-i File System Implementation

File structure
B | ogical storage unit
B Collection of related information

» File system resides on secondary storage (such
as disks)

1. Boot control block - information needed to boot

2. Volume control block - information about
volume/partitions (# blocks, size of blocks, free
block count, free block pointers)

3. Directory structure (inode)
4. Per file control blocks
» File system organized into layers

I 11/12/15 CSE 30341: Operating Systems Principles page 1

Layered File System

application programs

ﬁ

logical file system

y

file-organization module

{

basic file system

!

I/O control

!

devices

I 11/12/15 CSE 30341: Operating Systems Principles

-| A Typical File Control Block

» File control block — storage structure consisting of
iInformation about a file

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

11/12/15 CSE 30341: Operating Systems Principles

In-Memory File System Structures

open (file name)

directory structure

£

directory structure

file-control block

user space

kernel memory

(@)

secondary storage

read (index)

index
per-process system-wide
open-file table open-file table

el

data blocks

P

file-control block

user space

kernel memory

(b)

secondary storage

I 11/12/15

CSE 30341: Operating Systems Principles

-I Virtual File Systems

» There are many different file systems available on
any operating systems

B Windows: NTFS, FAT, FAT32

B |inux: ext2/ext3, ufs, vfat, ramfs, tmpfs, reiserfs, xfs ...

» Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems

» VFES allows the same system call interface (the
API) to be used for different types of file systems

» The APl is to the VFS interface, rather than any
specific type of file system

I 11/12/15 CSE 30341: Operating Systems Principles page 5

Schematic View of Virtual File System

‘ file-system interface \

VFS interface

Y h 4 Y

local file system local file system remote file system
type 1 type 2 type 1

network

I 11/12/15 CSE 30341: Operating Systems Principles

-\ Directory Implementation

» Directories hold information about files

» Linear list of file names with pointer to the data
blocks.
B simple to program
B time-consuming to execute

» Hash Table — linear list with hash data structure.
B decreases directory search time

B collisions — situations where two file names hash to the
same location

B fixed size

I 11/12/15 CSE 30341: Operating Systems Principles

-I Allocation Methods

» An allocation method refers to how disk blocks are
allocated for files:

» Contiguous allocation
» Linked allocation

» Indexed allocation

I 11/12/15 CSE 30341: Operating Systems Principles page 8

-\ Contiguous Allocation

» Each file occupies a set of contiguous blocks
on the disk

» Simple — only starting location (block #) and
length (number of blocks) are required

» Random access

» Wasteful of space (dynamic storage-
allocation problem)

» Files cannot grow

11/12/15 CSE 30341: Operating Systems Principles

Contiguous Allocation of Disk Space

directory
court file start length
N 2 | 3] count 0 2
| tr 14 3
4l] 5[] 6l 7[] mail 19 6
s[] o[10111 st 8 4
12 J13[]14[115]
16 117118]19[]
mail
Sl 1 2 el
24 125[J26[127[]
list
28[]29[]30[131[]

11/12/15 CSE 30341: Operating Systems Principles

Extent-Based Systems

» Many newer file systems (l.e. Veritas File System)
use a modified contiguous allocation scheme

> Extent-based file systems allocate disk blocks in
extents

» An extent is a contiguous block of disks
B Extents are allocated for file allocation
B A file consists of one or more extents.

I 11/12/15 CSE 30341: Operating Systems Principles

Linked Allocation

» Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

block

pointer

» Simple — need only starting address
» Free-space management system — no waste of space
» No random access

I 11/12/15 CSE 30341: Operating Systems Principles

Linked Allocation

directory

file start end
jeep 9 25

8]
1213 J14f 115[]

1ol 11[]

1617118]19[]

24[125126 127[]
28[129[130[131[]

I 11/12/15 CSE 30341: Operating Systems Principles

-\ File-Allocation Table (DOS FAT)

|_

start block

no. of disk blocks -1

FAT

I 11/12/15 CSE 30341: Operating Systems Principles

Indexed Allocation

» Brings all pointers together into the index block.
» Logical view.

—>[]
| >
>]
>[]
>[]

index table

I 11/12/15 CSE 30341: Operating Systems Principles

-| Example of Indexed Allocation

directory

file index block

o[] 1|:L\EI 3[] Ieop =
4[] 5[] 7]
8[] o[J1o[N11[]
12D13$§

[118[]
20[J21[]22[A23[]

24 25 [26[127[]

28 129[130 J31[]
i’/

11/12/15 CSE 30341: Operating Systems Principles

16

- Indexed Allocation (Cont.)

» Need index table
» Random access

» Dynamic access without external fragmentation,
but have overhead of index block.

» Mapping from logical to physical in a file of
maximum size of 256K words and block size of 512
words. We need only 1 block for index table.

11/12/15 CSE 30341: Operating Systems Principles

- Indexed Allocation — Mapping (Cont.)

N\ ™
\

\
outer-index

index table

11/12/15 CSE 30341: Operating Systems Principles

Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3)

——» data

size block count

—» data

» data

direct blocks E .

—» data

—» data »

single indirect ——» + E data

e —— data o EE P9
double indirect > » data
triple indirect - > 2 » data
: » data

I 11/12/15 CSE 30341: Operating Systems Principles

	Chapter 11: File System Implementation
	Layered File System
	A Typical File Control Block
	In-Memory File System Structures
	Virtual File Systems
	Schematic View of Virtual File System
	Directory Implementation
	Allocation Methods
	Contiguous Allocation
	Contiguous Allocation of Disk Space
	Extent-Based Systems
	Linked Allocation
	Slide 13
	File-Allocation Table (DOS FAT)
	Indexed Allocation
	Example of Indexed Allocation
	Indexed Allocation (Cont.)
	Indexed Allocation – Mapping (Cont.)
	Combined Scheme: UNIX (4K bytes per block)

