
page 111/12/15 CSE 30341: Operating Systems Principles

Outline

 Allocation
 Free space management
 Memory mapped files
 Buffer caches

page 211/12/15 CSE 30341: Operating Systems Principles

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System)
use a modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in
extents

 An extent is a contiguous block of disks
 Extents are allocated for file allocation
 A file consists of one or more extents.

page 311/12/15 CSE 30341: Operating Systems Principles

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

 Simple – need only starting address
 Free-space management system – no waste of space
 No random access

pointerblock =

page 411/12/15 CSE 30341: Operating Systems Principles

Linked Allocation

page 511/12/15 CSE 30341: Operating Systems Principles

File-Allocation Table (DOS FAT)

page 611/12/15 CSE 30341: Operating Systems Principles

Indexed Allocation

 Brings all pointers together into the index block.
 Logical view.

index table

page 711/12/15 CSE 30341: Operating Systems Principles

Example of Indexed Allocation

page 811/12/15 CSE 30341: Operating Systems Principles

Indexed Allocation (Cont.)

 Need index table to store pointers
 Allows random access by using the indexes
 Dynamic access without external fragmentation,

but have overhead of index block.
 Mapping from logical to physical in a file of

maximum size of 256K words and block size of 512
words. We need only 1 block for index table.

page 911/12/15 CSE 30341: Operating Systems Principles

Indexed Allocation – Mapping (Cont.)

outer-index

index table file

page 1011/12/15 CSE 30341: Operating Systems Principles

Combined Scheme: UNIX (4K bytes per block)

page 1111/12/15 CSE 30341: Operating Systems Principles

…

0 1 2 n-1

bit[i] =
0 block[i] free

1 block[i] occupied

Free-Space Management

 Bit vector (n blocks)

 Block number calculation = (number of bits per
word) * (number of 0-value words) + offset of first 1
bit

page 1211/12/15 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

 Bit map requires extra space
 Example:

block size = 212 bytes

disk size = 238 bytes (256 Gigabyte)

n = 238/212 = 226 bits (or 8 Mbytes)
 Easy to get contiguous files
 Linked list (free list)

 Cannot get contiguous space easily
 No waste of space

 Grouping
 Counting

page 1311/12/15 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

 Need to protect against inconsistency:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] = 1

in memory and bit[i] = 0 on disk

 Solution:
 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory

page 1411/12/15 CSE 30341: Operating Systems Principles

Linked Free Space List on Disk

page 1511/12/15 CSE 30341: Operating Systems Principles

Efficiency and Performance

 Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

 Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to optimize

sequential access
 Compare these to LRU

 improve PC performance by dedicating section of
memory as virtual disk, or RAM disk
 It was observed that temporary files were accessed

frequently - hence make tmpfs using RAM memory

page 1611/12/15 CSE 30341: Operating Systems Principles

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping a
disk block to a page in memory

 A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory
accesses.

 Simplifies file access by treating file I/O through
memory rather than read() write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

page 1711/12/15 CSE 30341: Operating Systems Principles

Memory Mapped Files

page 1811/12/15 CSE 30341: Operating Systems Principles

Sample code using mmap

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

main(int argc, char *argv[], char *envp[]) {
 int fd;
 char *ptr, *path = (argc == 2) ? argv[1] : "file";

 /* Open a file and write some contents. If file already exists,

delete old contents */
 fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0660);
 write(fd, "hello", strlen("hello"));
 write(fd, " world", strlen(" world"));
 close(fd);

page 1911/12/15 CSE 30341: Operating Systems Principles

(continued)

 fd = open(path, O_RDWR);

 // mmap(addr, len, prot, flags, fildes, off);

 ptr = mmap(0, 4, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

 ptr+=2;

 memcpy(ptr, "lp ", 3);

 munmap(ptr, 4);

 close(fd);

}
 Transform “hello world” into “help world”

page 2011/12/15 CSE 30341: Operating Systems Principles

Page Cache

 A page cache caches pages rather than disk
blocks using virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer
(disk) cache

 This leads to the following figure

page 2111/12/15 CSE 30341: Operating Systems Principles

I/O Without a Unified Buffer Cache

page 2211/12/15 CSE 30341: Operating Systems Principles

Unified Buffer Cache

 A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O

page 2311/12/15 CSE 30341: Operating Systems Principles

I/O Using a Unified Buffer Cache

page 2411/12/15 CSE 30341: Operating Systems Principles

Recovery

 Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies
 scandisk in DOS, fsck in unix

 Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

 Recover lost file or disk by restoring data from
backup

page 2511/12/15 CSE 30341: Operating Systems Principles

Log Structured File Systems

 Log structured (or journaling) file systems record
each update to the file system as a transaction

 All transactions are written to a log
 A transaction is considered committed once it is written

to the log
 However, the file system may not yet be updated

 The transactions in the log are asynchronously
written to the file system
 When the file system is modified, the transaction is

removed from the log

 If the file system crashes, all remaining
transactions in the log must still be performed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

