
Lecture Notes on Operating Systems

Lab: Dynamic memory management

Goal

In this lab, you will understand the principles of memory management by building a custom memory
manager to allocate memory dynamically in a program. Specifically, you will implement functions to
allocate and free memory, that act as replacements for C library functions like malloc and free.

Before you begin

• Understand how the mmap and munmap system calls work. You will use mmap to obtain a page
of memory from the OS, and allocate chunks from this page dynamically when requested. Famil-
iarize yourself with the various arguments to the mmap system call.

• Figure out how to use ps or some such command to get the (virtual and physical) memory size of
an active process.

• Read up on simple memory management strategies, e.g., how malloc manages free space on the
heap, and so on.

Part A: Understanding mmap and memory usage

In this part, you will first familiarize yourself with the mmap system call, and memory allocation policies
of the OS. You need not submit anything for this part of the lab. Please execute the steps described below
and understand what you see.

1. Write a simple C/C++ program that runs for a long duration, say, by pausing for user input or
by sleeping. While the process is active, use the ps or any other similar command with suitable
options, to measure the memory usage of the process. Specifically, measure the virtual memory
size (VSZ) of the process (which includes all the memory that the process can access, including
that of unallocated pages), and the resident set size (RSS) of the process (which includes only the
physical RAM pages allocated to the process). You can also be able to see the various pieces of
the memory image of the process in the Linux proc file system, by accessing a suitable file in the
proc filesystem.

2. Now, add code to your simple program to memory map an empty page from the OS. For this
program (and this lab, in general), it makes sense to ask the OS for an anonymous page (since
it is not backed by any file on disk) and in private mode (since you are not sharing this page

1



with other processes). Do not do anything else with the memory mapped page. Now, pause your
program again and measure the virtual and physical memory consumed by your process. What
has changed, and how do you explain it?

3. Finally, write some data into your memory mapped page and measure the virtual and physical
memory usage again. Explain what you find.

Part B: Building a memory manager

In this part of the lab, you will write code for a memory manager, to allocate and deallocate memory
dynamically. Your memory manager must manage 4KB of memory, by requesting a 4KB page via mmap
from the OS. You must support allocations and deallocations in sizes that are multiples of 8 bytes. You
must fill in your code in the files alloc.h and alloc.c provided to you. You may define any global
data structures you need to keep track of memory information in the file alloc.h. This header file also
defines the following four functions, which you must implement in alloc.c.

• The function init() must initialize the memory manager, including allocating a 4KB page from
the OS via mmap, and initializing any other data structures required. This function will be invoked
by the user before requesting any memory from your memory manager. This function must return
0 on success and a non-zero error code otherwise.

• The function cleanup() must cleanup state of your manager, and return the memory mapped
page back to the OS. This function must return 0 on success and a non-zero error code otherwise.

• The function alloc(int) takes an integer buffer size that must be allocated, and returns a char
* pointer to the buffer on a success. This function returns a NULL on failure (e.g., requested size
is not a multiple of 8 bytes, or insufficient free space). When successful, the returned pointer
should point to a valid memory address within the 4KB page of the memory manager.

• The function dealloc(char *) takes a pointer to a previously allocated memory chunk, and
frees up the entire chunk.

(Note: If you wish to use C++ to solve this assignment, you must write your code in alloc.h and
alloc.cpp.)

It is important to note that you must NOT use C library functions like malloc to implement the
alloc function; instead, you must get a page from the OS via mmap, and implement a functionality
like malloc yourself. The memory manager can be implemented in many ways. So feel free to design
and implement it in any way you see fit, subject to the following constraints.

• Your memory manager must make the entire 4KB available for allocations to the user via the
alloc function. That is, you must not store any headers or metadata information within the
page itself, that may reduce the amount of usable memory. Any metadata required to keep track of
allocation sizes should be within data structures defined in your code, and should not be embedded
within the memory mapped 4KB page itself.

• A memory region once allocated should not be available for future allocations until it is freed up
by the user. That is, do not double-book your memory, as this can destroy the integrity of the data
written into it.

2



• Once a memory chunk of size N1 bytes has been deallocated, it must be available for memory
allocations of size N2 in the future, where N2 ≤ N1. Further, if N2 < N1, the leftover chunk of
size N1 −N2 must be available for future allocations. That is, your memory manager must have
the ability to split a bigger free chunk into smaller chunks for allocations.

• If two free memory chunks of size N1 and N2 are adjacent to each other, a merged memory chunk
of size N1 + N2 should be available for allocation. That is, you must merge adjacent memory
chunks and make them available for allocating a larger chunk.

• After a few allocations and deallocations, your 4KB page may contain allocated and free chunks
interspersed with each other. When the next request to allocate a chunk arrives, you may use any
heuristic (e.g., best fit, first fit, worst fit, etc.) to allocate a free chunk, as long as the heuristic
correctly returns a free chunk if one exists.

Testing your memory manager

You are provided two sample test programs test alloc1.c and test alloc2.c, along with a
simple script run.sh to compile your code and run these tests. These test programs initialize your
memory manager, and invoke the alloc and dealloc functions implemented by you. The first test
program performs a few simple sanity checks on your memory manager, e.g., checking that it can per-
form simple allocations and deallocations, writing a string into the memory region allocated by your
memory manager and reading it back to ensure its integrity, and so on. The second test program runs a
few more complex test scenarios, including checking if your program can effectively reuse a freed up
chunk and if it can split/merge a free chunk into smaller/bigger chunks for future allocations.

Note that we will be evaluating your code not just with these test programs, but with other ones as
well. Therefore, feel free to write more such test programs to test your code comprehensively. It is
important to note that none of the functionality or data structures required by your memory manager
must be embedded within the test program itself. Your entire memory management code should only be
contained within the files alloc.h and alloc.c.

Submission instructions

• You must submit the files alloc.h and alloc.c/alloc.cpp in part B. You need not submit
anything for part A. You need not submit the testing code used in part B, as we may use different
test programs during evaluation.

• Place these files and any other files you wish to submit in your submission directory, with the
directory name being your roll number (say, 12345678).

• Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678
to produce a single compressed file of your submission directory. Submit this tar gzipped file on
Moodle.

Grading

We will use test scripts (with possibly new testcases than those provided to you) to test the correctness
of your code. We will also read your code to ensure that you have adhered to the problem specification.

3


