
Distributed
Mutual Exclusion



Mutual Exclusion

 Very well-understood in shared memory systems
 Requirements:
 at most one process in critical section (safety)
 if more than one requesting process, someone 

enters (liveness)
 a requesting process enters within a finite time 

(no starvation)
 requests are granted in some order (fairness)



Classification of Distributed 
Mutual Exclusion Algorithms

 Permission based
 Node takes permission from all/subset of other 

nodes before entering critical section
 Permission from all: costly, good for small systems
 Permission from subset: scalable, widely used

 Main problem: How to choose the subsets for each node?

 Token based
 Single token in the system
 Node enters critical section if it has the token
 Algorithms differ in how the token is circulated 

among requesting nodes



Some Complexity Measures
 No. of messages per critical section entry
 Synchronization delay
 Response time
 Throughput



Adaptive vs. Non-Adaptive

 Performance under low load (less requests 
for CS) should be better than performance 
under high load (lots of requests)

 Adaptive mutual exclusion algorithms: 
performance is dependent on load



Permission based Algorithms



Lamport’s Algorithm

 Permission from all
 Every node i has a request queue qi, keeps 

requests sorted by logical timestamps (total ordering 
enforced by including process id in the timestamps) 

 To request critical section:
 send timestamped REQUEST (tsi, i) to all other 

nodes
 put (tsi, i) in its own queue

 On receiving a request (tsi, i):
 send timestamped REPLY to the requesting node 

i
 put request (tsi, i) in the queue



 To enter critical section:
 i enters critical section if (tsi, i) is at the top if its 

own queue, and i has received a message (any 
message) with timestamp larger than (tsi, i) from 
ALL other nodes.

 To release critical section:
 i removes its request from its own queue and 

sends a timestamped RELEASE message to all 
other nodes

 On receiving a RELEASE message from i, i’s 
request is removed from the local request queue



Some points to note

 Purpose of REPLY messages from node i to j is to 
ensure that j knows of all requests of i prior to 
sending the REPLY (and therefore, possibly any 
request of i with timestamp lower than j’s request)

 Requires FIFO channels. 
 3(n – 1 ) messages per critical section invocation
 Synchronization delay = max. message 

transmission time
 Requests are granted in order of increasing 

timestamps



Ricart-Agarwala Algorithm
 Improvement over Lamport’s
 Main Idea:
 node j need not send a REPLY to node i if j has a 

request with timestamp lower than the request of i 
(since i cannot enter before j anyway in this case)

 Does not require FIFO
 2(n – 1) messages per critical section invocation
 Synchronization delay = max. message 

transmission time
 requests granted in order of increasing timestamps



 To request critical section:
 send timestamped REQUEST message (tsi, i)

 On receiving request (tsi, i) at j:
 send REPLY to i if j is neither requesting nor 

executing critical section or if j is requesting and 
i’s request timestamp is smaller than j’s request 
timestamp. Otherwise, defer the request.

 To enter critical section:
 i enters critical section on receiving REPLY from 

all nodes
 To release critical section:
 send REPLY to all deferred requests



Maekawa’s Algorithm

 Permission obtained from only a subset of other 
processes, called the Request Set (or Quorum)

 Separate Request Set Ri for each process i
 Requirements:
 for all i, j: Ri ∩ Rj ≠ Φ
 for all i: i Є Ri
 for all i: |Ri| = K, for some K
 any node i is contained in exactly D Request 

Sets, for some D
 K = D (easy to see)
 For minimum K, K ≈ sqrt(N) (why?)



A simple version

 To request critical section:
 i sends REQUEST message to all process in Ri

 On receiving a REQUEST message:
 send a REPLY message if no REPLY message 

has been sent since the last RELEASE message 
is received. Update status to indicate that a 
REPLY has been sent. Otherwise, queue up the 
REQUEST

 To enter critical section:
 i enters critical section after receiving REPLY from 

all nodes in Ri



 To release critical section:
 send RELEASE message to all nodes in Ri

 On receiving a RELEASE message, send REPLY 
to next node in queue and delete the node from 
the queue. If queue is empty, update status to 
indicate no REPLY message has been sent since 
last RELEASE is received.



 Message Complexity: 3*sqrt(N)
 Synchronization delay =

2 *(max message transmission time)
 Major problem: Deadlock possible
 Can you update the protocol with additional 

messages to solve this problem?
 Good practice 
 Maekawa’s protocol already does that, we just looked at a 

part of it

 Building the request sets?



Some Points

 Permission based algorithms with permission from a 
subset are widely used
 Voting/Quorum based protocols
 In Maekawa’s algorithm, 
 each process has one vote
 A process needs a certain number of votes to 

proceed
 Questions/Issues
 How to choose the quorums?
 Should the quorum be the same for read and write?
 Should each process have one vote only? Same 

number of votes for all?
 Dynamic quorums/votes



Token based Algorithms



Token based Algorithms

 Single token circulates, enter CS when token is 
present

 Mutual exclusion obvious
 Algorithms differ in how to find and get the token

 Token circulates, nodes use it when it passes through 
them

 Token stays at node of last use, other nodes request for it 
when needed
 Need to differentiate between old and current requests



Suzuki Kasami Algorithm

 Broadcast a request for the token
 Process with the token sends it to the requestor if it 

does not need it

Issues:
 Current vs. outdated requests
 Determining sites with pending requests
 Deciding which site to give the token to



 The token:
 Queue (FIFO) Q of requesting processes
 LN[1..n] : sequence number of request that j 

executed most recently
 The request message:
 REQUEST(i, k): request message from node i for 

its kth critical section execution
 Other data structures
 RNi[1..n] for each node i, where RNi[j] is the 

largest sequence number received so far by i in a 
REQUEST message from j.



 To request critical section:
 If i does not have token, increment RNi[i] and send 

REQUEST(i, RNi[i]) to all nodes
 if i has token already, enter critical section if the token 

is idle (no pending requests), else follow rule to 
release critical section

 On receiving REQUEST(i, sn) at j:
 set RNj[i] = max(RNj[i], sn)
 if j has the token and the token is idle, send it to i if 

RNj[i] = LN[i] + 1. If token is not idle, follow rule to 
release critical section



 To enter critical section:
 enter CS if token is present

 To release critical section:
 set LN[i] = RNi[i]
 For every node j which is not in Q (in token), add 

node j to Q if RNi[ j ] = LN[ j ] + 1
 If Q is non empty after the above, delete first node 

from Q and send the token to that node



Points to note:

 No. of messages: 0 if node holds the token 
already, n otherwise

 Synchronization delay: 0 (node has the token) or 
max. message delay (token is elsewhere)

 No starvation 



Raymond’s Algorithm

 Forms a directed tree (logical) with the token-holder 
as root 

 Each node has variable “Holder” that points to its 
parent on the path to the root. Root’s Holder 
variable points to itself

 Each node i has a FIFO request queue Qi



 To request critical section:
 Send REQUEST to parent on the tree, provided i 

does not hold the token currently and Qi is empty. 
Then place request in Qi

 When a non-root node j receives a request from i
 place request in Qj

 send REQUEST to parent if no previous 
REQUEST sent



 When the root r receives a REQUEST
 place request in Qr
 if token is idle, follow rule for releasing critical 

section (shown later)

 When a node receives the token
 delete first entry from the queue
 send token to that node (maybe itself)
 set Holder variable to point to that node
 if queue is non-empty, send a REQUEST message 

to the parent (node pointed at by Holder variable)



 To execute critical section
 enter if token is received and own entry is at the 

top of the queue; delete the entry from the queue

 To release critical section
 if queue is non-empty, delete first entry from the 

queue, send token to that node and make Holder 
variable point to that node

 If queue is still non-empty, send a REQUEST 
message to the parent (node pointed at by Holder 
variable)



Points to note:

 Avg. message complexity O(log n)

 Sync. delay (T log n)/2, where T = max. 
message delay



L - Exclusion

 At most L processes can be in critical section 
at any one time

 Can be implemented with L tokens
 Other algorithms exist
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