Assignment 4 : Operation on Process

August 26, 2020

Objective :

e This assignment is intended to learn how to create, work with and manip-
ulate processes in Linux. You are expected to refer to the text book and
references mentioned in the course website before you start the lab.

Instructions

e Refer to the sample codes provided in the Tutorial/Assignment segment
of the course website (codes related to fork, wait, exec and exit system
calls). You are expected to run all the sample codes provided before you
begin working on the lab assignments.

Assignments:

1. Write a CPU bound C program and a I/O bound C program (e.g. use a
number of printf statements within a while(1) loop). Compile and execute
both of them.

Observe the effect of their CPU share using the top display and comment.

2. Write a program in C that creates a child process, waits for the termination
of the child and lists its PID

3. Compile and run the program code_for_asgn_4.c and record your observa-
tions. Perform the modification mentioned and answer the questions that
follow.

(a) Comment the inner loop in both the if and the else blocks, compile
and run program code_for_asgn_4.c again. Record your observations.

(b) Do you find any difference in the output. If not, then what do you
think is the role of the inner loop in both if and the else blocks ?

(¢) Modify code_for_asgn_4.c in order to make the child process finish
before the parent process starts

4. Write a C program to print the address of a variable and enter a long loop
(say using while(1)).

(a) Start three to four processes of the same program and observe the
printed address values.

(b) Show how two processes which are members of the relationship parent-
child are concurrent from execution point of view, initially the child
is copy of the parent, but every process has its own data.

5. Create a file named my._file.tzt that contains the following four lines :
Child 1 reads this line
Child 2 reads this line
Child 3 reads this line
Child 4 reads this line

Write a C program that forks four other processes. After forking the
parent process goes into wait state and waits for the children to finish
their execution. Each child process reads a line from the file my_file.tzt (
Child 1 reads line 1, child 2 reads line 2, child 3 reads line 3 and child 4
reads line 4) and each prints the respective line. The lines can be printed
in any order.

6. Write two programs filel.c and file2.c
Program filel.c uses these :

(a) fork() to launch another process

(b) exec() to replace the program driving this process, while supplying
arguments to file2.c to complete its execution

(c) wait() to complete the execution of the child process

(d) filel.c takes two arguments x(a number less than 1) and n (number
of terms to be added, 1 or more). For example: filel 0.5 5

(e) When the child proces finishes, the parent prints:
Parent(PID=yyy) : Done

Program file2.c requires two arguments to obtain the approximate value of
e® by adding the first n terms in the relation : €* = 1+x+x2/2!4+23/3!+.......
and prints the result in the format:

Child(PID=yyy) : For x = 0.5 the first 5 terms yields 1.6484375

Hint : Child-specific processing immediately following the fork() command
should load file2.c into the newly created process using the exec() command.
This exec() command should also pass 2 arguments to the child. Refer to
the man page of exec() command to know how to pass on arguments to
the child process. Parent-specific processing should ensure that the parent
will wait() for the child- specific processing to complete.

