Time, Clocks, and
State Machine Replication

Dan Ports, CSEP 552

loday's question

- How do we order events in a distributed system?

* physical clocks
* logical clocks
* snapshots

e (break)

* application: state machine replication
(Chain Replication / Lab 2)

Why do we need to
order events?

Distributed Make

Central file server holds source and object files
Clients specify modification time on uploaded files
Use timestamps to decide what needs to be rebuilt

if object O depends on source S,
and O.time < S.time, rebuild O

What goes wrong”

Another example: Facebook

e Remove boss as friend

 Post "My boss is the worst, | need a new job!”

* Don’'t want to get these in the wrong order!

Why would we get these In
the wrong order?

Data is not stored on one server - actually 100K+
Privacy settings stored separately from post

Lots of copies of data: replicas, caches in the data
center, cross-datacenter replication, edge caches

How do we update all these things consistently?

 Can we just use wall clocks?

Physical clocks

* Quartz crystal can be distorted using piezoelectric
effect, then snaps back
=> results in an oscillation at resonant frequency

* affected by crystal variations, temperature, age, etc

Crystal oscillator (~1¢)
5min/yr

Oven-controlled XO (~$50-100)
1sec/yr

Rubidium atomic clock (~$1k)
<1 ms/yr

Cesium atomic clock ($eo)
100 ns /yr

How well are clocks
synchronized in practice”

(measurements from Amazon EC?2)

How well are clocks
synchronized in practice”

Virginia | Oregon | Califrnia | Ireland | Singap | Tokyo Sydney | SaoPao
Virginia -0.01 -69.04 | -163.98 | -237.53 | -242.77 | -199.78 | -189.03 e
Oregon 61.24 -005(-9948 | -170.07 | -185.16 | -143.30 | -110.12 | -38.02
Califrnia | 159.96 94.57 -0.03 | -83.01| -68.67 | -21.08 -490 [105.99
Ireland 225.18 | 166.07 73.63 -0.03 36.22 49.08 67.43 | 178.24
Singap 223.93 | 167.24 79.00 4.00 -0.02 49.65 88.28 | 176.49
Tokyo 171.53 | 110.57 18.84 | -51.92 | -55.83 0.00 37.73 77.31
Sydney 135.25 7766 | -1536 | -70.23 | -86.15| -38.38 0.03 | 166.03
SaoPao 64.42 17.53 | -94.05 | -163.43 | -164.71 -65.92 | -158.14 0.01

(measurements from Amazon EC?2)

How well are clocks
synchronized in practice”

e \Within a datacenter: ~20-50 microseconds

e Across datacenters: ~50-250 milliseconds

e for comparison: can process a RPC in ~3us
200ms is a user-perceptible difference

Two approaches

e Synchronize physical clocks

* Logical clocks

Strawman approach

Designate one server as the master
(How do we know the master’s time is correct?)

Master periodically broadcasts time

Clients receive broadcast, set their clock to the
value In the message

s this a good approach?

Network [atency

Have to assume asynchronous network:
atency can be unpredictable and unbounded

A

min delay

% of #
msgs

Slightly better approach

* Designate one server as the master
(How do we know the master’s time is correct?)

* Master periodically broadcasts time

 Clients receive broadcast, set their clock to the
value in the message + minimum delay

e Can we say anything about the accuracy?

Slightly better approach

* Designate one server as the master
(How do we know the master’s time is correct?)

* Master periodically broadcasts time

 Clients receive broadcast, set their clock to the
value in the message + minimum delay

e Can we say anything about the accuracy?

only that error ranges from 0 to (max-min)

Can we do better?

Interrogation-Based Protocol

T1

master

Interrogation-Based Protocol

T1

| . | |
|
master : min : a E R Emin i

How accurate i1s this?

 No reliable way to tell where T1 lies between TO and T2

e Best option is to assume the midpoint, set client’s clock
toT1 + (T2-TO)/2

e \What is the maximum error?

How accurate i1s this?

 No reliable way to tell where T1 lies between TO and T2

e Best option is to assume the midpoint, set client’s clock
toT1 + (T2-TO)/2

e \What is the maximum error?

If we know the minimum latency: (T2-T0)/2 - min

Improving on tnis

« NTP uses an interrogation-based approach, plus:

e taking multiple samples to eliminate ones not close
tomin RTT

e averaging among multiple masters
» taking into account clock rate skew

« PIP adds hardware timestamping support to track
latency Iintroduced in network

Are physical clocks enough?

Alternative: logical clocks

e another way to keep track of time

* pbased on the idea of causal relationships between
events

* doesn't require any physical clocks

Definitions

 What is a process?
 What is an event?

 What is a message”

Happens-before relationship

Captures logical (causal) dependencies between
events

Within a thread, P1 before P2 means P1 -> P2
f a =send(M)and b =recv(M), a-> b

transitivity: ifa-> b and b ->cthena->c

¥ Sseooo0ad

$H ss3ao00ad

d ssoooud

What does -> mean”

What does -> mean”

* a-> b means “b could have been influenced by a”

What does -> mean”

* a-> b means “b could have been influenced by a”

e \WWhat about a -/-> b? Does that mean b -> a”

What does -> mean”

* a-> b means “b could have been influenced by a”
 What about a -/-> b” Does that mean b -> a?

 \What does it mean, then”? Events are concurrent

What does -> mean”

a -> b means “b could have been intfluenced by a”
What about a -/-> b? Does that mean b -> a”
What does it mean, then”? Events are concurrent

What does it mean for events to be concurrent?

What does -> mean”

a -> b means “b could have been influenced by a”
What about a -/-> b? Does that mean b -> a?

What does it mean, then? Events are concurrent
What does it mean for events to be concurrent?

- Key insight: no one can tell whether a or b
happened first!

Abstract logical clocks

e Goal:ifa-> Db, then C(a) < C(b)
 Clock conditions:

* |f a and b are on the same process |,
Ci(a) < Ci(b)

* |f a = processisends M, and

b = process | receives m
Ci(a) < Cj(b)

(One) Algorithm

 Each process i increments counter Ci between two
local events

* When | sends a message m, it includes a
timestamp Tm = (Ci at the time message was sent)

* On receiving m, process | updates its clock:
Cj=max(Cj, Tm+ 1) + 1

N N -
o
b e o
- —o
¥ Sssooo0ad
{
O O < -
(Fp} e o -4
o o) o
-9
O ssao00ad
- *
o™ N r—t
d ssoooud Q. Q. Q.
™ ™M ™

¥ Sseooo0ad

$H ss3ao00ad

d ssoooud

<

#rl

¥ Sssooud

<«

& ssad0id

T S W T —— N — W W — —

9

d Ssaooiad

<

#rl

¥ Sssooud

<«

& ssad0id

T S W T —— N — W W — —

9

d Ssaooiad

— e
) | 1 '
y Ssoooid ! , , " __

| _ *

_ . A _ _

[| |

~ _ |

_

_ | }

L | _ |
~ | < _ ™ -
o . o

\ | |
< , -
o) ssao0id | ‘ |

i | | _

|

| | _ |

_ _

i | _ !

| i | |

| | _ _

_ _ | |

.) . |

<l _ _ |

d S$s9s0ud

el

What does this mean”

What does this mean”

e |[fa->Db, then C(a) < C(b)

What does this mean”

e |[fa->Db, then C(a) < C(b)

* |sthe converse true: it C(a) < C(b) then a -> b?

What does this mean”

e |[fa->Db, then C(a) < C(b)

* |sthe converse true: it C(a) < C(b) then a -> b?

* NO, they could also be concurrent

What does this mean”

e |[fa->Db, then C(a) < C(b)
* |sthe converse true: it C(a) < C(b) then a -> b?
* NO, they could also be concurrent

* if we were to use the Lamport clock as a global
order, we would induce some unnecessary
ordering constraints

Could we build a better
logical clock?

Could we build a better
logical clock?

e One where the converse is true,
C(a) < C(b)=>a->Db

Could we build a better
logical clock?

e One where the converse is true,

C(a) < C(b)=>a->Db

e Note that there must still be concurrent events:

sometimes neither C(a) < C(b) or C(b) < C(a)

Could we build a better
logical clock?

e One where the converse is true,
C(a) < C(b)=>a->Db

e Note that there must still be concurrent events:
sometimes neither C(a) < C(b) or C(b) < C(a)

e Strawman: keep a dependency list,
.e. a list of all previous events

Could we build a better
logical clock?

One where the converse is true,
C(a) < C(b)=>a->Db

Note that there must still be concurrent events:
sometimes neither C(a) < C(b) or C(b) < C(a)

Strawman: keep a dependency list,
.e. a list of all previous events

Better answer: vector clocks (later!)

Snapshots

Motivating Example:
PageRank

* Long-running computation on thousands of servers
* each server holds some subset of webpages
* each page starts out with some reputation

* each iteration: transter some of a page’s
reputation to the pages it links to

- What do we do if a server crashes?

Suppose we want to take a snapshot
for fault tolerance.

How often would we need to snapshot
each machine”

Consistent Snapshots

 \We want processes to record their snapshots at "about the
same time”

e |f a process’s checkpoint reflects receiving message m, then
the sending process’s checkpoint should retlect sending it

e Or if a channel’'s checkpoint contains a message
e |t a process’s checkpoint reflects sending a message, the
message needs to be retlected in the receiver’'s or channel’s

checkpoint

* |.e., cantlose messages

Put another way:

* Process checkpoints are logically concurrent

* |.e., N0 process checkpoint happens-before
another!

e alternatively:
f a->b, and b is in some checkpoint, so is a

Chandy-Lamport algorithm

 Assumptions
* finite set of processes and channels

e strongly connected graph between processes

e channels are infinite buffers,
error-free,

In-order delivery,
finite delay

* processes are deterministic

 Why do we need each of these”

I'ne Algorithm

e Start: some process sends itself a “take snapshot” token

 When i receives a token from |:
* | checkpoints its process state
e | sends token on all outgoing channels
e | records that channel from | is empty

e | starts recording messages on other channels
until receiving a token on that channel

 Done when every process has received a token
on every channel

Why does this work?

Why does this work?

* Jokens separate logical time into
‘before the snapshot” from “after the snapshot”

* |f process i records state that includes receiving a
message from |
then |'s state includes sending that message

DISCUSSION

* |s this the best way to snapshot systems?

e Can we use this technique for other purposes?

State Machine Replication

(Chain Replication & Lab 2)

HOW dO we bulld a system
that tolerates server failures?

- Replication!

* (Goal: tolerate up to t server failures
by using (at least) f+1 copies

* (Goal: look just like one copy to the client

* Challenge: coordinating operations so they are
applied to all replicas with the same result

State Machine Replication

* |ncredibly powerful abstraction

* |dea: model the system as a state machine
e service maintains some amount of state
e transition function: (input, state) -> new state
e output function: (input, state) -> output

* |.e., system state/output entirely determined by input
seqguence

Key idea:
If the system Is a state machine,
keeping the replicas consistent means
agreeing on the order of operations

Are all real systems
state machines”

Are all real systems
state machines”

e Needs to be deterministic
 what about clocks? randomness”?

* parallel execution within a single machine
(multicore)

 Need to be careful to capture all inputs?

Ordering operations

Goal: achieve a consistent order of operations
on all replicas

What does “consistent” mean here?

Single-copy serializability: it appears to all clients as though
operations were executed sequentially on a single machine

* |.e, total order of operations doesn’'t change

Strict serializability (linearizability): adds real time req:
if a finishes before b starts, a is ordered before b

State machine replication

* Many ways to achieve this:

* Primary copy approaches
* chain replication is one example
 Lab 2 is a simplified version

* Quorum approaches, e.g. Paxos (two weeks)

Primary Copy Replication

 Key idea: have a designated primary that
assigns order to requests

e All replicas execute requests in primary’s order
e (Client sees results consistent with that order

e Client doesn’t see results until executed by “enough”
replicas (here, all f+1)

 When primary ftails, replace it — but make sure the new
porimary respects the order of all successtul operations
(this is the hard part!)

Chain Replication Assumptions

Chain Replication Assumptions

e f+1 nodes to tolerate f failures

* nodes fail only by crashing, and crashes are
detected

e fault-tolerant master service keeps track of system
membpership

e operations are read or write

Chain Replication

updates

@

—

@
—

/
—

queries replies
EAI{

Normal Case Processing

 Updates sent to head, propagated down chain,
response comes from tall

* Key invariant: each node has seen a superset of
operations seen by all following nodes in the chain

* What is the commit point of an operation?

Failures In the Chain

What happens if the tail fails®?

What happens if the head tails”

What happens if a node in the middle tails?
What happens if we add a node”

What happens if the master fails?

Performance

Alternative: primary sends to all other replicas in
parallel, waits for responses

* could use t+1 replicas and wait for responses from all,
or 2f+1 and walit for responses from majority

Throughput: chain replication best (2 msgs per node)

Latency: chain replication worst
- need to execute at every replica in seqguence
- need to wait for slowest replica

Lab 2

e Simplified version of chain replication:
chain always two nodes (primary & backup)

 Part A: implement the view service (master)

* Part B: implement a primary/backup
key-value store

View Service Behavior

 \What state does the master need?
* |ist of alive replicas, last ping time

e view number, primary and backup for that view

* View transitions
* |nitial state -> make some node primary in view 1
* primary, no backup -> add a backup
e primary, backup -> backup fails

e primary, backup -> primary fails, replace with backup

View Service Behavior

e Servers periodically ping master
* N mMissed pings => server dead
* 1 successful ping => server alive
* primary dead => promote backup

* NO backup, some live server => add it as backup

Primary/Backup

 Need to ensure that the new primary has up-to-date
state

e Only promote previous backup (not an idle server)
* What if the previous backup didn't have time to get

the state from the old master?

* primary must acknowledge new view to view server

e |f it doesn’t, can’t move to a new view
even if the primary fails!

Multiple Primaries

Can more than one replica think it's the primary?

How do we keep other replicas from acting as the
primary”?

Operations need to be forwarded to the backup to
succeed

Backup will always be the primary in the next view,
SO it rejects forwarded ops from the old primary

