
1Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed AlgorithmsDistributed Algorithms

Distributed Mutual Exclusion
Olivier Dalle (*)

olivier.dalle@sophia.inria.fr

(*) Large parts of this lecture borrowed from Sukumar Ghosh's book.

2Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed Mutual ExclusionDistributed Mutual Exclusion
Mostly from Sukumar Ghosh's book and handsout:Mostly from Sukumar Ghosh's book and handsout:
1 – Introduction1 – Introduction
2 – Solutions Using Message Passing2 – Solutions Using Message Passing
3 – Token Passing Algorithms3 – Token Passing Algorithms
4 – The Group Mutual Exclusion Problem4 – The Group Mutual Exclusion Problem

Also in Ghosh's book (not covered by this lecture):Also in Ghosh's book (not covered by this lecture):
Solution on the shared memory modelSolution on the shared memory model

Peterson algorithmPeterson algorithm
Mutual exclusion using special instructionMutual exclusion using special instruction

Solution using Test-and-SetSolution using Test-and-Set
Solution using DEC LL and SC instructionSolution using DEC LL and SC instruction

3Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed Mutual ExclusionDistributed Mutual Exclusion

1 – 1 – IntroductionIntroduction
2 – Solutions Using Message Passing2 – Solutions Using Message Passing
3 – Token Passing Algorithms 3 – Token Passing Algorithms
4 – The Group Mutual Exclusion Problem4 – The Group Mutual Exclusion Problem

4Distributed Algorithms – Mutual ExclusionOlivier Dalle

Why Do We Need Distributed Mutual Exclusion (DME) ?Why Do We Need Distributed Mutual Exclusion (DME) ?

Atomicity exists only up to a certain level:Atomicity exists only up to a certain level:
Atomic instructionsAtomic instructions
Defines the granularity of the computationDefines the granularity of the computation

Types of possible interleavingTypes of possible interleaving
Assembly Language Instruction?Assembly Language Instruction?

Remote Procedure Call?Remote Procedure Call?

1- Introduction

5Distributed Algorithms – Mutual ExclusionOlivier Dalle

Why Do We Need Distributed Mutual Exclusion (DME) ?Why Do We Need Distributed Mutual Exclusion (DME) ?
1- Introduction

Some applications are:Some applications are:

• Resource sharingResource sharing

• Avoiding concurrent update on shared dataAvoiding concurrent update on shared data

• Controlling the grain of atomicityControlling the grain of atomicity

• Medium Access Control in EthernetMedium Access Control in Ethernet

• Collision avoidance in wireless broadcastsCollision avoidance in wireless broadcasts

6Distributed Algorithms – Mutual ExclusionOlivier Dalle

Why Do We Need Distributed Mutual Exclusion (DME) ?Why Do We Need Distributed Mutual Exclusion (DME) ?

Example: Bank Account OperationsExample: Bank Account Operations

1- Introduction

shared n : integer

Process P

Account receives amount nP
Computation: n = n +nP:

 P1. Load Reg_P, n

 P2. Add Reg_P, nP

 P3. Store Reg_P, n

Process Q

Account receives amount nQ
Computation: n = n +nQ:

 Q1. Load Reg_Q, n

 Q2. Add Reg_Q, nQ

 Q3. Store Reg_Q, n

7Distributed Algorithms – Mutual ExclusionOlivier Dalle

Why Do We Need DME? (example cont'd)Why Do We Need DME? (example cont'd)
1- Introduction

Possible Interleaves of Executions of P and Q:Possible Interleaves of Executions of P and Q:
2 give the expected result n= n + nP + nQ2 give the expected result n= n + nP + nQ

P1, P2, P3, Q1, Q2, Q3P1, P2, P3, Q1, Q2, Q3
Q1, Q2, Q3, P1, P2, P3Q1, Q2, Q3, P1, P2, P3

5 give erroneous result n = n+nQ5 give erroneous result n = n+nQ
P1, Q1, P2, Q2, P3, Q3P1, Q1, P2, Q2, P3, Q3
P1, P2, Q1, Q2, P3, Q3P1, P2, Q1, Q2, P3, Q3
P1, Q1, Q2, P2, P3, Q3P1, Q1, Q2, P2, P3, Q3
Q1, P1, Q2, P2, P3, Q3Q1, P1, Q2, P2, P3, Q3
Q1, Q2, P1, P2, P3, Q3Q1, Q2, P1, P2, P3, Q3

5 give erroneous result n = n + nP5 give erroneous result n = n + nP
Q1, P1, Q2, P2, Q3, P3Q1, P1, Q2, P2, Q3, P3
Q1, Q2, P1, P2, Q3, P3Q1, Q2, P1, P2, Q3, P3
Q1, P1, P2, Q2, Q3, P3Q1, P1, P2, Q2, Q3, P3
P1, Q1, P2, Q2, Q3, P3P1, Q1, P2, Q2, Q3, P3
P1, P2, Q1, Q2, Q3, P3P1, P2, Q1, Q2, Q3, P3

8Distributed Algorithms – Mutual ExclusionOlivier Dalle

Solutions to the Mutual Exclusion ProblemSolutions to the Mutual Exclusion Problem
1- Introduction

CS

CS

CS

CSp0

p1

p2

p3

9Distributed Algorithms – Mutual ExclusionOlivier Dalle

Solutions to the Mutual Exclusion Problem (2)Solutions to the Mutual Exclusion Problem (2)
2 classes of solutions:2 classes of solutions:

Ad hoc solutionsAd hoc solutions

Solutions based on non-preemptible resource allocationSolutions based on non-preemptible resource allocation

Both classes require a special code around the critical Both classes require a special code around the critical
sectionsection

1- Introduction

Enter protocol

 <critical section>

Exit protocol

Request resource

 <critical section>

Release resource

Ad-hoc case Non-preempt. resource case

10Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed Mutual ExclusionDistributed Mutual Exclusion

1 – Introduction1 – Introduction
2 – Solutions Using Message Passing2 – Solutions Using Message Passing
3 – Token Passing Algorithms 3 – Token Passing Algorithms
4 – The Group Mutual Exclusion Problem4 – The Group Mutual Exclusion Problem

11Distributed Algorithms – Mutual ExclusionOlivier Dalle

IntroductionIntroduction
Problem formulationProblem formulation

AssumptionsAssumptions
n processes (n>1), numbered 0 ... n-1, noted Pin processes (n>1), numbered 0 ... n-1, noted Pi

form a distributed systemform a distributed system
topology: completely connected graph (Kn)topology: completely connected graph (Kn)
each Pi each Pi periodically periodically wants:wants:

1. enter the Critical Section (CS)enter the Critical Section (CS)
2. execute the CS codeexecute the CS code
3. eventually exits the CS codeeventually exits the CS code

Devise a protocol that satisfies:Devise a protocol that satisfies:
ME1 : Mutual ExclusionME1 : Mutual Exclusion
ME2 : Freedom from deadlockME2 : Freedom from deadlock
ME3 : Progress ME3 : Progress

2- Solutions Using Message Passing

12Distributed Algorithms – Mutual ExclusionOlivier Dalle

Introduction (2)Introduction (2)
Zoom on Conditions...Zoom on Conditions...

ME1 : Mutual ExclusionME1 : Mutual Exclusion
At most one process can remain in CS at any timeAt most one process can remain in CS at any time
Safety propertySafety property

ME2 : Freedom from deadlockME2 : Freedom from deadlock
At least one process is eligible to enter CSAt least one process is eligible to enter CS
Safety propertySafety property

ME3 : Progress ME3 : Progress
Every process trying to enter must eventually succeedEvery process trying to enter must eventually succeed
Liveness propertyLiveness property
Violation called Violation called livelocklivelock or or starvationstarvation

A measure of fairness: bounded waitingA measure of fairness: bounded waiting
Specifies an upper bound on the number of times a process waits for its turn Specifies an upper bound on the number of times a process waits for its turn
to enter SCto enter SC

2- Solutions Using Message Passing

13Distributed Algorithms – Mutual ExclusionOlivier Dalle

Introduction (3)Introduction (3)
Centralized Solutions?Centralized Solutions?

Use a coordinator processUse a coordinator process
External processExternal process
One of the Pi-sOne of the Pi-s

Problems:Problems:
Single point of failureSingle point of failure
Unable to achieve FIFO fairnessUnable to achieve FIFO fairness

Example:Example:

2- Solutions Using Message Passing

i

j

coor
d

re
quest

CS

mess
age

re
quest

CS

How to anticipate
this late arrival?

 clients

busy: boolean

server

queue

req reply
release

14Distributed Algorithms – Mutual ExclusionOlivier Dalle

Lamport's SolutionLamport's Solution
Assumptions:Assumptions:

Each communicaion channel is FIFOEach communicaion channel is FIFO
Each process maintains a request queue QEach process maintains a request queue Q

Algorithm described by 5 rulesAlgorithm described by 5 rules
LA1. To request entry, send a time-stamped message to LA1. To request entry, send a time-stamped message to everyevery other other

process and process and enqueue to local Qenqueue to local Q
LA2. Upon reception place request in Q and send time-stamped ACK LA2. Upon reception place request in Q and send time-stamped ACK

but but once out of CS once out of CS
(possibly immediately if already out)(possibly immediately if already out)

LA3. Enter CS when:LA3. Enter CS when:
1. request first in Q (chronological order)request first in Q (chronological order)
2. all ACK received from othersall ACK received from others

LA4. To exit CS, a process must:LA4. To exit CS, a process must:
1. delete request from Qdelete request from Q
2. send time-stamped release message to otherssend time-stamped release message to others

LA5. When receiving a release msg, remove request from QLA5. When receiving a release msg, remove request from Q

2- Solutions Using Message Passing

15Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Lamport's SolutionAnalysis of Lamport's Solution
2- Solutions Using Message Passing

Can you show that it satisfies all the propertiesCan you show that it satisfies all the properties
(i.e. ME1, ME2, ME3) of a correct solution?(i.e. ME1, ME2, ME3) of a correct solution?

Observation.Observation. Processes taking a decision to enter CS Processes taking a decision to enter CS
must have must have identical viewsidentical views of their local queues, of their local queues,
when all ACKs have been received.when all ACKs have been received.

Proof of ME1. Proof of ME1. At most one process can be in its CS at At most one process can be in its CS at
any time.any time.

Suppose not, and both j,k enter their CS. This implies Suppose not, and both j,k enter their CS. This implies

♦♦ j in CS j in CS  Qj.ts.j < Qk.ts.k Qj.ts.j < Qk.ts.k
♦♦ k in CS k in CS  Qk.ts.k < Qj.ts.j Qk.ts.k < Qj.ts.j

Impossible.Impossible.

0 1

2 3

Q0 Q1

Q2 Q3

16Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Lamport's Solution (2)Analysis of Lamport's Solution (2)
2- Solutions Using Message Passing

Proof of ME2. (No deadlock)
The waiting chain is acyclic.

i waits for j
 i is behind j in all queues

(or j is in its CS)
 j does not wait for i
Proof of ME3. (progress)
New requests join the end of the
 queues, so new requests do not pass
 the old ones

0 1

2 3

Q0 Q1

Q2 Q3

17Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Lamport's Solution (3)Analysis of Lamport's Solution (3)
2- Solutions Using Message Passing

Proof of FIFO fairness.
timestamp (j) < timestamp (k)
 j enters its CS before k does so

Suppose not. So, k enters its CS before j. So k
did not receive j’s request. But k received the
ack from j for its own req.

This is impossible if the channels are FIFO
.
Message complexity = 3(N-1) (per trip to CS)
(N-1 requests + N-1 ack + N-1 release)

k j

Req
(20)

ack

Req (30)

18Distributed Algorithms – Mutual ExclusionOlivier Dalle

Ricart & Agrawala’s SolutionRicart & Agrawala’s Solution
2- Solutions Using Message Passing

What is new?
1. Broadcast a timestamped request to all.
2. Upon receiving a request, send ack if

-You do not want to enter your CS, or
-You are trying to enter your CS, but your timestamp is
higher than that of the sender.
(If you are already in CS, then buffer the request)

3. Enter CS, when you receive ack from all.
4. Upon exit from CS, send ack to each
pending request before making a new request.
(No release message is necessary)

19Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Ricart & Agrawala’s SolutionAnalysis of Ricart & Agrawala’s Solution
2- Solutions Using Message Passing

ME1. Prove that at most one process can be in CS.
ME2. Prove that deadlock is not possible.
ME3. Prove that FIFO fairness holds even if
channels are not FIFO

Message complexity = 2(N-1)
(N-1 requests + N-1 acks - no release message)

k j

Req(j)

Ack(j)

 TS(j) < TS(k)

Req(k)

20Distributed Algorithms – Mutual ExclusionOlivier Dalle

Unbounded Time-stampsUnbounded Time-stamps
2- Solutions Using Message Passing

Timestamps grow in an unbounded manner.
This makes real implementation impossible.
Can we somehow bound timestamps?

Think about it.

21Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s SolutionMaekawa’s Solution
2- Solutions Using Message Passing

First solution with a sublinear O(sqrt N) message
complexity.
“Close to” Ricart-Agrawala’s solution, but each
process is required to obtain permission from only a
subset of peers

22Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s AlgorithmMaekawa’s Algorithm
2- Solutions Using Message Passing

• With each process i, associate a subset
Si.Divide the set of processes into
subsets that satisfy the following two
conditions:

i  Si

  i,j : 0  i,j  n-1 :: Si  Sj ≠ 

• Main idea. Each process i is required to
receive permission from Si only.
Correctness requires that multiple
processes will never receive permission
from all members of their respective
subsets.

0,1,2 1,3,5

2,4,5

S0
S1

S2

23Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s AlgorithmMaekawa’s Algorithm
2- Solutions Using Message Passing

ExampleExample. . Let there be Let there be sevenseven processes 0, 1, 2, 3, 4, 5, 6 processes 0, 1, 2, 3, 4, 5, 6

SS00 == {0, 1, 2}{0, 1, 2}
SS11 == {1, 3, 5}{1, 3, 5}
SS22 == {2, 4, 5}{2, 4, 5}
SS33 == {0, 3, 4}{0, 3, 4}
SS44 == {1, 4, 6}{1, 4, 6}
SS55 == {0, 5, 6}{0, 5, 6}
SS66 == {2, 3, 6}{2, 3, 6}

24Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s Algorithm (example cont'd)Maekawa’s Algorithm (example cont'd)
2- Solutions Using Message Passing

Version 1 {Life of process I}

1. Send timestamped request to each process in Si.
2. Request received  send ack to process with the

lowest timestamp. Thereafter, "lock" (i.e. commit)
yourself to that process, and keep others waiting.

3. Enter CS if you receive an ack from each member
in Si.

4. To exit CS, send release to every process in Si.
5. Release received  unlock yourself. Then send

ack to the next process with the lowest timestamp.

S0 = {0, 1, 2}

S1 = {1, 3, 5}

S2 = {2, 4, 5}

S3 = {0, 3, 4}

S4 = {1, 4, 6}

S5 = {0, 5, 6}

S6 = {2, 3, 6}

25Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Maekawa’s Algorithm (version 1)Analysis of Maekawa’s Algorithm (version 1)
2- Solutions Using Message Passing

ME1. At most one process can enter its critical
section at any time.

Let i and j attempt to enter their Critical Sections

Si  Sj ≠ ϕ  there is a process k  Si  Sj

Process k will never send ack to both.

So it will act as the arbitrator and establishes ME1

S0 = {0, 1, 2}

S1 = {1, 3, 5}

S2 = {2, 4, 5}

S3 = {0, 3, 4}

S4 = {1, 4, 6}

S5 = {0, 5, 6}

S6 = {2, 3, 6}

26Distributed Algorithms – Mutual ExclusionOlivier Dalle

Analysis of Maekawa’s Algorithm (version 1)Analysis of Maekawa’s Algorithm (version 1)
2- Solutions Using Message Passing

ME2. No deadlock. Unfortunately deadlock is
possible! Assume 0, 1, 2 want to enter
their critical sections.

From S0= {0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;

From S1= {1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;

From S2= {2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0;

Now, 0 waits for 1 (to send a release), 1 waits for 2 (to send a
release), , and 2 waits for 0 (to send a release), . So
deadlock is possible!

S0 = {0, 1, 2}

S1 = {1, 3, 5}

S2 = {2, 4, 5}

S3 = {0, 3, 4}

S4 = {1, 4, 6}

S5 = {0, 5, 6}

S6 = {2, 3, 6}

27Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s Algorithm (version 2)Maekawa’s Algorithm (version 2)
2- Solutions Using Message Passing

Avoiding deadlock
If processes always receive messages in

increasing order of timestamp, then
deadlock “could be” avoided. But this is too
strong an assumption.

Version 2 uses three additional messages:

- failed

 - inquire

 - relinquish

S0 = {0, 1, 2}

S1 = {1, 3, 5}

S2 = {2, 4, 5}

S3 = {0, 3, 4}

S4 = {1, 4, 6}

S5 = {0, 5, 6}

S6 = {2, 3, 6}

28Distributed Algorithms – Mutual ExclusionOlivier Dalle

Maekawa’s Algorithm (version 2)Maekawa’s Algorithm (version 2)
2- Solutions Using Message Passing

New features in version 2

- Send ack and set lock as usual.
- If lock is set and a request with a larger

timestamp arrives, send failed (you have no
chance). If the incoming request has a lower
timestamp, then send inquire (are you in
CS?) to the locked process.

- Receive inquire and at least one failed
message  send relinquish. The recipient
resets the lock.

S0 = {0, 1, 2}

S1 = {1, 3, 5}

S2 = {2, 4, 5}

S3 = {0, 3, 4}

S4 = {1, 4, 6}

S5 = {0, 5, 6}

S6 = {2, 3, 6}

29Distributed Algorithms – Mutual ExclusionOlivier Dalle

Comments on Maekawa’s Algorithm (version 2)Comments on Maekawa’s Algorithm (version 2)
2- Solutions Using Message Passing

- Let K = |SLet K = |Sii|. Let each process be a member of |. Let each process be a member of
D subsets. When N = 7, K = D = 3. When K=D, D subsets. When N = 7, K = D = 3. When K=D,
N = K(K-1)+1. So N = K(K-1)+1. So K =O(√N)K =O(√N)
(from theory of finite projective planes)(from theory of finite projective planes)

-- The message complexity of Version 1 is 3√N. The message complexity of Version 1 is 3√N.
Maekawa’s analysis of Version 2 reveals a Maekawa’s analysis of Version 2 reveals a
complexity of 7√Ncomplexity of 7√N

• Sanders identified a bug in version 2Sanders identified a bug in version 2 … …

30Distributed Algorithms – Mutual ExclusionOlivier Dalle

ExercisesExercises
In Ricart and Agrawala's distributed mutual exclusion In Ricart and Agrawala's distributed mutual exclusion
algorithm, show that:algorithm, show that:
a)Processes enter their critical sections in the order of their Processes enter their critical sections in the order of their

request timestampsrequest timestamps
b)Correctness is guaranteed even if the channels are not Correctness is guaranteed even if the channels are not

FIFOFIFO
A Generalized version of the mutual exclusion problem in A Generalized version of the mutual exclusion problem in
which up to L processes (L which up to L processes (L 1) are allowed to be in their 1) are allowed to be in their
critical sections simultaneously is known as the critical sections simultaneously is known as the L-L-
exclusion exclusion problem. Precisely, if fewer than L processes problem. Precisely, if fewer than L processes
are in the CS at any time and one more process wants to are in the CS at any time and one more process wants to
enter it, it must be allowed to do so. Modify R.-A. enter it, it must be allowed to do so. Modify R.-A.
algorithm to solve the L-exclusion problem.algorithm to solve the L-exclusion problem.

2- Solutions Using Message Passing

31Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed Mutual ExclusionDistributed Mutual Exclusion

1 – Introduction1 – Introduction
2 – Solutions Using Message Passing2 – Solutions Using Message Passing
3 – Token Passing Algorithms3 – Token Passing Algorithms
4 – The Group Mutual Exclusion Problem4 – The Group Mutual Exclusion Problem

32Distributed Algorithms – Mutual ExclusionOlivier Dalle

Suzuki-Kasami SolutionSuzuki-Kasami Solution
3- Tokens passing algorithms

Completely connected network of processes

There is one token in the network. The holder
of the token has the permission to enter CS.

Any other process trying to enter CS must
acquire that token. Thus the token will move
from one process to another based on
demand.

I want to enter CS
I want to enter CS

33Distributed Algorithms – Mutual ExclusionOlivier Dalle

Suzuki-Kasami AlgorithmSuzuki-Kasami Algorithm
3- Tokens passing algorithms

Process i broadcasts (i, num)

Each process maintains
-an array req: req[j] denotes the sequence
no of the latest request from process j
(Some requests will be stale soon)

Additionally, the holder of the token maintains
-an array last: last[j] denotes the
sequence number of the latest visit to CS
for process j.
- a queue Q of waiting processes req: array[0..n-1] of integer

last: array [0..n-1] of integer

Sequence number
of the request

req

req

req

req
last

queue Q

34Distributed Algorithms – Mutual ExclusionOlivier Dalle

Suzuki-Kasami Algorithm (2)Suzuki-Kasami Algorithm (2)
3- Tokens passing algorithms

When a process i receives a request (k, num) from
 process k, it sets req[k] to max(req[k], num).

The holder of the token

--Completes its CS
--Sets last[i]:= its own num
--Updates Q by retaining each process k only if
1+ last[k] = req[k]
 (This guarantees the freshness of the request)
--Sends the token to the head of Q, along with
the array last and the tail of Q

In fact, token  (Q, last)

Req: array[0..n-1] of integer

Last: Array [0..n-1] of integer

35Distributed Algorithms – Mutual ExclusionOlivier Dalle

Suzuki-Kasami Algorithm (3)Suzuki-Kasami Algorithm (3)
3- Tokens passing algorithms

{Program of process j}{Program of process j}
Initially, Initially, i: req[i] = last[i] = 0i: req[i] = last[i] = 0
* Entry protocol ** Entry protocol *

req[j] := req[j] + 1req[j] := req[j] + 1
Send (j, req[j]) to allSend (j, req[j]) to all
Wait until token (Q, last) arrivesWait until token (Q, last) arrives
Critical SectionCritical Section

* Exit protocol* Exit protocol * *
last[j] := req[j]last[j] := req[j]
k ≠ j: k k ≠ j: k  Q Q  req[k] = last[k] + 1 req[k] = last[k] + 1  append k to Q; append k to Q;
ifif Q is not empty Q is not empty  send (tail-of-Q, last) to head-of-Q send (tail-of-Q, last) to head-of-Q fifi

* Upon receiving a request (k, num) ** Upon receiving a request (k, num) *
req[k] := max(req[k], num)req[k] := max(req[k], num)

36Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[1,0,0,0,0]
last=[0,0,0,0,0]

req=[1,0,0,0,0]

req=[1,0,0,0,0]

req=[1,0,0,0,0]

req=[1,0,0,0,0]

initial state: process 0 has sent a request to all, and
grabbed the token

37Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[1,1,1,0,0]
last=[0,0,0,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

1 & 2 send requests to enter CS

38Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[1,1,1,0,0]
last=[1,0,0,0,0]
Q=(1,2)

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

0 prepares to exit CS

39Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[1,1,1,0,0]
req=[1,1,1,0,0]
last=[1,0,0,0,0]
Q=(2)

req=[1,1,1,0,0]

req=[1,1,1,0,0]

req=[1,1,1,0,0]

0 passes token (Q and last) to 1

40Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[2,1,1,1,0]
req=[2,1,1,1,0]
last=[1,0,0,0,0]
Q=(2,0,3)

req=[2,1,1,1,0]

req=[2,1,1,1,0]

req=[2,1,1,1,0]

0 and 3 send requests

41Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Suzuki-Kasami Algorithm ExecutionExample of Suzuki-Kasami Algorithm Execution
3- Tokens passing algorithms

0

2

1

3

4

req=[2,1,1,1,0]
req=[2,1,1,1,0]

req=[2,1,1,1,0]
last=[1,1,0,0,0]
Q=(0,3)

req=[2,1,1,1,0]

req=[2,1,1,1,0]

1 sends token to 2

42Distributed Algorithms – Mutual ExclusionOlivier Dalle

Raymond's SolutionRaymond's Solution

Improved version of token-based solutionImproved version of token-based solution
Uses a tree-topologyUses a tree-topology

Idea:Idea:
At any time, one node holds the tokenAt any time, one node holds the token

The holder is the root of the treeThe holder is the root of the tree
Every edge is assigned a directionEvery edge is assigned a direction

Route reqests towards the rootRoute reqests towards the root
If edge from Pi to Pj, Pj called holder of PiIf edge from Pi to Pj, Pj called holder of Pi

When the token moves, some edges change directionWhen the token moves, some edges change direction

3- Tokens passing algorithms

43Distributed Algorithms – Mutual ExclusionOlivier Dalle

Raymond's AlgorithmRaymond's Algorithm
OutlineOutline

Each node has a Each node has a holderholder variable and a local variable and a local Q.Q. Only first request Only first request
forwarded to holder.forwarded to holder.

R1. A node R1. A node enters CS when it has tokenenters CS when it has token. Otherwise (no token), . Otherwise (no token),
registers request in local Qregisters request in local Q

R2. A node Pj with non empty Q sends 1R2. A node Pj with non empty Q sends 1stst request to its holder, request to its holder,
unless already sentunless already sent and awating for token. and awating for token.

R3. When root receives request, R3. When root receives request, sends tosends to neighbor at the neighbor at the head head
of its local Qof its local Q after exiting CS. And changes after exiting CS. And changes holderholder to that to that
node. node.

R4. When receiving a token, node Pj does:R4. When receiving a token, node Pj does:
 forward to neighbor at head of its local Qforward to neighbor at head of its local Q
 delete request from Qdelete request from Q
 set set holderholder to that neighbor to that neighbor
 if there are pending requests in Q, send another request to if there are pending requests in Q, send another request to
holderholder

3- Tokens passing algorithms

44Distributed Algorithms – Mutual ExclusionOlivier Dalle

Example of Raymond's Algorithm ExecutionExample of Raymond's Algorithm Execution
3- Tokens passing algorithms

1,4 4,7

1

1

4

1,4,7 want to enter their CS

123 4 5

6 7

45Distributed Algorithms – Mutual ExclusionOlivier Dalle

1,4 4,7

1

4

3 sends the token to 6

Example of Raymond's Algorithm ExecutionExample of Raymond's Algorithm Execution
3- Tokens passing algorithms

123 4 5

6 7

46Distributed Algorithms – Mutual ExclusionOlivier Dalle

4

4,7

4

6 forwards the token to 1

4
These two directed edges will

reverse their direction

Example of Raymond's Algorithm ExecutionExample of Raymond's Algorithm Execution
3- Tokens passing algorithms

The message complexity is O(diameter) of the tree. Extensive
empirical measurements show that the average diameter of randomly
chosen trees of size n is O(log n). Therefore, the authors claim that the
average message complexity is O(log n)

123 4 5

6 7

47Distributed Algorithms – Mutual ExclusionOlivier Dalle

ExercisesExercises
In Suzuki-Kasami algorithm, prove the liveness property In Suzuki-Kasami algorithm, prove the liveness property
that any process requesting a token eventually receives that any process requesting a token eventually receives
the token. Also compute an upper bound on the number the token. Also compute an upper bound on the number
of messages exchanged in the system before the token is of messages exchanged in the system before the token is
received.received.
Repeat previous exercise with Raymond's algorithm.Repeat previous exercise with Raymond's algorithm.

3- Tokens passing algorithms

48Distributed Algorithms – Mutual ExclusionOlivier Dalle

Distributed Mutual ExclusionDistributed Mutual Exclusion

1 – Introduction1 – Introduction
2 – Solutions Using Message Passing2 – Solutions Using Message Passing
3 – Token Passing Algorithms3 – Token Passing Algorithms
4 – The Group Mutual Exclusion Problem4 – The Group Mutual Exclusion Problem

49Distributed Algorithms – Mutual ExclusionOlivier Dalle

IntroductionIntroduction

Problem proposed and solved by Young in 1999Problem proposed and solved by Young in 1999
N processes, each belongs to one of M forumsN processes, each belongs to one of M forums
Four conditions must hold:Four conditions must hold:

1. Mutual exclusion. At most one forum in session at a time.Mutual exclusion. At most one forum in session at a time.
2. Freedom from deadlock. At any time, at least one process Freedom from deadlock. At any time, at least one process

should be able to make a moveshould be able to make a move
3. Bounded waiting. Every forum chosen by a process must Bounded waiting. Every forum chosen by a process must

be in session in bounded timebe in session in bounded time
4. Concurrent entry. Once a forum is in session, concurrent Concurrent entry. Once a forum is in session, concurrent

entry in session is guaranteed for all willing processes.entry in session is guaranteed for all willing processes.

4- Group Mutual Exclusion

50Distributed Algorithms – Mutual ExclusionOlivier Dalle

Simplistic Centralized SolutionSimplistic Centralized Solution
Assume only 2 forums F and F'. Assume only 2 forums F and F'.
Each process has a Each process has a flagflag with values in {F, F', with values in {F, F', }}
Coordinator reads flags of each process in ascending Coordinator reads flags of each process in ascending
order from 0 to N-1order from 0 to N-1

Guarantees that first active Pi always servedGuarantees that first active Pi always served
followed by others requesting same forumfollowed by others requesting same forum

Satisfies all requirement Satisfies all requirement exceptexcept bounded waiting bounded waiting
Possible starvation for one forum if processes keep Possible starvation for one forum if processes keep
entering always the sameentering always the same
Solved by electing a leaderSolved by electing a leader

first to enter forumfirst to enter forum
no more process allowed to join when leader leavesno more process allowed to join when leader leaves

4- Group Mutual Exclusion

51Distributed Algorithms – Mutual ExclusionOlivier Dalle

Joung's SolutionJoung's Solution
Each process cycles through 4 phasesEach process cycles through 4 phases

request, in-cs, in-forum, passiverequest, in-cs, in-forum, passive
Each process has flag={state,op} Each process has flag={state,op}

state=phase, and op={F,F',state=phase, and op={F,F',}}

First version (for Pi, forum F):First version (for Pi, forum F):
turn: F or F'turn: F or F'
while while  Pj s.t. flag[j]=(in-cs,F') Pj s.t. flag[j]=(in-cs,F')
do do

flag[i] = (request,F)flag[i] = (request,F)
while (turn ≠ F' and not all-passive(F')) do nop donewhile (turn ≠ F' and not all-passive(F')) do nop done
flag[i] = (in-cs, F)flag[i] = (in-cs, F)

donedone
attend forum Fattend forum F
turn = F'turn = F'
flag[i] = (passive, flag[i] = (passive, ))

4- Group Mutual Exclusion

52Distributed Algorithms – Mutual ExclusionOlivier Dalle

First Version ImprovedFirst Version Improved
Fair with respect to forumsFair with respect to forums

turn variableturn variable
note that a process has to wait for all other candidate to F' note that a process has to wait for all other candidate to F'
to be out of in-csto be out of in-cs

Not fair for processesNot fair for processes
If several processes request F, at least one will succeedIf several processes request F, at least one will succeed
A process sleeping in NOP may not notice a forum change A process sleeping in NOP may not notice a forum change
from F' to F and then F' againfrom F' to F and then F' again

Young's solution:Young's solution:
Introduce a leader for each session (as in centralized)Introduce a leader for each session (as in centralized)
Each Pi has a variable successor[i] in (F, F', Each Pi has a variable successor[i] in (F, F', ))

denote which is next forumdenote which is next forum
Only one leader can capture successorsOnly one leader can capture successors
A Pk with successor[k] = F enters in session F if leader of A Pk with successor[k] = F enters in session F if leader of
F in sessionF in session

4- Group Mutual Exclusion

