
Distributed Systems 

Lec 9: Distributed File Systems – NFS, AFS

Slide acks: Dave Andersen

(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/08-distfs1.pdf)

1

http://www.cs.cmu.edu/~dga/15-440/F10/lectures/08-distfs1.pdf


Homework 3 Update

• Some folks have argued that:

1) HW 3 is too heavy for 2 weeks                            → Disagree!

2) HW 3 has too much local-FS boilerplate                                                

to distill the distributed systems aspects             → Agree!

• For reason 2), we are changing HW3:

– HW3 (due 10/9): implement the basic extent server, basic 

file-oriented FS operations (create, lookup, readdir, setattr, open, 

read, write)

– HW3.5 (due 10/16): implement directory operations (mkdir, remove) 

and distributed locking

– This way, you experience DS aspects (esp. locking) with more focus

• If you've already done HW3 + HW3.5, or you wish to do them together, 

you're welcome to submit them as one before HW3 deadline (10/9)
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VFS and FUSE Primer

• Some have asked for some background on Linux FS structure and 

FUSE in support of homework 3

• We'll talk about them now on whiteboard
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Today

• Finish up distributed mutual exclusion from last lecture

• Distributed file systems (start)

– Sun’s Network File System (NFS)

– CMU’s Andrew File System (AFS)
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Distributed Mutual Exclusion (Reminder)

• Ensure that only one thread can interact with shared 

resource (shared memory, file) at the same time

• Algorithms:

– Centralized algorithm (A1)

– Distributed algorithms

• A2: Token ring

• A3: Lamport’s priority queues

• A4: Ricart and Agrawala (today)

• A5: Voting  (today)

• Quiz: Explain algorithms A1-A3
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Lamport’s Algorithm (Reminder)

• Each process keeps a priority queue Qi, to which it 

adds any outstanding lock request it knows of, in order 

of logical timestamp

• To enter critical section at time T, process i sends 

REQUEST to everyone and waits for REPLYs from all 

processes and for all earlier requests in Qi to be 

RELEASEd

• To exit critical section, sends RELEASE to everyone

• Process i delays its REPLY to process j’s REQUEST 

until j has answered any earlier REQUESTs that i has 

outstanding to j
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Solution 4: Ricart and Agrawala

• An improved version of Lamport’s shared priority 

queue

– Combines function of REPLY and RELEASE messages

• Delay REPLY to any requests later than your own

– Send all delayed replies after you exit your critical 

section
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Solution 4: Ricart and Agrawala

• To enter critical section at process i :

– Stamp your request with the current time T

– Broadcast REQUEST(T) to all processes

– Wait for all replies

• To exit the critical section:

– Broadcast REPLY to all processes in Qi

– Empty Qi

• On receipt of REQUEST(T’):

– If waiting for (or in) critical section for an earlier request T, 

add T’ to Qi

– Otherwise REPLY immediately 8



Ricart and Agrawala Safety

• Safety and fairness claim: If T1<T2, then process P2 

requesting a lock at T2 will enter its critical section after 

process P1, who requested lock at T1, exits

• Proof sketch:

– Consider how P2 collects its reply from P1:

– T1 must have already been time-stamped when request 

T2 was received by P1, otherwise the Lamport clock 

would have been advanced past time T2

– But then P1 must have delayed reply to T2 until after 

request T1 exited the critical section

– Therefore T2 will not conflict with T1.
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Solution 4: Ricart and Agrawala

• Advantages:

– Fair

– Short synchronization delay

– Simpler (therefore better) than Lamport’s algorithm

• Disadvantages

– Still very unreliable

– 2(N-1) messages for each entry/exit
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Solution 5: Majority Rules

• Instead of collecting REPLYs, collect VOTEs

– Each process VOTEs for which process can hold the mutex

– Each process can only VOTE once at any given time

• You hold the mutex if you have a majority of the VOTEs

– Only possible for one process to have a majority at any 

given time!
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Solution 5: Majority Rules

• To enter critical section at process i :

– Broadcast REQUEST(T), collect VOTEs

– Can enter crit. sec. if collect a majority of VOTEs (N/2+1)

• To leave:

– Broadcast RELEASE to all processes who VOTEd for you

• On receipt of REQUEST(T’) from process j:

– If you have not VOTEd, VOTE for T’

– Otherwise, add T’ to Qi

• On receipt of RELEASE:

– If Qi not empty, VOTE for pop(Qi)
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Solution 5: Majority Rules

• Advantages:

– Can progress with as many as N/2 – 1 failed processes

• Disadvantages:

– Not fair

– Deadlock!

• No guarantee that anyone receives a majority of votes
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Solution 5’: Dealing with Deadlock

• Allow processes to ask for their vote back

– If already VOTEd for T’ and get a request for an earlier 

request T, RESCIND-VOTE for T’

• If receive RESCIND-VOTE request and not in critical 

section, RELEASE-VOTE and re-REQUEST

• Guarantees that some process will eventually get a 

majority of VOTEs → liveness

– Assuming network messages eventually get to 

destination

• But still not fair…
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Algorithm Comparison

Algorithm Messages per 
entry/exit

Synchronization 
delay (in RTTs)

Liveness

Central 
server

3 1 RTT Bad: coordinator crash 
prevents progress

Token 
ring

N <= sum(RTTs)/2 Horrible: any process’ 
failure prevents progress

Lamport 3*(N-1) max(RTT) across 
processes

Horrible: any process’ 
failure prevents progress

Ricart & 
Agrawal

2*(N-1) max(RTT) across 
processes

Horrible: any process’ 
failure prevents progress

Voting >= 2*(N-1)
 (might have 
vote recalls, too)

max(RTT) between 
the fastest N/2+1 
processes

Great: can tolerate up to  
N/2-1 failures

(sync delay: you request the lock; no 

one else has it; how long till you get it?)
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So, Who Wins?

• Well, none of the algorithms we’ve looked at thus far

• But the closest one to industrial standards is…
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So, Who Wins?

• Well, none of the algorithms we’ve looked at thus far

• But the closest one to industrial standards is…

– The centralized model (e.g., Google’s Chubby, Yahoo’s 

ZooKeeper)
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So, Who Wins?

• The closest to the industrial standards is…

– The centralized model (e.g., Google’s Chubby, Yahoo’s 

ZooKeeper) 

– But replicate it for fault-tolerance across a few machines

– Replicas coordinate closely via mechanisms similar to  

the ones we’ve shown for the distributed algorithms (e.g., 

voting) – we’ll talk later about generalized voting alg.

– For manageable load, app writers must avoid using the 

centralized lock service as much as possible!
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Take-Aways

• Lamport and Ricart & Agrawala’s algorithms 

demonstrate utility of logical clocks

• Lamport algorithm demonstrates how distributed 

processes can maintain consistent replicas of a data 

structure (the priority queue)!

– We’ll talk about replica consistency in the future

• If you build your distributed system wrong, then you 

get worse properties from distribution than if you didn’t 

distribute at all

19



Today

• Finish up distributed mutual exclusion from last lecture

• Distributed file systems (start)

– Sun’s Network File System (NFS)

– CMU’s Andrew File System (AFS)
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NFS and AFS Overview

• Networked file systems

• Their goals:

• Have a consistent namespace for files across computers

• Let authorized users access their files from any computer

• These FSes are different in properties and mechanisms, 

and that’s what we’ll discuss
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Distributed-FS Challenges

• Remember our initial list of distributed-systems 

challenges from the first lecture?

– Interfaces

– Scalability 

– Fault tolerance

– Concurrency

– Security

• Oh no...  we’ve got ‘em all…

– Can you give examples?

• How can we even start building such a system??? 22



How to Start?

• Often very useful to have a prioritized list of goals

– Performance, scale, consistency – what’s most important?

• Workload-oriented design

– Measure characteristics of target workloads to inform the design

• E.g., AFS and NFS are user-oriented, hence they optimize 

to how users use files (vs. big programs)

– Most files are privately owned

– Not too much concurrent access

– Sequential is common; reads more common than writes

• Other distributed FSes (e.g., Google FS) are geared towards 

big-program/big-data workloads (next time)
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The FS Interface

ServerServerClientClient

File Ops

Open

Read

Write

Read

Write

Close

FileFile

Directory Ops

Create file

Mkdir

Rename file

Rename directory

Delete file

Delete directory

Dir.Dir.
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Naïve DFS Design

• Use RPC to forward every FS operation to the server

– Server orders all accesses, performs them, and sends 

back result

• Good:  Same behavior as if both programs were running 

on the same local filesystem!

• Bad:  Performance will stink.  Latency of access to 

remote server often much higher than to local memory.

• Really bad: Server would get hammered!

Lesson 1:  Needing to hit the server for every detail impairs 

performance and scalability.

Question 1:  How can we avoid going to the server for 

everything?  What can we avoid this for?  What do we lose in 

the process? 25



• Lots of systems problems are solved in 1 of 2 ways:

1) Adding a level of indirection
• “All problems in computer science can be solved by adding a level of 

indirection; but this will usually cause other problems”    -- David Wheeler

2) Caching data

• Questions:

– What do we cache??

– If we cache, don’t we risk making things inconsistent?

Solution: Caching

ServerServerClientClient

FileFile Dir.Dir.CacheCache

cache synch

(rare)open/read/write/mkdir/…

(frequent)
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Sun NFS

• Cache file blocks, directory metadata in RAM at both 

clients and servers.

• Advantage:  No network traffic if 

open/read/write/close can be done locally.

• But:  failures and cache consistency are big 

concerns with this approach

– NFS trades some consistency for increased 

performance... 
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Caching Problem 1: Failures

• Server crashes

– Any data that’s in memory but not on disk is lost

– What if client does seek();  /* SERVER CRASH */; read()

• If server maintains file position in RAM, the read will 

return bogus data

• Lost messages

– What if we lose acknowledgement for delete(“foo”)

– And in the meantime, another client created foo anew?

– The first client might retry the delete and delete new file

• Client crashes

– Might lose data updates in client cache
28



NFS’s Solutions

• Stateless design

– Flush-on-close:  When file is closed, all modified blocks 

sent to server.  close() does not return until bytes safely 

stored.

– Stateless protocol:  requests specify exact state.       

read() -> read([position]).  no seek on server.

• Operations are idempotent

– How can we ensure this?  Unique IDs on files/directories. 

 It’s not delete(“foo”), it’s delete(1337f00f), where that ID 

won’t be reused.

– (See the level of indirection we’ve added with this ID?  )
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Caching Problem 2: Consistency

• If we allow client to cache parts of files, directory 

metadata, etc.

– What happens if another client modifies them?

• 2 readers:  no problem!

• But if 1 reader, 1 writer: inconsistency problem!
30
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NFS’s Solution:  Weak Consistency

• NFS flushes updates on close()

• How does other client find out?

• NFS’s answer:  It checks periodically.

– This means the system can be inconsistent for a few 

seconds:  two clients doing a read() at the same time 

for the same file could see different results if one had 

old data cached and the other didn’t.
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Design Choice

• Clients can choose a stronger consistency model:      

          close-to-open consistency

– How? Always ask server for updates before open()

– Trades a bit of scalability / performance for                   

better consistency  (getting a theme here?  )
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What about Multiple Writes?

• NFS provides no guarantees at all!

• Might get one client’s writes, other client’s 

writes, or a mix of both!
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NFS Summary

• NFS provides transparent, remote file access

• Simple, portable, really popular

– (it’s gotten a little more complex over time)

• Weak consistency semantics

• Requires hefty server resources to scale 

(flush-on-close, server queried for lots of operations)
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Let’s Look at AFS Now

• NFS addresses some of the challenges, but

– Doesn’t handle scale well (one server only)

– Is very sensitive to network latency

• How does AFS improve this?

– More aggressive caching (AFS caches on disk in 

addition to RAM)

– Prefetching (on open,  AFS gets entire file from server, 

making subsequent ops local & fast)
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How to Cope with That Caching?

• Close-to-open consistency only

– Why does this make sense? (Hint: user-centric workloads)

• Cache invalidation callbacks

– Clients register with server that they have a copy of file

– Server tells them: “Invalidate!” if the file changes

– This trades server-side state (read: scalability) for 

improved consistency
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AFS Summary

• Lower server load than NFS

– More files cached on clients

– Cache invalidation callbacks:  server not busy if files 

are read-only (common case)

• But maybe slower:  Access from local disk is much 

slower than from another machine’s memory over a LAN

• For both, central server is:

– A bottleneck:  reads and writes hit it at least once per 

file use;

– A single point of failure;

– Expensive:  to make server fast, beefy, and reliable, 

you need to pay $$$.
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Today’s Bits

• Distributed filesystems always involve a tradeoff:  

consistency, performance, scalability.

• We’ve learned a lot since NFS and AFS (and can 

implement faster, etc.), but the general lesson holds.  

Especially in the wide-area.

– We’ll see a related tradeoff, also involving consistency, 

in a while:  the CAP tradeoff (Consistency, Availability, 

Partition-resilience)
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More Bits

• Client-side caching is a fundamental technique to 

improve scalability and performance

– But raises important questions of cache consistency

• Periodic refreshes and callbacks are common 

methods for providing (some forms of) consistency

– We’ll talk about consistency more formally in future

• AFS picked close-to-open consistency as a good 

balance of usability (the model seems intuitive to 

users), performance, etc.

– Apps with highly concurrent, shared access, like 

databases, needed a different model
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Next Time

• Another distributed file system, oriented toward       

other types of workloads (big-data/big-application 

workloads): the Google File System
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