
Lecture 2 - Fundamental Concepts

Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in)

Autumn Semester, 2020

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 1 / 24

Lecture Outline

Some Fundamental Concepts about OS :
Booting
Process
Interrupt
System Calls

References and Illustrations have been used from:
lecture slides of the book - Operating System Concepts by
Silberschatz, Galvin and Gagne, 2005
Modern Operating System by Andrew S. Tanenbaum

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 2 / 24

Operating system Overview

Operating System allows the user to achieve the intended purpose
of using the computer system in a fast and efficient manner
Operating system controls and coordinates use of hardware
among various applications and users
Protection - Protect data and programs against interference from
other users and their programs

Operating System consists of :
Kernel : OS core that holds the important functionalities (services
required by the user programs to access hardware)
System Programs : utilities to access the services provided by
kernel

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 3 / 24

System programs

Provide a convenient environment for program development and
execution. Some of them are simply user interfaces to system
calls; others are considerably more complex

File management - Create, delete, copy, edit, rename, print, dump,
list, and generally manipulate files and directories
Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided
Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language
Communications - chat, web browsing, email, remote login, file
transfers
Status information - system info such as date, time, amount of
available memory, disk space, number of users

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 4 / 24

Interfacing with OS

User Interface
Command Line Interface (CLI) : The command line may itself
perform functions or call other system programs to implement
functions (e.g. in UNIX, /bin/rm to remove files). Examples are
shell in UNIX and command.exe in Windows
Graphics User Interface (GUI) : Point and click interface.
Examples are MS windows, MAC OS X Aqua, Unix X & variants.
Batch : Commands are given using a file/command script to the
OS and are executed with little user interaction. Examples are
.bat files in DOS, shell scripts

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 5 / 24

System Boot

Operating system must be made available to hardware so that the
hardware can start it.
Bootstrap program (boot loader) : small piece of code stored in
ROM that locates the kernel, loads it into memory, and starts it.
Sometimes two-step process where boot block at fixed location
loads bootstrap loader
Execution starts at a fixed memory location

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 6 / 24

Process

Process : Program in execution. OS allocates physical memory to the
process (address space)

Address Space (memory image) of a process - list of address
locations which the process can read or write. Address space
contains the following:

program, program’s data and stack
registers associated with the program
Program counter and Stack Pointer
Program Staus Word (PSW)
Heap
Linked libraries

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 7 / 24

Virtual Memory of a Process

Every process has a Virtual Address space - range of addresses
which is assigned to a process by a compiler
The range of addresses in the Virtual Address space depends on
the architecture
During execution of the process, CPU generates requests for
these Virtual Addresses
The Virtual Addresses requested by the CPU are converted to
actual Physical Addresses (the actual location of the process in
the physical memory) by the Memory Management unit of the OS
OS code is mapped to Virtual Address space of every process -
some virtual address in the address space of every process points
to the os code

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 8 / 24

Dual Mode Operation of Processes

Problem - Sharing the process memory requires operating system
to ensure that an incorrect program cannot tamper the OS code or
cause other programs to execute incorrectly
Solution - Restrict the use of os code by using dual mode of
operation
Process has two modes of operation : User mode and Kernel (
priviledged / system / monitor) mode
Hardware support (CPU bit) to differentiate between at least two
modes of operations - monitor (0) or user (1)
When an interrupt or fault occurs hardware switches to monitor
mode

 Interrupt/fault

 set user mode

monitor user

Figure: Dual Mode

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 9 / 24

Interrupts

Interrupts transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines
Interrupt architecture must save the address of the interrupted
instruction
Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt
Interrupts can be generated either by external events or can be
software generated
A trap is a software-generated interrupt caused either by an error
or a user request
An operating system is interrupt driven

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 10 / 24

Interrupt Handling

The CPU changes to kernel mode on occurence of interrupt
Determines which type of interrupt has occurred:

polling
vectored interrupt system

Separate segments of code (Interrupt Handler) determine what
action should be taken for each type of interrupt. The pointers to
each of these segments is maintaned in a table called the
Interrupt Descriptor Table
The operating system preserves the state of the CPU by storing
registers and the program counter - Context saving

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 11 / 24

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C, C++). Maybe in
assembly
Performs basic functions that requires communication with CPU,
memory and devices
All activities related to file handling, memory managemnt and
process management are handled by system calls

Examples :
getuid() - get the user ID
fork() - create a child process
exec() - executing a program

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 12 / 24

System Calls

System call usually takes the form of a trap to a specific location in
the interrupt vector. Control passes through the interrupt vector to
a service routine in the OS, and the mode bit is set to monitor
mode.
The OS verifies that the parameters are correct and legal,
executes the request, and returns control to the instruction
following the system call.

Figure: System Call for I/O

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 13 / 24

Use of a System Call

Figure: System Call Processsing

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 14 / 24

Use of APIs in system calls

System calls are mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system
call use
Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)
Why use APIs rather than system calls?

Underlying systems calls (error codes) can be more complicated.
API gives a uniform, portable interface
One need not remeber I/O registers or order of I/O operation

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 15 / 24

Standard C library example

Some library calls themselves make system calls
ex: C program invoking printf library call which calls write system call

Figure: Example of system call

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 16 / 24

Steps in Making a System Call, Example : read call

read(fd,buffer,nbytes)

Figure: System Call Steps

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 17 / 24

System Call Implementation

A number associated with each system call
System-call interface maintains a table indexed according to these
numbers
Additional info: check /usr/include/sys/syscall.h

The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values
The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a result
call
Details of OS interface hidden from programmer by API
Managed by run-time support library (set of functions built into
libraries included with compiler)

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 18 / 24

System Call Parameter Passing

More information is required than simply identity of desired system
call
Three general methods used to pass parameters to the OS

Simplest: pass the parameters in hardware registers
Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register (This approach taken by
Linux and Solaris)
Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system. Block and stack
methods do not limit the number or length of parameters being
passed

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 19 / 24

Parameter Passing via Table

Figure:

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 20 / 24

Some System Calls For Process Management

Figure: system call process management

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 21 / 24

Some System Calls For Directory Management

Figure: system call directory management

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 22 / 24

Some System Calls For Miscellaneous Tasks

Figure: system call misc

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 23 / 24

System Call Example

Figure: system call example

Bibhas Ghoshal IOPS 332C: OS Autumn Semester, 2020 24 / 24

