since, User-Level threads are invisible to the 0S they are not well integrated with the 0S. As a
result, 0Os can make poor decisions like scheduling a process with idle threads, blocking a process
whose thread initiated an I/0 even though the process has other threads that can run and unscheduling
a process with a thread holding a lock. Solving this requires communication between between kernel and
user-level thread manager.There is a lack of coordination between threads and operating system kernel.
Therefore, process as whole gets one time slice irrespect of whether process has one thread or 1000
threads within. It is up to each thread to relinquish control to other threads.

User-level threads requires non-blocking systems call 1,e., a multithreaded kernel. Otherwise,
entire process will blocked in the kernel, even if there are runable threads left in the processes.

For example, if one thread causes a page fault, the process blocks.

Pem A file o Jronn Gandord foput and m;wm iner €
the Standand subpul . qw;f; Canndo ’FC\/ : ﬁ lebonl Alance. for 'Yegm,f_ﬂ/\/

WPW%@M

/ﬁﬁ”: aw E’T’mj PATTERN CHLE.“‘]

&F{iem avoilalsle. il caruaF Corinonnd.

—n ohgf(aas matthed lnes wontin [Amz, Moo lbeax

-—-:c/ jépbzr &«EMW Cowwrl 0 Limes solulchy makehe bue palien Geafes
-l LQP(;:ZI poatberin tawenwgr 0o Aichincben _ '

File: /hnome/bibhas/test.sh

Page 1 of 1

A shell program to perform addition/subtraction/multiplication/division using CASE statement

exit function()

{

clear

exit

while true

do

echo -n "Enter your choice : "
read choice

case $choice in

1) clear

2)

3)

4)

esac

done

echo
echo
read
echo
read
echo

exit
clear

echo
echo
read
echo
read
echo

exit

clear

echo
echo
read
echo
read
echo

exit
clear

echo
echo
read
echo
read

echo

exit

"Enter two numbers for Addition : "

-n "Numberl: "

numl

-n "Number2: *

num2

"$numl + $num2 = "expr
function;:

"Enter two numbers for
-n "Numberl: "

numl

-n "Number2: "

num2

"$numl - $num2 = "expr
function::

"Enter two numbers for
-n "Numberl: "

numl

-n "Number2: "

num2

"$numl * $num2 = “echo
function::

"Enter two numbers for
-n "Numberl: "

numl

-n "Number2: "

num?2

"$numl / $num2 = $div"
function;:

$numl + $num2° "

Subtraction : "

$numl + $num2° "

Multiplication :

"$numl*$num2" |bc™ "

Division :

1 1% .1 12 | ai
g =
Ferg:

