
Module 1 - Distributed System

Architectures & Models

Architecture

 Distributed systems tend to be very complex.

 It is critical to properly organize these systems to manage the

complexity.

 The organization of a distributed system is primarily about

defining the software components that constitute the system.

 A component is a modular unit with well-defined required and

provided interfaces.

CS454/654

1-2

Architecture (2)

 Software Architecture:

 Tells us how software components should be organized and how they

should interact.

 System Architecture:

 Instantiation of a software architecture on real machines.

 Functions of each component are defined

 Interrelationships and interactions between components are defined

CS454/654
1-3

CS454/654
1-4

CS454/654
1-5

CS454/654
1-10

System Architectures

 Centralized architectures

 Client-server

 Multiple-client/single-server

 Multiple-client/multiple-servers

 Multitier systems

 Decentralized architectures

CS454/654
1-11

CS454/654
1-13

Client-Server Communication

Client

Client

Server

Process Computer

Request (invocation)

Result

Request (invocation)

Result

CS454/654
1-15

Advantages of Client/Server

Computing

 More efficient division of labor

 Horizontal and vertical scaling of resources

 Better price/performance on client machines

 Ability to use familiar tools on client machines

 Client access to remote data (via standards)

 Full DBMS functionality provided to client

workstations

 Overall better system price/performance

CS454/654
1-16

An Example Client and Server (1)
 The header.h file used by the client and server.

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-17

An Example Client and Server (2)

 A sample server.

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-18

An Example Client and Server (3)
 A client using the server to copy a file.

1-27 b

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-19

Problems With Multiple-

Client/Single Server

 Server forms bottleneck

 Server forms single point of failure

 System scaling difficult

CS454/654
1-21

Service Across Multiple Servers

Server

Server

Server

Service

Client

Client

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.

© Addison-Wesley Publishers 2000

CS454/654
1-22

Multiple-Client/Multiple-Server

Communication

Server

Client

Client

invocation

result

Server
invocation

result

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.

© Addison-Wesley Publishers 2000

CS454/654
1-27

CS454/654
1-28

Multitier Systems

 Example: Internet Search Engines

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-29

Multitier System Alternatives

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-30

Communication in Multitier

Systems

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-31

Peer-to-Peer Systems

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.

© Addison-Wesley Publishers 2000

CS454/654
1-32

CS454/654
1-33

CS454/654
1-34

CS454/654
1-35

CS454/654
1-36

CS454/654
1-37

Software Layers

Platform

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

CS454/654
1-38

Layers

 Platform

 Fundamental communication and resource management services

 We won’t be worried about these

 Middleware

 Provides a service layer that hides the details and heterogeneity of the
underlying platform

 Provides an “easier” API for the applications and services

 RPC, RMI, CORBA, etc.

 Applications

 Distributed applications, services

 Examples: e-mail, ftp, etc

CS454/654
1-39

Example Client/Server Middleware

 Remote Procedure Call (RPC)
 Uses the well-known procedure call semantics.

 The caller makes a procedure call and then waits. If it is a local

procedure call, then it is handled normally; if it is a remote procedure,

then it is handled as a remote procedure call.

 Caller semantics is blocked send; callee semantics is blocked receive to

get the parameters and a nonblocked send at the end to transmit results.

Caller

procedure

Caller

stub

Comm.

Transmit

Receive

Caller

Callee

procedure

Callee

stub

Comm.

Marshall

results
Transmit

Unmarshall

arguments
Receive

Callee

Call

Return

Call packet(s)

Result packet(s)

Call(…)
Marshall

params

Unmarshall

results

.

.

.

