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Outline

 Allocation
 Free space management
 Memory mapped files
 Buffer caches
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Extent-Based Systems

 Many newer file systems (I.e. Veritas File System) 
use a modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in 
extents

 An extent is a contiguous block of disks
 Extents are allocated for file allocation
 A file consists of one or more extents.
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Linked Allocation

 Each file is a linked list of disk blocks: blocks may be 
scattered anywhere on the disk.

 Simple – need only starting address
 Free-space management system – no waste of space 
 No random access

pointerblock      =
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Linked Allocation
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File-Allocation Table (DOS FAT)
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Indexed Allocation

 Brings all pointers together into the index block.
 Logical view.

index table
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Example of Indexed Allocation
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Indexed Allocation (Cont.)

 Need index table to store pointers
 Allows random access by using the indexes
 Dynamic access without external fragmentation, 

but have overhead of index block.
 Mapping from logical to physical in a file of 

maximum size of 256K words and block size of 512 
words.  We need only 1 block for index table.
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Indexed Allocation – Mapping (Cont.)



outer-index

index table file
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Combined Scheme:  UNIX (4K bytes per block)
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…

0 1 2 n-1

bit[i] = 
0  block[i] free

1   block[i] occupied

Free-Space Management

 Bit vector   (n blocks)

 Block number calculation = (number of bits per 
word) * (number of 0-value words) + offset of first 1 
bit
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Free-Space Management (Cont.)

 Bit map requires extra space
 Example:

block size = 212 bytes

disk size = 238 bytes (256 Gigabyte)

n = 238/212 = 226 bits (or 8 Mbytes)
 Easy to get contiguous files 
 Linked list (free list)

 Cannot get contiguous space easily
 No waste of space

 Grouping 
 Counting
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Free-Space Management (Cont.)

 Need to protect against inconsistency:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] = 1 

in memory and bit[i] = 0 on disk

 Solution:
 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory
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Linked Free Space List on Disk
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Efficiency and Performance

 Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

 Performance
 disk cache – separate section of main memory for 

frequently used blocks
 free-behind and read-ahead – techniques to optimize 

sequential access
 Compare these to LRU

 improve PC performance by dedicating section of 
memory as virtual disk, or RAM disk
 It was observed that temporary files were accessed 

frequently - hence make tmpfs using RAM memory
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Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be 
treated as routine memory access by mapping a 
disk block to a page in memory

 A file is initially read using demand paging. A page-
sized portion of the file is read from the file system 
into a physical page. Subsequent reads/writes 
to/from the file are treated as ordinary memory 
accesses.

 Simplifies file access by treating file I/O through 
memory rather than read() write() system calls

 Also allows several processes to map the same file 
allowing the pages in memory to be shared
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Memory Mapped Files
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Sample code using mmap

#include <sys/mman.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <unistd.h> 
 
main(int argc, char *argv[], char *envp[]) { 
  int fd; 
  char *ptr, *path = (argc == 2) ? argv[1] : "file"; 
 
  /* Open a file and write some contents. If file already exists, 

delete old contents */ 
  fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0660); 
  write(fd, "hello", strlen("hello")); 
  write(fd, " world", strlen(" world")); 
  close(fd); 
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(continued)

  fd = open(path, O_RDWR); 

 

  // mmap(addr, len, prot, flags, fildes, off); 

  ptr = mmap(0, 4, PROT_READ|PROT_WRITE, 
MAP_SHARED, fd, 0); 

  ptr+=2; 

  memcpy(ptr, "lp ", 3); 

  munmap(ptr, 4); 

  close(fd); 

} 
 Transform “hello world” into “help  world”
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Page Cache

 A page cache caches pages rather than disk 
blocks using virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer 
(disk) cache

 This leads to the following figure
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I/O Without a Unified Buffer Cache
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Unified Buffer Cache

 A unified buffer cache uses the same page cache 
to cache both memory-mapped pages and ordinary 
file system I/O
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I/O Using a Unified Buffer Cache
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Recovery

 Consistency checking – compares data in directory 
structure with data blocks on disk, and tries to fix 
inconsistencies
 scandisk in DOS, fsck in unix

 Use system programs to back up data from disk to 
another storage device (floppy disk, magnetic tape, 
other magnetic disk, optical)

 Recover lost file or disk by restoring data from 
backup
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Log Structured File Systems

 Log structured (or journaling) file systems record 
each update to the file system as a transaction

 All transactions are written to a log
  A transaction is considered committed once it is written 

to the log
 However, the file system may not yet be updated

 The transactions in the log are asynchronously 
written to the file system
  When the file system is modified, the transaction is 

removed from the log

 If the file system crashes, all remaining 
transactions in the log must still be performed


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

