
Homework Assignment #5

Question 1: Scheduling
a) Which of the following scheduling algorithms could result in starvation?
For those algorithms that could result in starvation, describe a situation in which
starvation is likely to occur?

1. First-Come First-Served (FCFS)
2. Shortest Job First (SJF) (Non-preemptive)
3. Shortest Remaining Time First (SRTF) (Preemptive)
4. Round Robin (RR)
5. Priority

b) Consider the set of process (smaller priority number implies higher priority; i.e.
1 – highest priority):

Draw the GANTT chart for the following scheduling algorithms.
 First-Come First-Served (FCFS)
 Shortest Job First (SJF) (Non-preemptive)
 Shortest Remaining Time First (SRTF) (Preemptive)
 Round Robin (RR) (Time Quantum = 10, Round from P1 to PN if PN

arrives)
 Priority (Non-preemptive)

Process ID Arrival Time Burst Time Priority

P1 0 70 3

P2 10 50 2

P3 30 20 1

P4 50 20 4

c) For the processes listed above, complete the following table:

Scheduling Algorithm Average waiting
time

Average
turnaround time

First Come First Served (FCFS)
Shortest Job First (SJF) (Non-
preemptive)
Shortest Job First (SJF)
(preemptive)
Round Robin (RR) (Time Quantum
= 10)
Priority (Non-preemptive)

d). Briefly reason why the average waiting time of preemptive SJF is guaranteed
to be no larger than that of non-preemptive. (No need to prove)

e). Consider a set of 10 processes with identical burst times and similar arrival
times scheduled using a round robin algorithm. Let the overhead of context
switch be 2 milliseconds. To reduce the relative context switch overhead, we wish
to bound the total time for context switch to be one-fifth of the total waiting time.
Develop an equation to calculate the minimum value of quantum q for this
condition to be satisfied (Hints: Think carefully about the components of waiting
time) .

Question 2: Test-and-set, Critical Section

Consider the following code segment covered in the lecture:
var j: 0…n-1
 key:Boolean, lock:= false;

0: repeat {
1: waiting[i] = true; key:=true;
2: while (waiting[i] and key) do key:=Test-and-
Set(lock);
3: waiting[i]:=false;
4: critical section
5: j:=j + 1 mod n
6: while ((j<>i) and (not waiting[j])) do j : = j + 1
mod n;
7: if j = i then lock:=false;
8: else waiting[j] = false;
9: remain section
10: } until false

(a).The above program that we saw in the lecture can achieve both bounded
waiting and mutual exclusion with test-and-set. Assume line 3 of this code above
is deleted. Determine if the algorithm still works as desired after that line is
deleted.

Consider the following algorithm that provides a solution to the 2 process critical
section problem.

flag[0] = false;
flag[1] = false;
P0:
0: while (true) {
1: flag[0] = true;
2: while (flag[1]) {
3: flag[0] = false;
4: while (flag[1]) {
5: no-op;
6: }
7: flag[0] = true;
8: }
9: critical section
10: flag[0] = false;
11: remainder section
12: }

P1:
0: while (true) {
1: flag[1] = true;
2: while (flag[0]) {
3: flag[1] = false;
4: while (flag[0]) {
5: no-op;
6: }
7: flag[1] = true;
8: }
9: critical section
10: flag[1] = false;
11: remainder section
12: }

b). Specify which of the following requirements are satisfied or not by this
algorithm. Explain why or why not.

1. Mutual Exclusion
2. Progress
3. Bounded Waiting

Question 3: Semaphores
In an operating system processes can run concurrently. Sometimes we need to
impose a specific order in execution of a set of processes. We represent the
execution order for a set of processes using a process execution diagram.
Consider the following process execution diagram. The diagram indicates that
Pr1 must terminate before Pr2, Pr3 and Pr4 start execution. It also indicates that
Pr4 should start after Pr2 and Pr3 terminate and Pr2 and Pr3 can run
concurrently.

We can use semaphores in order to enforce the execution order. Semaphores
have two operations as explained below.

 P (or wait) is used to acquire a resource. It waits for semaphore to
become positive, then decrements it by 1.

 V (or signal) is used to release a resource It increments the semaphore by
1, waking up the blocked processes, if any.

We can use the following semaphores to enforce the execution order.

s1=0; s2=0; s3=0;
Pr1: body; V(s1); V(s1);
Pr2: P(s1); body; V(s2);
Pr3: P(s1); body; V(s3);
Pr4: P(s2); P(s3); body;

Assume that the semaphores s1, s2, and s3 are created with an initial value of 0
before processes Pr1, Pr2, Pr3, and Pr4 execute.

Based on this explanation, answer the questions about the following process
execution graph.

a) Use semaphores to enforce execution order according to the process
execution diagram.

