
Module 1 - Distributed System 

Architectures & Models 



Architecture 

 Distributed systems tend to be very complex. 

 

 It is critical to properly organize these systems to manage the 

complexity. 

 

 The organization of a distributed system is primarily about 

defining the software components that constitute the system. 

 

 A component is a modular unit with well-defined required and 

provided interfaces. 
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Architecture (2) 

 Software Architecture: 

 Tells us how software components should be organized and how they 

should interact. 

 

 System Architecture: 

 Instantiation of a software architecture on real machines. 

 Functions of each component are defined 

 Interrelationships and interactions between components are defined 
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System Architectures 

 Centralized architectures 

 Client-server 

 Multiple-client/single-server 

 Multiple-client/multiple-servers 

 Multitier systems 

 Decentralized architectures 
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Client-Server Communication 
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Advantages of Client/Server 

Computing 

 More efficient division of labor  

 Horizontal and vertical scaling of resources 

 Better price/performance on client machines 

 Ability to use familiar tools on client machines 

 Client access to remote data (via standards) 

 Full DBMS functionality provided to client 

workstations 

 Overall better system price/performance 
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An Example Client and Server (1) 
 The header.h file used by the client and server. 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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An Example Client and Server (2) 

 A sample server. 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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An Example Client and Server (3) 
 A client using the server to copy a file. 

1-27 b 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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Problems With Multiple-

Client/Single Server 

 Server forms bottleneck  

 Server forms single point of failure 

 System scaling difficult  
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Service Across Multiple Servers 
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From  Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.    

©  Addison-Wesley Publishers 2000  
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Multiple-Client/Multiple-Server 

Communication 
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From  Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.    

©  Addison-Wesley Publishers 2000  
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Multitier Systems 

 Example: Internet Search Engines 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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Multitier System Alternatives 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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Communication in Multitier 

Systems 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 



CS454/654 
1-31 

Peer-to-Peer Systems 
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From  Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.    

©  Addison-Wesley Publishers 2000  
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Software Layers 

Platform 

From  Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 

©  Prentice-Hall, Inc. 2002 
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Layers 

 Platform 

 Fundamental communication and resource management services 

 We won’t be worried about these 

 Middleware 

 Provides a service layer that hides the details and heterogeneity of the 
underlying platform 

 Provides an “easier” API for the applications and services 

 RPC, RMI, CORBA, etc. 

 Applications 

 Distributed applications, services 

 Examples: e-mail, ftp, etc 
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Example Client/Server Middleware 

 Remote Procedure Call (RPC) 
 Uses the well-known procedure call semantics. 

 The caller makes a procedure call and then waits. If it is a local 

procedure call, then it is handled normally; if it is a remote procedure, 

then it is handled as a remote procedure call. 

 Caller semantics is blocked send; callee semantics is blocked receive to 

get the parameters and a nonblocked send at the end to transmit results. 
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