
ICS 143: Principles of Operating Systems

Due Date: Thu, April 30, 2015, 11:55 pm, via EEE Dropbox

Homework #2 (Total Marks=100)

Question 1: Scheduling [10, 15, 15, 5, 5]

a) Which of the following scheduling algorithms could result in starvation?
For those algorithms that could result in starvation, describe a situation in which starvation is
likely to occur?

1. First-Come First-Served (FCFS)

2. Shortest Job First (SJF) (Non-preemptive)

3. Shortest Remaining Time First (SRTF) (Preemptive)

4. Round Robin (RR)

5. Priority

b) Consider the set of process (smaller priority number implies higher priority; i.e. 1 – highest priority):

Draw the GANTT chart for the following scheduling algorithms.

 First-Come First-Served (FCFS)

 Shortest Job First (SJF) (Non-preemptive)

 Shortest Remaining Time First (SRTF) (Preemptive)

 Round Robin (RR) (Time Quantum = 10, Round from P1 to PN if PN arrives)

 Priority (Non-preemptive)

c) For the processes listed above, complete the following table:

Scheduling Algorithm Average waiting time Average turnaround time

First Come First Served (FCFS)

Shortest Job First (SJF) (Non-preemptive)

Shortest Job First (SJF) (preemptive)

Round Robin (RR) (Time Quantum = 10)

Priority (Non-preemptive)

d). Briefly reason why the average waiting time of preemptive SJF is guaranteed to be no larger than that of

non-preemptive. (No need to prove)

e). Consider a set of 10 processes with identical burst times and similar arrival times scheduled using a

round robin algorithm. Let the overhead of context switch 𝒕 be 2 milliseconds. To reduce the relative

context switch overhead, we wish to bound the total time for context switch to be one-fifth of the total

waiting time. Develop an equation to calculate the minimum value of quantum q for this condition to be

satisfied (Hints: Think carefully about the components of waiting time) .

Process ID Arrival Time Burst Time Priority

P1 0 70 3

P2 10 50 2

P3 30 20 1

P4 50 20 4

 Question 3: Test-and-set, Critical Section [15, 15]
Consider the following code segment covered in the lecture:

var j: 0…n-1

 key:Boolean, lock:= false;

0: repeat {

1: waiting[i] = true; key:=true;

2: while (waiting[i] and key) do key:=Test-and-Set(lock);

3: waiting[i]:=false;

4: critical section

5: j:=j + 1 mod n

6: while ((j<>i) and (not waiting[j])) do j : = j + 1 mod n;

7: if j = i then lock:=false;

8: else waiting[j] = false;

9: remain section

10: } until false

(a).The above program that we saw in the lecture can achieve both bounded waiting and mutual exclusion

with test-and-set. Assume line 3 of this code above is deleted. Determine if the algorithm still works as

desired after that line is deleted.

Consider the following algorithm that provides a solution to the 2 process critical section problem.

flag[0] = false;

flag[1] = false;

P0:

0: while (true) {

1: flag[0] = true;

2: while (flag[1]) {

3: flag[0] = false;

4: while (flag[1]) {

5: no-op;

6: }

7: flag[0] = true;

8: }

9: critical section

10: flag[0] = false;

11: remainder section

12: }

P1:

0: while (true) {

1: flag[1] = true;

2: while (flag[0]) {

3: flag[1] = false;

4: while (flag[0]) {

5: no-op;

6: }

7: flag[1] = true;

8: }

9: critical section

10: flag[1] = false;

11: remainder section

12: }

b). Specify which of the following requirements are satisfied or not by this algorithm. Explain why or why

not.

1. Mutual Exclusion

2. Progress

3. Bounded Waiting

Question 3: Semaphores [20]

In an operating system processes can run concurrently. Sometimes we need to impose a specific order in

execution of a set of processes. We represent the execution order for a set of processes using a process

execution diagram.

Consider the following process execution diagram. The diagram indicates that Pr1 must terminate before

Pr2, Pr3 and Pr4 start execution. It also indicates that Pr4 should start after Pr2 and Pr3 terminate and

Pr2 and Pr3 can run concurrently.

We can use semaphores in order to enforce the execution order. Semaphores have two operations as

explained below.

 P (or wait) is used to acquire a resource. It waits for semaphore to become positive, then

decrements it by 1.

 V (or signal) is used to release a resource It increments the semaphore by 1, waking up the

blocked processes, if any.

We can use the following semaphores to enforce the execution order.

s1=0; s2=0; s3=0;

Pr1: body; V(s1); V(s1);

Pr2: P(s1); body; V(s2);

Pr3: P(s1); body; V(s3);

Pr4: P(s2); P(s3); body;

Assume that the semaphores s1, s2, and s3 are created with an initial value of 0 before processes Pr1, Pr2,

Pr3, and Pr4 execute.

Based on this explanation, answer the questions about the following process execution graph.

a) Use semaphores to enforce execution order according to the process execution diagram.

