
Lecture 3 : Process Management
INSTRUCTOR : DR. BIBHAS GHOSHAL (B I B H A S . G H O S H A L @ I I I TA . A C . I N)

1

Lecture Outline
 What is Process?

 Process States

 Process Creation

 Process Address Space

 Creating a process by Cloning

 Process Termination

 Zombie Process

 Orphans Process

 Process Address Map in xv6

2

Process
 Program in Execution

 $ gcc hello.c

 $./a.out



3

#include<stdio.h>
int main(){
Char str[] = “Hello World!\n”;
Printf(“%s”,str);
}

ELF
Executable(a.out)

Process

Process Comprises of:
 Code
 Data In User space of process
 Stack
 Heap
 State in OS
 Kernel stack In Kernel space of process

Program
 Code + static & global data
 One program can create several

processes

Process
 Dynamic instantiation of code + data + heap + stack + process

state
 A process is unique isolated entity

Data Structure of Process

4

Stack

Heap

Static Variable
 &
Global Variable

a.out

Recursive calls

Dynamic allocation of data structures

Once created, it will be there for lifetime

Executable

 Attributes of a Process
 Process Id
 Program counter
 Process State
 Priority
 General Purpose Register
 List of open files
 List of open devices
 Protection

 While executing a process, you are restricted to process boundary or
else segmentation fault will occur.

 Heap grows upwards while Stack grows downwards.

Process State

 Process Scheduled Exit
◦ Created

 I/O Request over I/O Request

5

WAIT

NEW READY RUN Terminate

Running: In the running state, a process is running on a processor. This means it is executing instructions.
Ready: In the ready state, a process is ready to run but for some reason the OS has chosen not to run it at
this given moment.
Wait: In the blocked state, a process has performed some kind of operation that makes it not ready to run
until some other event takes place. A common example: when a process initiates an I/O request to a disk,
it becomes blocked and thus some other process can use the processor.

Process Creation

6

 The first thing that the OS must do to run a program is to load its code and
any static data (e.g., initialized variables) into memory, into the address
space of the process. Programs initially reside on disk (or, in some modern
systems, flash-based SSDs) in some kind of executable format; thus, the
process of loading a program and static data into memory requires the OS
to read those bytes from disk and place them in memory somewhere.

 Once the code and static data are loaded into memory, there are a few
other things the OS needs to do before running the process. Some memory
must be allocated for the program’s run-time stack (or just stack).

 The OS allocates this memory and gives it to the process. The OS may also
allocate some memory for the program’s heap. In C programs, the heap is
used for explicitly requested dynamically-allocated data.

 The OS will also do some other initialization tasks, particularly as related to
input/output (I/O). For example, in UNIX systems, each process by default
has three open file descriptors.

Process Address Space
 Virtual Address Map

• All memory a process can address

• Large contiguous array of address from 0 to MAX_SIZE

• Each Process has different address space

• This is achieved by use of virtual memory

 i.e. 0 to MAX_SIZE are virtual memory addresses

 Advantages of Virtual Address Space

• Isolation (Private address space)

• Relocatable (Data & Code within the process is relocatable)

• Size (Processes can be much larger than physical memory)

7

Process A
Page Table

Process B
Page Table

Heap

Stack

Data
Text
 [Instructions]

MAX_SIZE

 Process Stack
 User Space Stack (used when using user code)
 Kernel Space Stack (used when using kernel code)
 Advantages: Kernel can execute even when stack

is corrupted (Attacks such as buffer overflow will
not affect Kernel)

 Each Process has PCB (Process Control Block) :
Holds process specific information

 PID : Process Identifier(No. incremented sequentially)

Virtualizing The CPU

8

Result of program cpu.c : Running many programs at once

Code that loops and prints (loop.c)

Turning a single CPU (or small set of them) into
a seemingly infinite number of CPUs and thus
allowing many programs to seemingly run at
once is what we call virtualizing the CPU.

Virtualizing The Memory

9

A program that accesses memory (mem.c)

Result of program mem.c : Running the memory
program multiple times

Each running program has allocated memory
at the same address (0x200000), and yet
each seems to be updating the value at
0x200000 independently! It is as if each
running program has its own private memory,
instead of sharing the same physical memory
with other running programs.

Virtual Memory Advantage
 Easy to make copies of process

 Making a copy of process is called forking

 Parent is the original

 Child (New Process)

 When fork() is invoked

 Child is exact copy of Parent

 All pages are shared between Parent & Child

 Easily done by copying the parent’s page tables

10

Parent
Page
Table

Child
Page
Table

Creating A Process by Cloning
 Cloning : Child Process is expect replica of Parent

 fork() system call

 Parent Child

 In Parent process fork() return child process id

 In Child process fork() return process id of exit child

 wait() : If there is at least one child process running, caller is blocked until of its child exist &
then caller resumes.

11

Process 1

Kernel
Execute

fork

Process 1 Process 2

 Operation on Process
 Creation
 Scheduling
 Execution
 Killing/delete

The fork() System Call

12

The wait() System Call

13

The exec() System Call

14

Process Termination
 Voluntary : exit(status)

 OS passes exit status to parent via wait(&status)

 OS frees process resources

 Involuntary : kill(pid, signal)

 Signal can be sent by another process or by OS

 pid is for the process to be killed

 A signal that the process needs to be killed

 For example : SIGTERM, SIGQUIT(ctrl+\), SIGINT(ctrl+c), SIGHUP

15

Zombie Process
 Child terminates before Parent

 The OS stores some info about the terminated child (PID, termination reason etc.)

 The Parent of the terminated child accesses this info using the wait() system call.

 If a parent did not call wait(), it becomes a zombie

 Process has no allocated resources but its entry in the process table (PCB)

 A zombie process can be noticed using ps command, which prints on the state column of the process (the letter ‘z’)

 PCB in OS still exist even though program no longer executing

 When parent reads status

 zombie entries removed from OS… process reaped!

 When parent doesn’t read status

 zombie will continue to exist infinitely… a resource leak

 These are typically found by a reaper process 16

Orphan Process
 When a parent process terminates before its child

 Adopted by first process (/sbin/init)

17

Orphans contd.
 Unintentional orphans

 When parent crashes

 Intentional orphans

 Process becomes detached from user session and runs in the background

 Called Daemons process, used to run background services

 See nohup

18

Process Address Map in xv6

19

The xv6 Proc Structures

Text

Kernel
Text + data

User
Process
can
access

Kernel
Process
can
access

Entire Kernel mapped into
every process address space

Easy Switching from user
code to kernel code (during
system calls) : No change of
Page table

 Context Pointer
 Contains register used for Context Switches
 Registers in context: %edi, %esi, %ebx, %ebp, %eip
 Stored in Kernel Space

	Slide 1
	Lecture Outline
	Process
	Data Structure of Process
	Process State
	Process Creation
	Process Address Space
	Virtualizing The CPU
	Virtualizing The Memory
	Virtual Memory Advantage
	Creating A Process by Cloning
	The fork() System Call
	The wait() System Call
	The exec() System Call
	Process Termination
	Zombie Process
	Orphan Process
	Orphans contd.
	Process Address Map in xv6

