-i File System Implementation

File structure
B | ogical storage unit
B Collection of related information

» File system resides on secondary storage (such
as disks)

1. Boot control block - information needed to boot

2. Volume control block - information about
volume/partitions (# blocks, size of blocks, free
block count, free block pointers)

3. Directory structure (inode)
4. Per file control blocks
» File system organized into layers
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Layered File System
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-| A Typical File Control Block

» File control block — storage structure consisting of
iInformation about a file

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks
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In-Memory File System Structures
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-I Virtual File Systems

» There are many different file systems available on
any operating systems

B Windows: NTFS, FAT, FAT32

B |inux: ext2/ext3, ufs, vfat, ramfs, tmpfs, reiserfs, xfs ...

» Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems

» VFES allows the same system call interface (the
API) to be used for different types of file systems

» The APl is to the VFS interface, rather than any
specific type of file system
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Schematic View of Virtual File System
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-\ Directory Implementation

» Directories hold information about files

» Linear list of file names with pointer to the data
blocks.
B simple to program
B time-consuming to execute

» Hash Table — linear list with hash data structure.
B decreases directory search time

B collisions — situations where two file names hash to the
same location

B fixed size
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-I Allocation Methods

» An allocation method refers to how disk blocks are
allocated for files:

» Contiguous allocation
» Linked allocation

» Indexed allocation
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-\ Contiguous Allocation

» Each file occupies a set of contiguous blocks
on the disk

» Simple — only starting location (block #) and
length (number of blocks) are required

» Random access

» Wasteful of space (dynamic storage-
allocation problem)

» Files cannot grow

11/12/15 CSE 30341: Operating Systems Principles



Contiguous Allocation of Disk Space
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Extent-Based Systems

» Many newer file systems (l.e. Veritas File System)
use a modified contiguous allocation scheme

> Extent-based file systems allocate disk blocks in
extents

» An extent is a contiguous block of disks
B Extents are allocated for file allocation
B A file consists of one or more extents.
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Linked Allocation

» Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

block

pointer

» Simple — need only starting address
» Free-space management system — no waste of space
» No random access
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Linked Allocation

directory

file start end
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-\ File-Allocation Table (DOS FAT)
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Indexed Allocation

» Brings all pointers together into the index block.
» Logical view.
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-| Example of Indexed Allocation

directory

file index block
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- Indexed Allocation (Cont.)

» Need index table
» Random access

» Dynamic access without external fragmentation,
but have overhead of index block.

» Mapping from logical to physical in a file of
maximum size of 256K words and block size of 512
words. We need only 1 block for index table.
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- Indexed Allocation — Mapping (Cont.)
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Combined Scheme: UNIX (4K bytes per block)
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