
Distributed
Mutual Exclusion

Mutual Exclusion

 Very well-understood in shared memory systems
 Requirements:
 at most one process in critical section (safety)
 if more than one requesting process, someone

enters (liveness)
 a requesting process enters within a finite time

(no starvation)
 requests are granted in some order (fairness)

Classification of Distributed
Mutual Exclusion Algorithms

 Permission based
 Node takes permission from all/subset of other

nodes before entering critical section
 Permission from all: costly, good for small systems
 Permission from subset: scalable, widely used

 Main problem: How to choose the subsets for each node?

 Token based
 Single token in the system
 Node enters critical section if it has the token
 Algorithms differ in how the token is circulated

among requesting nodes

Some Complexity Measures
 No. of messages per critical section entry
 Synchronization delay
 Response time
 Throughput

Adaptive vs. Non-Adaptive

 Performance under low load (less requests
for CS) should be better than performance
under high load (lots of requests)

 Adaptive mutual exclusion algorithms:
performance is dependent on load

Permission based Algorithms

Lamport’s Algorithm

 Permission from all
 Every node i has a request queue qi, keeps

requests sorted by logical timestamps (total ordering
enforced by including process id in the timestamps)

 To request critical section:
 send timestamped REQUEST (tsi, i) to all other

nodes
 put (tsi, i) in its own queue

 On receiving a request (tsi, i):
 send timestamped REPLY to the requesting node

i
 put request (tsi, i) in the queue

 To enter critical section:
 i enters critical section if (tsi, i) is at the top if its

own queue, and i has received a message (any
message) with timestamp larger than (tsi, i) from
ALL other nodes.

 To release critical section:
 i removes its request from its own queue and

sends a timestamped RELEASE message to all
other nodes

 On receiving a RELEASE message from i, i’s
request is removed from the local request queue

Some points to note

 Purpose of REPLY messages from node i to j is to
ensure that j knows of all requests of i prior to
sending the REPLY (and therefore, possibly any
request of i with timestamp lower than j’s request)

 Requires FIFO channels.
 3(n – 1) messages per critical section invocation
 Synchronization delay = max. message

transmission time
 Requests are granted in order of increasing

timestamps

Ricart-Agarwala Algorithm
 Improvement over Lamport’s
 Main Idea:
 node j need not send a REPLY to node i if j has a

request with timestamp lower than the request of i
(since i cannot enter before j anyway in this case)

 Does not require FIFO
 2(n – 1) messages per critical section invocation
 Synchronization delay = max. message

transmission time
 requests granted in order of increasing timestamps

 To request critical section:
 send timestamped REQUEST message (tsi, i)

 On receiving request (tsi, i) at j:
 send REPLY to i if j is neither requesting nor

executing critical section or if j is requesting and
i’s request timestamp is smaller than j’s request
timestamp. Otherwise, defer the request.

 To enter critical section:
 i enters critical section on receiving REPLY from

all nodes
 To release critical section:
 send REPLY to all deferred requests

Maekawa’s Algorithm

 Permission obtained from only a subset of other
processes, called the Request Set (or Quorum)

 Separate Request Set Ri for each process i
 Requirements:
 for all i, j: Ri ∩ Rj ≠ Φ
 for all i: i Є Ri
 for all i: |Ri| = K, for some K
 any node i is contained in exactly D Request

Sets, for some D
 K = D (easy to see)
 For minimum K, K ≈ sqrt(N) (why?)

A simple version

 To request critical section:
 i sends REQUEST message to all process in Ri

 On receiving a REQUEST message:
 send a REPLY message if no REPLY message

has been sent since the last RELEASE message
is received. Update status to indicate that a
REPLY has been sent. Otherwise, queue up the
REQUEST

 To enter critical section:
 i enters critical section after receiving REPLY from

all nodes in Ri

 To release critical section:
 send RELEASE message to all nodes in Ri

 On receiving a RELEASE message, send REPLY
to next node in queue and delete the node from
the queue. If queue is empty, update status to
indicate no REPLY message has been sent since
last RELEASE is received.

 Message Complexity: 3*sqrt(N)
 Synchronization delay =

2 *(max message transmission time)
 Major problem: Deadlock possible
 Can you update the protocol with additional

messages to solve this problem?
 Good practice 
 Maekawa’s protocol already does that, we just looked at a

part of it

 Building the request sets?

Some Points

 Permission based algorithms with permission from a
subset are widely used
 Voting/Quorum based protocols
 In Maekawa’s algorithm,
 each process has one vote
 A process needs a certain number of votes to

proceed
 Questions/Issues
 How to choose the quorums?
 Should the quorum be the same for read and write?
 Should each process have one vote only? Same

number of votes for all?
 Dynamic quorums/votes

Token based Algorithms

Token based Algorithms

 Single token circulates, enter CS when token is
present

 Mutual exclusion obvious
 Algorithms differ in how to find and get the token

 Token circulates, nodes use it when it passes through
them

 Token stays at node of last use, other nodes request for it
when needed
 Need to differentiate between old and current requests

Suzuki Kasami Algorithm

 Broadcast a request for the token
 Process with the token sends it to the requestor if it

does not need it

Issues:
 Current vs. outdated requests
 Determining sites with pending requests
 Deciding which site to give the token to

 The token:
 Queue (FIFO) Q of requesting processes
 LN[1..n] : sequence number of request that j

executed most recently
 The request message:
 REQUEST(i, k): request message from node i for

its kth critical section execution
 Other data structures
 RNi[1..n] for each node i, where RNi[j] is the

largest sequence number received so far by i in a
REQUEST message from j.

 To request critical section:
 If i does not have token, increment RNi[i] and send

REQUEST(i, RNi[i]) to all nodes
 if i has token already, enter critical section if the token

is idle (no pending requests), else follow rule to
release critical section

 On receiving REQUEST(i, sn) at j:
 set RNj[i] = max(RNj[i], sn)
 if j has the token and the token is idle, send it to i if

RNj[i] = LN[i] + 1. If token is not idle, follow rule to
release critical section

 To enter critical section:
 enter CS if token is present

 To release critical section:
 set LN[i] = RNi[i]
 For every node j which is not in Q (in token), add

node j to Q if RNi[j] = LN[j] + 1
 If Q is non empty after the above, delete first node

from Q and send the token to that node

Points to note:

 No. of messages: 0 if node holds the token
already, n otherwise

 Synchronization delay: 0 (node has the token) or
max. message delay (token is elsewhere)

 No starvation

Raymond’s Algorithm

 Forms a directed tree (logical) with the token-holder
as root

 Each node has variable “Holder” that points to its
parent on the path to the root. Root’s Holder
variable points to itself

 Each node i has a FIFO request queue Qi

 To request critical section:
 Send REQUEST to parent on the tree, provided i

does not hold the token currently and Qi is empty.
Then place request in Qi

 When a non-root node j receives a request from i
 place request in Qj

 send REQUEST to parent if no previous
REQUEST sent

 When the root r receives a REQUEST
 place request in Qr
 if token is idle, follow rule for releasing critical

section (shown later)

 When a node receives the token
 delete first entry from the queue
 send token to that node (maybe itself)
 set Holder variable to point to that node
 if queue is non-empty, send a REQUEST message

to the parent (node pointed at by Holder variable)

 To execute critical section
 enter if token is received and own entry is at the

top of the queue; delete the entry from the queue

 To release critical section
 if queue is non-empty, delete first entry from the

queue, send token to that node and make Holder
variable point to that node

 If queue is still non-empty, send a REQUEST
message to the parent (node pointed at by Holder
variable)

Points to note:

 Avg. message complexity O(log n)

 Sync. delay (T log n)/2, where T = max.
message delay

L - Exclusion

 At most L processes can be in critical section
at any one time

 Can be implemented with L tokens
 Other algorithms exist

	Slide Number 1
	Mutual Exclusion
	Classification of Distributed Mutual Exclusion Algorithms
	Some Complexity Measures
	Adaptive vs. Non-Adaptive
	Permission based Algorithms
	Lamport’s Algorithm
	Slide Number 8
	Some points to note
	Ricart-Agarwala Algorithm
	Slide Number 11
	Maekawa’s Algorithm
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Some Points
	Token based Algorithms
	Token based Algorithms
	Suzuki Kasami Algorithm
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Raymond’s Algorithm
	Slide Number 25
	Slide Number 26
	��
	Slide Number 28
	L - Exclusion

