/

‘me/bibhas/Desktop[Teaching...hreads_vs_kernel_level_threads Page 1 of 1

ﬁf
f//, éfi) User and kernel Level Threads

-—------------—--—--—---—-----

1. Kernel-Level Threads:

In this method, the kernel knows about and manages the threads. No runtime system is needed in this
Case. Instead of thread table in each process, the kernel has a thread table that keeps track of all
threads in the system. In addition, the kernel also maintains the traditional process table to keep

e

track of processes. Operating Systems kernel provides system call to create and manage threads.

Advantages:

Because kernel has full knowledge of all threads, Scheduler may decide to give more time to a
process having large number of threads than process having small number of threads. Kernel-level
threads are especially good for applications that frequently block.

Disadvantages:

The kernel-level threads are slow and inefficient. For instance, threads operations are hundreds
of times slower than that of user-level threads.

Since kernel must manage and schedule threads as well as processes. It require a full thread
control block (TCB) for each thread to maintain information about threads. As a result there is
significant overhead and increased in kernel complexity.

2. User-Level Threads

Kernel-Level threads make concurrency much Cheaper than process because, much less state to allocate
and initialize. However, for fine-grained concurrency, kernel-level threads still suffer from too much
overhead. Thread operations still require system calls. Ideally, we require thread operations to be as
fast as a procedure call. Kernel-Level threads have to be general to support the needs of all
programmers, languages, runtimes, etc. For such fine grained concurrency we need still "Cheaper"
threads. To make threads cheap and fast, they need to be implemented at user level. User-Level threads
are managed entirely by the run-time system (user-level library).The kernel knows nothing about user-
fEQEI“fﬁFeads and manages them as if they were single-threaded processes.User-Level threads are small
and fast, each thread is represented by a PC,register,stack, and small thread control block. Creating
a new thread, switiching between threads, and synchronizing threads are done via procedure call. i.e
no kernel involvement. User-Level threads are hundred times faster than Kernel-Level threads.

Advantages:

The most obvious advantage of this technique is that a user-level threads package can be

implemented on an Operating System that does not support threads.
User-level threads does not require modification to operating systems.

Simple Representation: Each thread is represented simply by a-PC, registers, stack and a small
control block, all stored in the user process address space.
Simple Management: This simply means that creating a thread, switching between threads and
synchronization between threads can all be done without
intervention ofthe kernel. d
Fast and Efficient: Thread switching is not much more expensive than a procedure call.

Disadvantages:

User-Level threads are not a perfect solution as with everything else, they are a trade off.
Since, User-Level threads are invisible to the 0S they are not well integrated with the 0S. As a
result, 0Os can make poor decisions like scheduling a process with idle threads, blocking a process
whose thread initiated an I/0 even though the process has other threads that can run and unscheduling
a process with a thread holding a lock. Solving this requires communication between between kernel and
user-level thread manager.There is a lack of coordination between threads and operating system kernel.
Therefore, process as whole gets one time slice irrespect of whether process has one thread or 1000
threads within. It is up to each thread to relinquish control to other threads.

User-level threads requires non-blocking systems call 1,e., a multithreaded kernel. Otherwise,
entire process will blocked in the kernel, even if there are runable threads left in the processes.

For example, if one thread causes a page fault, the process blocks.



