
Lab Assignment 3 : Working with XV6

August 19, 2020

Objective :

• This assignment is the introduction to XV6, an x86-based re-implementation
of Unix v6. The goal of this lab is to give you a basic introduction to the
xv6 OS, its shell, and processes in general. You will run a few simple
programs and monitor their behavior using the proc file system and other
related tools.

Instructions

• In this lab we focus on getting xv6 up and running under QEMU and
debugging it under GDB at the C source code level.

• Read through Chapter 0 in the xv6 textbook (available in the web-link
provided in the course website), specially the description about how the
xv6 shell works.

Installing QEMU : Login to your Linux systems, open a terminal and
type the following at the linux prompt :
$sudo apt-get install qemu

QEMU is an emulator that provides the virtual platform to run xv6 ker-
nel image on the host linux machine

Booting XV6 :

– Fetch and unzip the xv6 source (provided to you through Google
Classroom or download from the local link given in the web page)

– Build xv6 - On a terminal type the following :
$ cd xv6
$ make

– Run xv6 under QEMU - Type the following at the terminal :

$ make qemu

The following will happen :

1

– A separate window will appear containing the display of the virtual
machine

– After a few seconds, QEMU’s virtual BIOS will load xv6 ’s boot
loader from a virtual hard drive image contained in the file xv6.img
and the boot loader will run in turn load and run the xv6 kernel

– After everything is loaded, you should get a ’$’ prompt in the xv6
display window and be able to enter commands into the rudimentary
but functional xv6 shell.

– The small file system you’re examining and modifying here resides on
a second virtual disk, whose initial contents QEMU initialises from
the file fs.img. Later in the course we will examine how xv6 accesses
and modifies this file system.

– Try the following at the xv6 prompt :

$ ls
$ echo Hello!
$ cat README
$ grep run README
$ cat README | grep run | wc
$ echo MY NEW FILE ¿ newfile
$ cat newfile

Remote Debugging xv6 under QEMU :

– The easiest way to debug xv6 under QEMU is to use GDB’s remote
debugging feature and QEMU’s remote GDB debugging stub. Re-
mote debugging is a very important technique for kernel development

– The basic idea is that the main debugger (GDB in this case) runs
separately from the program being debugged (the xv6 kernel atop
QEMU) - they could be on completely separate machines.

– The debugger and the target environment communicate over some
simple communication medium, such as a network socket or a serial
cable, and a small remote debugging stub handles the ”immediate su-
pervision” of the program being debugged in the target environment.
This way, the main debugger can be a large, full-featured program
running in a convenient environment for the developer atop a stable
existing operating system, even if the kernel to be debugged is run-
ning directly on the bare hardware of some other physical machine
and may not be capable of running a full-featured debugger itself.

– A small remote debugging stub is typically embedded into the ker-
nel being debugged; the remote debugging stub implements a simple
command language that the main debugger uses to inspect and mod-
ify the target program’s memory, set breakpoints, start and stop
execution, etc.

– Compared with the size of the main debugger, the remote debugging
stub is typically minuscule, since it doesn’t need to understand any
details of the program being debugged such as high-level language
source files, line numbers, or C types, variables, and expressions:

2

it merely executes very low-level operations on behalf of the much
smarter main debugger.

– When we are doing kernel development using a virtual machine such
as QEMU, remote debugging may not be quite as critical: for exam-
ple, xv6 can also be run under the Bochs emulator, which is much
slower than QEMU but has a debugger built-in and thus does not
require the use of GDB remote debugging. On the other hand, while
usable, the Bochs debugger is still not as complete as GDB, so we
will primarily use GDB with QEMU’s remote debugging stub in this
course.

To run xv6 under QEMU and enable remote debugging:

– Open new terminal(T1) and enter the 1st command
$ nm kernel | grep start

– note the break point

– Open a new terminal(T2) and enter the 2nd command
$ make qemu-nox-gdb

– Open a new terminal(T3) and enter the following command
$ gdb
$ target remote: port no obatined from terminal T2
$ br * 0X break point
$ continue or c

Closing QEMU session :

Close the QEMU session, destroying the state of the xv6 virtual machine
by entering quit at the QEMU promt in the original window from which
you started QEMU or t by pressing CTRL-C in that window.

3

