Module 1 - Distributed System
Architectures & Models

Architecture

m Distributed systems tend to be very complex.

m |t is critical to properly organize these systems to manage the
complexity.

m The organization of a distributed system is primarily about
defining the software components that constitute the system.

e A component is a modular unit with well-defined required and
provided interfaces.

CS454/654

1-2

Architecture (2)

m Software Architecture:

e Tells us how software components should be organized and how they
should interact.

m System Architecture:
e Instantiation of a software architecture on real machines.

e Functions of each component are defined

e Interrelationships and interactions between components are defined

CS454/654

1-3

Architecturas 2.1 Architectural styles

Architectural styles

Basic idea

Organize into logically different components, and distribute those
components over the various machines.

Layer N Object]‘—[Dlnjectj

Layer N-1 —Z
T (‘Object | | Method cal

Request Response
flow l flow
¥ | —
Layer 2 r f_f-f'(DI]JECt]
f " Object W~
L NS
Layer 1

ia) ()

(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems.

Architeciuras 2.1 Architectural styles

Architectural Styles

Observation

Decoupling processes in space (“anonymous”) and also time
(“asynchronous”) has led to alternative styles.

Component Component Component Component

svent deliwerg,rx T l Data delivery L U Publish
< Event bus > I P — \I
A

Publish (Shared (persistent) data space Y,

iy

—F'-_

Component I N

(a) (h)

(a) Publish/subscribe [decoupled in space]
(b) Shared dataspace [decoupled in space and time]

System Architectures

m Centralized architectures

e Client-server
-> Multiple-client/single-server
-> Multiple-client/multiple-servers

e Multitier systems
m Decentralized architectures

CS454/654 1-10

2.2 System Archiectures
Centralized Architectures

Basic Client-Server Model
Characteristics:

@ There are processes offering services (servers)
@ There are processes that use services (clients)
@ Clients and servers can be on different machines

@ Clients follow request/reply model wrt to using services

Wait for result

Client _E ___________

Fequest Ihl'u,

Reply

Provide service Time ——™

Client-Server Communication

Request (invocation)

est(invocation)

@ Result

Process Computer

CS454/654 1-13

Advantages of Client/Server
Computing

m More efficient division of labor

m Horizontal and vertical scaling of resources

m Better price/performance on client machines

= Ability to use familiar tools on client machines
m Client access to remote data (via standards)

= Full DBMS functionality provided to client
workstations

m Overall better system price/performance

CS454/654 1-15

An Example Client and Server (1)

m The header.h file used by the client and server.

CS454/654

/* Definitions needed by clients and servers. b i

#define TRUE 1

#define MAX_PATH 255 /* maximum length of file name
#define BUF_SIZE 1024 /* how much data to transfer at once

#define FILE_SERVER 243 /* file server’'s network address

/* Definitions of the allowed operations */

#define CREATE - 1 /* create a new file

#define READ 2 /* read data from a file and return it
#define WRITE 3 /* write data to a file

#define DELETE - /* delete an existing file

/* Error codes. */

#define OK 0 /* operation performed correctly
#define E_BAD_OPCODE -1 /* unknown operation requested
#define E_.BAD_PARAM -2 /* error in a parameter

#define E_IO -3 /* disk error or other 1/O error

/* Definition of the message format. */
struct message {

long source; /* sender’s identity

long dest; /* receiver’s identity

long opcode; /* requested operation

long count; /* number of bytes to transfer
long offset; /* position in file to start I/O

long result; /* result of the operation

char name[MAX_PATH]; /* name of file being operated on
char data[BUF _SIZE]; /* data to be read-or written

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms
© Prentice-Hall, Inc. 2002

9
K
%

*/
*/
g |
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

1-16

An Example Client and Server (2)

m A sample server.

#include <header.h>
void main(void) {

struct message mi, m2; /* incoming and outgoing messages */
intr; /* result code]
while(TRUE) { /* server runs forever |
receive(FILE_SERVER, &ml); /* block waiting for 2 message i
switch(ml.opcode) { /* dispatch on type of request g |
case CREATE: r=do_create(&ml, &m2); break;
case READ: r = do_read(&mi, &m2); break;
case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&mi, &m2); break;
default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client |
send(ml.source, &m2); /* send reply */
} =

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 1-17
CS454/654 © Prentice-Hall, Inc. 2002

An Example Client and Server (3)

m A client using the server to copy a file.

#include <header.h>)
int copy(chiar *src, char *dst){ /* procedure to copy file using the server */

struct message mi; /" message buffer */

long position; /* current file position */

long client = 110; /* client’s address */

initialize(); /* prepare for execution */

position = 0;

do {
ml.opcode = READ; /* operation is a read */
ml.offset = position; /* current position in the file */
ml.count = BUF_SIZE; /* how many bytes to read™/
strcpy(&ml.name, src); I* copy name-of file to be read to message */
send(FILESERVER, &mi); /* send the message to the file server */
receive(client, &ml); /* block waiting for the reply */
/* Write the data just received to the destination file. */
ml.opcode = WRITE; /* operation is a write */
ml.offset = position; /* current position in the file */
ml.count = ml.result; /* how many bytes to write */
strcpy(&ml.name, dst); /* copy name of file to be written to buf ¥
send(FILE_SERVER, &ml); /* send the message to the file server */
receive(client, &ml); /* block waiting for the reply */
position += ml.result; /* ml.result is number of bytes written g

} while(ml.result > 0); /* iterate until done */

return(ml.result >= 0 ? OK : ml result); /* return OK or error code */

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

CS454/654 © Proatico-Hall, Ing, 2002 1o

Problems With Multiple-
Client/Single Server

m Server forms bottleneck
m Server forms single point of failure
m System scaling difficult

CS454/654 1-19

Service Across Multiple Servers

Service
r—— - — - -
oo

Client

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed. 1-21
CS454/654 © Addison-Wesley Publishers 2000

Multiple-Client/Multiple-Server
Communication

lpvocation

result result

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed. 1-22
CS454/654 © Addison-Wesley Publishers 2000

e
Application Layering

Traditional three-layered view

@ User-interface layer contains units for an application’s user
interface

@ Processing layer contains the functions of an application, i.e.
without specific data

@ Data layer contains the data that a client wants to manipulate
through the application components

Observation

This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

i)
(%3]

Multitier Systems

m Example: Internet Search Engines

User interface

Keyword expression

Query
generator

HTML page
containing list

HTML
generator

Database queries

#‘ Ranked list
of page titles

Ranking
component

Web page titles
with meta-information

Database
with Web pages

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

CS454/654

© Prentice-Hall, Inc. 2002

User-interface
level

Processing
level

Data level

1-28

Multitier System Alternatives

User interfage

User interface

Application

Database

(@)

CS454/654

‘ User interface

Client machine

User interface

Application

Application

| _Application

Database

‘ Database

()

Server machine

(c)

User interface

Application

‘ Database

(d)

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms

© Prentice-Hall, Inc. 2002

User interface

Application

Database

Database

(e)

1-29

Communication in Multitier
Systems

User interface Wiait for result
(presentation) T

Request
operation

Return
result

Application _____________ W?iﬁ?[flit? _________________
server
Request data Return data
Database 3 N
server Time »
CS454/654 From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms 1-30

© Prentice-Hall, Inc. 2002

Peer-to-Peer Systems

Application Application

Coordination
code

Coordination
code

Application

Coordination
code

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed. 1-31
CS454/654 © Addison-Wesley Publishers 2000

2.2 System Architacturs
Decentralized Architectures

Observation

In the last couple of years we have been seeing a tremendous growth
In peer-to-peer systems.

@ Structured P2P: nodes are organized following a specific
distributed data structure

@ Unstructured P2P: nodes have randomly selected neighbors

@ Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (ctf. application-level
multicasting)

1 E' '_E'

e
Unstructured P2P Systems

Observation
Many unstructured P2P systems attempt to maintain a random graph.

Basic principle
Each node is required to contact a randomly selected other node:

@ Let each peer maintain a partial view of the network, consisting of ¢
other nodes

@ Each node P periodically selects a node Q from its partial view

@ P and Q exchange information and exchange members from their
respective partial views

Note

It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

2.2 Sysiom Archilectures
Structured P2P Systems

Basic idea
Organize the nodes in a structured overlay network such as a logical
ring, and make specific nodes responsible for services based only on

their ID.

Actual node

/@f—“\d

47 (131415 {01} T2

Ve -\ Note
}3 3 The system provides an operation
@ w©o.10.1.12 23,4 @ [OOKUP(key) that will efficiently
\ Associaked) route the lookup request to the
1 data keys) associated node.
\. vy
o 56T} (6

11/25

e
Structured P2P Systems

Other example
Organize nodes in a d-dimensional space and let every node take the

responsibility for data in a specific region. When a node joins = split a

region.

Kieys associated with
node at (0.8,0.7)

{0,1) ! (1,1}
\ (0.9.0.9) (0.9,0.0)
[] L]
{02,08) (0.2,08)
L] []
©807) 08.07)
Actual node (0.8,0.6) (0.9,0.6)
L] -
(0.2.0.45)
0203
L]
(0.7.0.2) 07.02)
. (0.2.0.15) a
(0.0} (1.0)
I:H:l ib)

12

25

e
Hybrid Architectures: C/S with P2P — BitTorrent

Client node
j K. out of N nodes

?_mhup{ﬂ . “) MNode 1
A BitToment | torrent file _| List of nodes Node 2

Webpage | Refto for F Ref to | storing F

file fracker

Web server server File server Tracker

Mode M
Basic idea

Once a node has identified where to download a file from, it joins a
swarm of downloaders who in parallel get file chunks from the source,
but also distribute these chunks amongst each other.

1B/25

CS454/654

Software Layers

Machine A Machine B Machine C

Distributed applications

Middleware service

Local OS ‘ Local OS ‘ Local OS

> Platform

Network

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms
© Prentice-Hall, Inc. 2002

1-37

Layers

m Platform
e Fundamental communication and resource management services

e We won’t be worried about these

= Middleware
e Provides a service layer that hides the details and heterogeneity of the

underlying platform
e Provides an “easier” API for the applications and services

e RPC, RMI, CORBA, etc.

m Applications
e Distributed applications, services
e Examples: e-mail, ftp, etc

CS454/654 1-38

Example Client/Server Middleware

m Remote Procedure Call (RPC)

e Uses the well-known procedure call semantics.

e The caller makes a procedure call and then waits. If it is a local
procedure call, then it is handled normally; if it is a remote procedure,
then it is handled as a remote procedure call.

e Caller semantics is blocked send; callee semantics is blocked receive to
get the parameters and a nonblocked send at the end to transmit results.

Caller Callee
Caller Caller Comm. Callee Callee
procedure stub stub procedure

Marshall Call packet(s)

Transmit '
el I arguments
Result packet(s)
Unmarshall < b (

Receive y
results

Return
results

CS454/654

1-39

