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Distributed Muttal Exclusion

Mostly from Sukumar Ghosh's book and handsout:
1 — Introduction

2 — Solutions Using Message Passing

3 — Token Passing Algorithms

4 — The Group Mutual Exclusion Problem

Also in Ghosh's book (not covered by this lecture):

+ Solution on the shared memory model
+ Peterson algorithm
+ Mutual exclusion using special instruction

+ Solution using Test-and-Set
# Solution using DEC LL and SC instruction
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1- Introduction

Why Do We Need Distributed Mutual Exclusion (DME)}

Atomicity exists only up to a certain level:
» Atomic instructions

» Defines the granularity of the computation
» Types of possible interleaving

~Assembly Language Instruction?

_ Remote Procedure Call?




1- Introduction

Why Do We Need Distributed Mutual Exclusion (DME)}

Some applications are:

* Resource sharing
* Avoiding concurrent update on shared data
* Controlling the grain of atomicity

* Medium Access Control in Ethernet

« (Collision avoidance in wireless broadcasts




1- Introduction

Why Do We Need Distributed Mutual Exclusion (DME)}

Example: Bank Account Operations

shared n : integer

Process P Process Q
Account receives amount nP Account receives amount nQ)
Computation: n = n +nP: Computation: n = n +nQ:
P1. Load Reg P n Q1. Load Reg Q, n
P2. Add Reg P, nP Q2. Add Reg Q, nQ
P3. Store Reg P n Q3. Store Reg Q, n
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1- Introduction

Why Do \We Need DME? (example contd)

Possible Interleaves of Executions of P and Q:

» 2 give the expected result n=n + nP + nQ

~P1,P2,P3, Q1, Q2, Q3
~Q1,Q2, Q3, P1, P2, P3

» 5 give erroneous result n = n+nQ

~P1,Q1,P2,Q2, P3, Q3
~P1,P2,Q1, Q2, P3, Q3
~P1,Q1,Q2, P2, P3, Q3
~Q1,P1,Q2, P2, P3, Q3
~Q1,Q2, P1, P2, P3, Q3

» 5 give erroneous resultn =n + nP

~Q1,P1,Q2, P2, Q3, P3
~Q1,Q2, P1, P2, Q3, P3
~Q1, P1,P2,Q2, Q3, P3
~P1,Q1, P2, Q2, Q3, P3
~P1,P2,Q1, Q2, Q3, P3

Olivier Dalle Distributed Algorithms — Mutual Exclusion



1- Introduction

Solutions to the Mutual Exclusion: Problem

PO @ CS e

pl e CS —p

pP3 —CS  ———




1- Introduction

Solutions to the Mutual Exclusion Problemi(2)

» 2 classes of solutions:
» Ad hoc solutions

» Solutions based on non-preemptible resource allocation

» Both classes require a special code around the critical

section
Ad-hoc case Non-preempt. resource case
Enter protocol Request resource
<critical section> <critical section>
Exit protocol Release resource
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2- Solutions Using Message Passing

Introduction

Problem formulation
» Assumptions
» n processes (n>1), numbered O ... n-1, noted Pi
~form a distributed system
» topology: completely connected graph (Kn)
» each Pi periodically wants:
1. enter the Critical Section (CS)
2. execute the CS code
3. eventually exits the CS code
» Devise a protocol that satisfies:
ME1 : Mutual Exclusion
MEZ2 : Freedom from deadlock

ME3 : Progress




2- Solutions Using Message Passing

Introduction (2)

Zoom on Conditions...
» ME1 : Mutual Exclusion

» At most one process can remain in CS at any time
» Safety property

» ME2 : Freedom from deadlock

P At least one process is eligible to enter CS
» Safety property

» ME3 : Progress

» Every process trying to enter must eventually succeed
» Liveness property
» Violation called livelock or starvation

» A measure of fairness: bounded waiting

» Specifies an upper bound on the number of times a process waits for its turn
to enter SC
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2- Solutions Using Message Passing

Introduction (3)

Centralized Solutions?

_ server
» Use a coordinator process

» External process
» One of the Pi-s

busy:bookean.
apee.
» Problems: =y irep'yl Ylease

» Single point of failure
» Unable to achieve FIFO fairness

P .
Example: \@9\’ 6?9@ clients
e S
IR & _
: \g&e How to anticipate
j <‘ > this late arrival?
coor \®A—>/
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2- Solutions Using Message Passing

LLamport's; Selution

» Assumptions:
» Each communicaion channel is FIFO
» Each process maintains a request queue Q

» Algorithm described by 5 rules

LA1. To request entry, send a time-stamped message to every other
process and enqueue to local Q

LA2. Upon reception place request in Q and send time-stamped ACK
but once out of CS

(possibly immediately if already out)
LA3. Enter CS when:
1. request first in Q (chronological order)
2. all ACK received from others
LA4. To exit CS, a process must:
1. delete request from Q
2. send time-stamped release message to others
LA5. When receiving a release msg, remove request from Q

Olivier Dalle Distributed Algorithms — Mutual Exclusion



2- Solutions Using Message Passing

Analysis of Lamports; Sejution

Can you show that it satisfies all the properties
(i.e. ME1, ME2, ME3) of a correct solution?

QO Ql
: , . — —>
Observation. Processes taking a decision to enter CS — @ @
must have identical views of their local queues, * *
when all ACKs have been received. ¢ \
Proof of ME1. At most one process can be in its CS at
any time. - -
Suppose not, and both j,k enter their CS. This implies E @ @

¢ [inCS=Qjts)<Qktsk
¢ kinCS=Qktsk<Qjts,
Impossible.

Q2 Q3
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2- Solutions Using Message Passing

Analysis oft Lamport's; Selutieni(2)

Proof of ME2. (No deadlock)

The waiting chain is acyclic. Qo0 Ql
| waits for | ot @ ]
= 1is behind ] in all queues ¢ N
(orjisinits CS)
= j does not wait for | e e

Proof of ME3. (progress) @ Q3

New requests join the end of the
queues, S0 new requests do not pass

the old ones




2- Solutions Using Message Passing

Analysis of Lamports: Solution (S)

Proof of FIFO fairness.

timestamp (j) < timestamp (k)
Req (30)

= jenters its CS before k does so
T~

Suppose not. So, k enters its CS before j. So k
did not receive j's request. But k received the
ack from j for its own req.

This is impossible if the channels are FIFO E{— ack
eq

. 20
Message complexity = 3(N-1) (per trip to CS) (20)

(N-1 requests + N-1 ack + N-1 release)

Olivier Dalle Distributed Algorithms — Mutual Exclusion



2- Solutions Using Message Passing

Ricart & Agrawala’s: Selution

What is new?

1. Broadcast a timestamped request to all.

2. Upon receiving a request, send ack if
-You do not want to enter your CS, or

-You are trying to enter your CS, but your timestamp is
higher than that of the sender.

(If you are already in CS, then buffer the request)

3. Enter CS, when you receive ack from all.
4. Upon exit from CS, send ack to each
pending request before making a new request.
(No release message is necessary)
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2- Solutions Using Message Passing

Analysis of Ricart & Agrawala's Selution

ME1. Prove that at most one process can be in CS. TS5Q) < TS(k)

ME2. Prove that deadlock is not possible.

ME3. Prove that FIFO fairness holds even if Req(k)  Ack())
—_— —

channels are not FIFO

Message complexity = 2(N-1)
(N-1 requests + N-1 acks - no release message) —
Req(j)
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2- Solutions Using Message Passing

Unboeunded Time-stamps

Timestamps grow in an unbounded manner.
This makes real implementation impossible.
Can we somehow bound timestamps?

Think about it.




2- Solutions Using Message Passing

Maekawa's Selution

+  First solution with a sublinear O(sqrt N) message
complexity.

+ “Close to” Ricart-Agrawala’s solution, but each
process is required to obtain permission from only a
subset of peers




2- Solutions Using Message Passing

\ViaekawarsiAlgertam

» With each process i, associate a subset
S..Divide the set of processes into S

subsets that satisfy the following two
conditions:

IS
Vij:0<ij<n1: SNS # ©

* Main idea. Each process i is required to
receive permission from S. only.

Correctness requires that multiple
processes Will never receive permission
from all members of their respective
subsets.
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2- Solutions Using Message Passing

\ViaekawarsiAlgertam

Example. Let there be seven processes 0, 1, 2, 3, 4,5, 6

S {
S {
S {
S, = {0, 3, 4}
S {
S {
S {

—

N

=N

(&)

»




2- Solutions Using Message Passing

Maekawa's Algorithmi (example contd)

Version 1 {Life of process I}

5= 10,1, 2;
1. Send timestamped request to each processinS. 5 = {1, 3, 3}
2. Request received = send ack to process with the S, = {2,4,5}
lowest timestamp. Thereafter, "lock” (i.e. commit)
yourself to that process, and keep others waiting. S, = {0, 3, 4}
3. Enter CS if you receive an ack from each member
inS.. %= 146
4. To exit CS, send release to every process in S. S = {0, 5, 6}
5. Release received = unlock yourself. Then send S, = {2, 3,6}

ack to the next process with the lowest timestamp.
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2- Solutions Using Message Passing

Analysis of Maekawars Algorithm(Version 1)

ME1. At most one process can enter its critical S, = {0, 1, 2}
section at any time. S, - {1,3,5
Let i and j attempt to enter their Critical Sections = 543
S, OSj # q there is a process k € S, OSj > = 0, 3, 4
Process k will never send ack to both. 5 = 1,4, 6}
So it will act as the arbitrator and establishes ME1 55 = {0, 3, 6}
S = {2, 3, 6}
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2- Solutions Using Message Passing

Analysis of Maekawars Algorithm(Version 1)

ME2. No deadlock. Unfortunately deadlock is
possible! Assume 0, 1, 2 want to enter

their critical sections. S, = {0,1, 2}
S1 = {1, 3, 5}
From S,={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;
5, = {2,4,5;
From S,={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;
5, = {0,3,4;
From S,= {2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0;
S4 = {1, 4, 6}
Now, 0 waits for 1 (to send a release), 1 waits for 2 (to send a
release), , and 2 waits for 0 (to send a release), . So 5 = 10,5, 6]
deadlock is possible! S = {2, 3, 6}
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2- Solutions Using Message Passing

Maekawa's Algerithmi(Version 2)

Avoiding deadlock
If processes always receive messages in % = 0,12
increasing order of timestamp, then s, = {1, 3,5}
deadlock “could be” avoided. But this is too
strong an assumption. 5, = {2,4,5;
5= {0,3,4}
Version 2 uses three additional messages:
S4 = {13 4, 6}
- failed S. = {0,5, 6)
- Inquire
nadt S, = {2,3,6)

- relinquish




2- Solutions Using Message Passing

Maekawa's Algerithmi(Version 2)

New features in version 2 .= {0,1,2

= 1,3,5
- Send ack and set lock as usual. 1 th, 3, 5}

S
S
- If lock is set and a request with a larger S, = {2,4,5}
timestamp arrives, send failed (you have no _
: _ S, = {0, 3, 4}
chance). If the incoming request has a lower
timestamp, then send inquire (are you in S
CS?) to the locked process. S
S

- Receive inquire and at least one failed
message > send relinquish. The recipient
resets the lock.

.+ = {1,4,6}
5 {0, 5, 6}
6 = {27 3; 6}
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2- Solutions Using Message Passing

Comments on Maekawa's Algorithmi(Version 2)

- Let K=|S]|. Let each process be a member of

D subsets. When N =7, K=D = 3. When K=D,
N = K(K-1)+1. So K =O(vN)
(from theory of finite projective planes)

- The message complexity of Version 1 is 3VN.
Maekawa's analysis of Version 2 reveals a
complexity of 7AN

* Sanders identified a bug in version 2 ...




2- Solutions Using Message Passing

EXErCISes

» In Ricart and Agrawala's distributed mutual exclusion
algorithm, show that:
a)Processes enter their critical sections in the order of their
request timestamps
b)Cor(r)ectness IS guaranteed even if the channels are not
FIF
» A Generalized version of the mutual exclusion problem in
which up to L processes (L >1) are allowed to be in their
critical sections simultaneously is known as the L-
exclusion problem. Precisely, if fewer than L processes
are in the CS at any time and one more process wants to
enter it, it must be allowed to do so. Modify R.-A.
algorithm to solve the L-exclusion problem.
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3- Tokens passing algorithms

Suzuki-Kasamil Sojution

Completely connected network of processes

There is one token in the network. The holder
of the token has the permission to enter CS.

Any other process trying to enter CS must
acquire that token. Thus the token will move

from one process to another based on
| want to enter CS

demand.

| want to enter CS
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3- Tokens passing algorithms

Suzuki=KasamitAlgoritiam

last

Process i broadcasts (i, num) req

quence number p—
Each process maintains | °f the request q

-an array req: req[j] denotes the sequence
no of the latest request from process |

(Some requests will be stale soon)

req
Additionally, the holder of the token maintains req

-an array last: last[j] denotes the

sequence number of the latest visit to CS req

for process j.

- a queue Q of waiting processes req: array[0..n-1] of integer

last: array [0..n-1] of integer
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3- Tokens passing algorithms

Suzuki=KasamitAlgoritimi(2)

When a process i receives a request (k, num) from
process Kk, it sets req[k] to max(req[k], num).

The holder of the token
--Completes its CS
--Sets last[i]:= its own num

--Updates Q by retaining each process k only if

1+ last[k] = req[k] \Q
(This guarantees the freshness of the request)

--Sends the token to the head of Q, along with

the array last and the tail of Q Req: array[0..n-1] of integer

Last: Array [0..n-1] of integer
In fact, token = (Q, last)
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3- Tokens passing algorithms

Suzuki-Kasami Algoritnmi(3)

{Program of process j}
Initially, Vi: req|i] = last[i] = 0
* Entry protocol *
req[j] := req[j] + 1
Send (], req[j]) to all
Wait until token (Q, last) arrives
Critical Section
* Exit protocol *
last[j] := req|]]
Vk#j: k & Q" reqlk] = last[k] + 1 = append k to Q;
if Q is not empty = send (tail-of-Q, last) to head-of-Q fi

* Upon receiving a request (k, num) *
req[k] := max(req[k], num)
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[1,0,0,0,0]
req=[1,0,0,0,0]
last=[0,0,0,0,0

req=[1,0,0,0,0]

req=[1,0,0,0,0
req=[1,0,0,0,0]

initial state: process O has sent a request to all, and
grabbed the token
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[1,1,1,0,0]
req=[1,1,1,0,0]
last=[0,0,0,0,0

req=[1,1,1,0,0]

req=[1,1,1,0,0]
req=[1,1,1,0,0]

1 & 2 send requests to enter CS
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[1,1,1,0,0]
req=[1,1,1,0,0]
last=[1,0,0,0,0]
Q=(1,2)

req=[1,1,1,0,0]

req=[1,1,1,0,0]
req=[1,1,1,0,0]

O prepares to exit CS
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[1,1,1,0,0]
last=[1,0,0,0,0]
Q=(2)

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]
req=[1,1,1,0,0]

O passes token (Q and last) to 1
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[2,1,1,1,0]
last=[1,0,0,0,0]
Q=(2,0,3)

req=[2,1,1,1,0]

req=[2,1,1,1,0]

req=[2,1,1,1,0]
req=[2,1,1,1,0]

O and 3 send requests
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3- Tokens passing algorithms

Example of Suzuki-Kasamil Algeritim Execution

req=[2,1,1,1,0]
req=[2,1,1,1,0]

(D
0)
’@
req=[2,1,1,1,0]
@) las:’r(:)[;,l,0,0,0]
req=[2,1,1,10] 3 Q=(0.3)

req=[2,1,1,1,0]

1 sends token to 2
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3- Tokens passing algorithms

Raymond's; Selution

» Improved version of token-based solution
» Uses a tree-topology
» ldea:
» At any time, one node holds the token
~ The holder is the root of the tree
» Every edge is assigned a direction

~ Route reqgests towards the root

~ If edge from Pi to Pj, Pj called holder of Pi

» When the token moves, some edges change direction




3- Tokens passing algorithms

Raymond's;Algoritam

QOutline

Each node has a holder variable and a local Q. Only first request
forwarded to holder.

R1. A node enters CS when it has token. Otherwise (no token),
registers request in local Q

R2. A node Pj with non empty Q sends 1 request to its holder,
unless already sent and awating for token.

R3. When root receives request, sends to neighbor at the head
of its local Q after exiting CS. And changes holder to that
node.

R4. When receiving a token, node Pj does:

~ forward to neighbor at head of its local Q
~ delete request from Q
~ set holder to that neighbor

~ if there are pending requests in Q, send another request to
holder
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3- Tokens passing algorithms

Example of Raymoend's/ Algorithm Execution




3- Tokens passing algorithms

Example of Raymoend's/ Algorithm Execution




3- Tokens passing algorithms

Example of Raymoend's/ Algorithm Execution

These two directed edges wil
reverse their direction ©0 7

6 forwards the token to 1

The message complexity is O(diameter) of the tree. Extensive
empirical measurements show that the average diameter of randomly

chosen trees of size n is O(log n). Therefore, the authors claim that the
average message complexity is O(log n)
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3- Tokens passing algorithms

EXErCISes

» In Suzuki-Kasami algorithm, prove the liveness property
that any process requesting a token eventually receives
the token. Also compute an upper bound on the number
of messages exchanged in the system before the token is
received.

» Repeat previous exercise with Raymond's algorithm.
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4- Group Mutual Exclusion

Introduction

» Problem proposed and solved by Young in 1999
» N processes, each belongs to one of M forums

» Four conditions must hold:
1. Mutual exclusion. At most one forum in session at a time.

2. Freedom from deadlock. At any time, at least one process
should be able to make a move

3. Bounded waiting. Every forum chosen by a process must
be in session in bounded time

4. Concurrent entry. Once a forum is in session, concurrent
entry in session is guaranteed for all willing processes.
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4- Group Mutual Exclusion

Simplistic: Centralized Soelution

» Assume only 2 forums F and F'.
» Each process has a flag with values in {F, F', 1}
» Coordinator reads flags of each process in ascending
order from O to N-1
» Guarantees that first active Pi always served
» followed by others requesting same forum

» Satisfies all requirement except bounded waiting

» Possible starvation for one forum if processes keep
entering always the same
» Solved by electing a leader
~first to enter forum
~~Nno more process allowed to join when leader leaves




4- Group Mutual Exclusion

JoungisiSelution

» Each process cycles through 4 phases
» request, in-cs, in-forum, passive

» Each process has flag={state,op}
» state=phase, and op={F,F', L}

» First version (for Pi, forum F):

turn: F or F'

while 3 Pj s.t. flag[j]=(in-cs,F")

do
flag[i] = (request,F)
while (turn # F' and not all-passive(F')) do nop done
flag[i] = (in-cs, F)

done

attend forum F

turn = F'

flag[i] = (passive, 1)




4- Group Mutual Exclusion

First Version Improved

» Fair with respect to forums
» turn variable

» note that a process has to wait for all other candidate to F'
to be out of in-cs

» Not fair for processes
» If several processes request F, at least one will succeed
» A process sleeping in NOP may not notice a forum change
from F'to F and then F' again
» Young's solution:
» Introduce a leader for each session (as in centralized)
» Each Pi has a variable successor]i] in (F, F', L)
~denote which is next forum
» Only one leader can capture successors

» A Pk with successor[k] = F enters in session F if leader of
F in session




