Lecture 3 : Process Management

INSTRUCTOR : DR. BIBHAS GHOSHAL (BIBHAS.GHOSHAL®@IIITA.AC.IN)

e

Lecture Outline

) What is Process?

J Process States

J Process Creation

J Process Address Space

J Creating a process by Cloning
J Process Termination

) Zombie Process

J Orphans Process

J Process Address Map in xvé

Process

l Program in Execution Process Comprises of:
#include<stdio.h> " Code
int main(){ " Data | InUser space of process
Char str[] = “Hello World!\n"; " Stack
Printf(“%s”,str); = Heap -
} " Statein OS
|
ﬂ$ acc hello.c Kernel stack JIn Kernel space of process
ELF | | Process }
Executable(a.out)
$./a.out
Program Process
-l = Code + static & global data " Dynamic instantiation of code + data + heap + stack + process
" One program can create several i state
processes " A process is unique isolated entity

Data Structure of Process

Stack — Recursive calls O Attributes of a Process
" Process Id

Heap —> Dynamic allocation of data structures " Program counter
Static Variable : Prpcgss State
& —> Once created, it will be there for lifetime Priority .
Global Variable " General Purpose Register

: bl " List of open files
a.out > Executable " List of open devices

" Protection

[While executing a process, you are restricted to process boundary or
else segmentation fault will occur.
 Heap grows upwards while Stack grows downwards.

Process State

Process i .
> Terminate
Created

|/0 Request over I/0 Request

Running: In the running state, a process is running on a processor. This means it is executing instructions.
Ready: In the ready state, a process is ready to run but for some reason the OS has chosen not to run it at
this given moment.

Wait: In the blocked state, a process has performed some kind of operation that makes it not ready to run
until some other event takes place. A common example: when a process initiates an I/0 request to a disk,
it becomes blocked and thus some other process can use the processor.

Process Creation

CPU

Memory

i code |
i static data |
heap

| stack !

Process

C_ D

{ code !

|_static data { [~

F'rugrarﬁ

Loading:
Takes on-disk program
and reads it into the

D address space of process

The first thing that the OS must do to run a program is to load its code and
any static data (e.g., initialized variables) into memory, into the address
space of the process. Programs initially reside on disk (or, in some modern
systems, flash-based SSDs) in some kind of executable format; thus, the
process of loading a program and static data into memory requires the OS
to read those bytes from disk and place them in memory somewhere.
Once the code and static data are loaded into memory, there are a few
other things the OS needs to do before running the process. Some memory
must be allocated for the program’s run-time stack (or just stack).

The OS allocates this memory and gives it to the process. The OS may also
allocate some memory for the program’s heap. In C programs, the heap is
used for explicitly requested dynamically-allocated data.

The OS will also do some other initialization tasks, particularly as related to
input/output (1/0). For example, in UNIX systems, each process by default
has three open file descriptors.

Process Address Space

Stack

i

Heap

Data

J Virtual Address Map MAX_SIZE lSteickl
* All memory a process can address
Heap
* Large contiguous array of address from 0 to MAX_SIZE Process A Data
Page Table |fraxt
* Each Process has different address space O |[Instructions]

Text

[Instructions]

* This is achieved by use of virtual memory 3 Process Stack
i.e. 0 to MAX_SIZE are virtual memory addresses

) Advantages of Virtual Address Space

MAX_SIZE

Process B
Page Table

O

" User Space Stack (used when using user code)
" Kernel Space Stack (used when using kernel code)
" Advantages: Kernel can execute even when stack

is corrupted (Attacks such as buffer overflow will

* |solation (Private address space)

* Relocatable (Data & Code within the process is relocatable)

not affect Kernel)
O Each Process has PCB (Process Control Block) :

Holds process specific information

* Size (Processes can be much larger than physical memory)

O PID : Process Identifier(No. incremented sequentially)

Virtualizing The CPU

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 1nt

8 main(int argc, char =xargvl[])
9 |

10 if (argc !'= 2) {

1 fprintf (stderr, "usage: cpu <string>\n");
12 exit (1) ;

13 }

14 char xstr = argv[l];

15 while (1) {

16 Spin(1l);

17 printf ("%s\n", str);
18 }

19 return 0O;

20 }

Code that loops and prints (loop.c)

rompt> ./cpu A & ./cpu B & ./cpu C & ./cpu D &
1] 7353
2] 1354
3] 7355
4] 7356

%
[
[
[
[

A
B
D
C

A
B
D
C

A

Result of program cpu.c : Running many programs at once

Turning a single CPU (or small set of them) into
a seemingly infinite number of CPUs and thus
allowing many programs to seemingly run at
once is what we call virtualizing the CPU.

Virtualizing The Memory

#include <unistd.h> prompt> ./mem &; ./mem &
#include <stdio.h> [1] 24113
[2] 24114

#include <stdlib.h>

4#include "common.h" (24113) address pointed to by p: 0x200000

(24114) address pointed to by p: 0x200000

R =R R - T ¥ B ¥ o

, (24113) p: 1
int (24114) p: 1
main (int argc, char xargvl[]) (24114) p: 2
{ (24113) p: 2
int *p = malloc(sizeof (int)); // al (24113) p: 3
10 assert (p != NULL); (24114) p: 3
11 printf (" (%d) address pointed to by p: %$p\n", (24113) p: 4
12 getpid(), p); // a2 (24114) p: 4
13 xp = 0; // a3
14 while (1) { .
s Spin(1); Result of program mem.c : Running the memory
6 «p = *p + 1; program multiple times
17 printf (" (%d) p: %d\n", getpid(), =*p); // a4 Each running program has allocated memory
18) at the same address (0x200000), and yet

return 0O;

[y
=]

each seems to be updating the value at
0x200000 independently! It is as if each
running program has its own private memory,
instead of sharing the same physical memory

=]
[=]
—

A program that accesses memory (mem.c)

Virtual Memory Advantage

J Easy to make copies of process

Parent
Page
Table

J Making a copy of process is called forking

" Parent is the original

" Child (New Process)

J When fork() is invoked

" Child is exact copy of Parent

" All pages are shared between Parent & Child

" Easily done by copying the parent’s page tables

Creating A Process by Cloning

J Cloning : Child Process is expect replica of Parent J Operation on Process
" Creation

J fork() system call " Scheduling
" Execution
" Killing/delete

Process 1 .
: Process 1 Process 2
Kernel [] []

Execute
fork

J In Parent process fork() return child process id
J In Child process fork() return process id of exit child

J wait() : If there is at least one child process running, caller is blocked until of its child exist &
then caller resumes.

T

The fork() System Call

1 #include <stdio.h> When you run this program (called p1 . c), you'll see the following:
» #include <stdlib.h>

3 #include <unistd.h>

\ prompt> ./pl

5 1int main(int argc, char xargv([]) { hello world (pid:29146) .

6 printf ("hello world (pld:%d) \n", (int) getpld()) ; hello, I am parent of 29147 (pld:29146)
; int rc = fork(); hello, T am child (pid:29147)

8 if (rc < 0) { prompt>

9 // fork failed

10 fprintf (stderr, "fork failed\n");

11 exit (1) ;

12 } else if (rc == 0) {

13 // child (new process)

14 printf ("hello, I am child (pid:%d)\n", (int) getpid());

15 } else {

16 // parent goes down this path (main)

17 printf ("hello, I am parent of %d (pid:%d)\n",

18 rc, (int) getpid());

19 }
20 return 0;

The wait() System Call

prompt> . /p2

hello world (pid:29266)

hello, T am child (pid:29267)

hello, I am parent of 29267 (rc_wait:29267) (pid:29266)
prompt>

(main)

(pid:%d) \n",

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4+ #include <sys/wait.h>

5

6 1int main (int argc, char xargv([]) {

7 printf ("hello world (pid:%d)\n", (int) getpid());

8 int rc = fork();

9 if (rc < 0) { // fork failed; exit

10 fprintf (stderr, "fork failed\n");

1 exit (1);

12 } else if (rc == 0) { // child (new process)

13 printf ("hello, I am child (pid:%d)\n", (int) getpid());
14 } else { // parent goes down this path
15 int rc wait = wait (NULL);

16 printf ("hello, I am parent of %d (rc_wait:%d)

17 rc, rc_wait, (int) getpid());

18 }

19 return 0;

The exec() System Call

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

+ #include <string.h>

5 #include <sys/wait.h>
6
7
8
9

int main(int argc, char xargv[]) {
printf("hello world (pid:%d)\n",

prompt> ./p3

hello world (pid:29383)

hello, T am child (pid:29384)
29 107 1030 p3.c

hello, T am parent of 29384 (rc_wait:29384)

(int) getpid()); prompt>

int rc = fork();
10 if (rc < 0) { // fork failed; exit
11 fprintf(stderr, "fork failed\n");
12 exit (1);
13 } else if (rc == 0) { // child (new process)
14 printf ("hello, I am child (pid:%d)\n", (int) getpid());
15 char *myargs([3];
16 myargs[0] = strdup("wc"); // program: "wc" (word count)
17 myargs[1l] = strdup("p3.c"); // argument: file to count
18 myargs [2] = NULL; // marks end of array
19 execvp (myargs[0], myargs); // runs word count
20 printf ("this shouldn’t print out");
21 } else | // parent goes down this path (main)
2 int rc_wait = wait (NULL);
23 printf ("hello, I am parent of %d (rc_wait:%d) (pid:%d)\n",
24 rc, rc_wait, (int) getpid());
25 }

2 return 0O;

(pid:29383)

Process Termination

J Voluntary : exit(status)

" OS passes exit status to parent via wait(&status)
" OS frees process resources

J Involuntary : kill(pid, signal)

" Signal can be sent by another process or by OS
" pid is for the process to be killed

" A signal that the process needs to be killed

" For example : SIGTERM, SIGQUIT(ctrl+\), SIGINT(ctrl+c), SIGHUP

Zombie Process

) Child terminates before Parent

J The OS stores some info about the terminated child (PID, termination reason etc.)

J The Parent of the terminated child accesses this info using the wait() system call.

J If a parent did not call wait(), it becomes a zombie

J Process has no allocated resources but its entry in the process table (PCB)

J A zombie process can be noticed using ps command, which prints on the state column of the process (the letter ‘z’)
. PCB in OS still exist even though program no longer executing

J When parent reads status

= zombie entries removed from OS... process reaped!

J When parent doesn’t read status

= zombie will continue to exist infinitely... a resource leak

Orphan Process

J When a parent process terminates before its child

J Adopted by first process (/sbin/init)

P

Orphans contd.

J Unintentional orphans

" When parent crashes

J Intentional orphans

" Process becomes detached from user session and runs in the background
" Called Daemons process, used to run background services

" See nohup

Process Address Map in xv6

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip;

int esp;

int ebx;

int ecx;

int edx;

int esi;

int edi;

int ebp;
bi

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state
structfproc |

char xmem; // Start of process memory
uingtsz; // Size of process memory
char xkstack; // Bottom of kernel stack

// for thisiprocess
enum proc_state state; // Process state
dintiEpiid: // Process ID
struct proc *parent; // Parent process
void xchan; // If !zero, sleeping on chan
int killed; // If !zero, has been killed
struct file *»ofile[NOFILE]; // Open files
struct inode =*cwd; // Current directory
structi context context!; // Switch here to run process
struct trapframe =»tf; // Trap frame for the

// current interrupt

i

The xv6 Proc Structures

Kernel
Text + data

Heap

Stack

Data

Text

User
Process
L can
access

[Context Pointer
" Contains register used for Context Switches

" Registers in context: %edi, %esi, %ebx, %ebp, %eip
" Stored in Kernel Space

Kernel
__ Process

can

access

Entire Kernel mapped into
every process address space

Easy Switching from user
code to kernel code (during
system calls) : No change of
Page table

	Slide 1
	Lecture Outline
	Process
	Data Structure of Process
	Process State
	Process Creation
	Process Address Space
	Virtualizing The CPU
	Virtualizing The Memory
	Virtual Memory Advantage
	Creating A Process by Cloning
	The fork() System Call
	The wait() System Call
	The exec() System Call
	Process Termination
	Zombie Process
	Orphan Process
	Orphans contd.
	Process Address Map in xv6

