
Threads Creation and Execution

Objective:
This tutorial examines aspects of threads and mof this lab is to implement the
Thread Management Functions:
*
Creating Threads
*
Terminating Thread Execution
*
Passing Arguments To Threads
*
Thread Identifiers
*
Joining Threads
*
Detaching / Undetaching Threads

What is thread?

A thread is a semi-process, that has its own stack, and executes a given piece
of code. Unlike a real process, the thread normally shares its memory with
other threads (where as for processes we usually have a different memory area
for each one of them). A Thread Group is a set of threads all executing inside
the same process. They all share the same memory, and thus can access the
same global variables, same heap memory, same set of file descriptors, etc. All
these threads execute in parallel (i.e. using time slices, or if the system has
several processors, then really in parallel).

What are pthreads?

Historically, hardware vendors have implemented their own proprietary
versions of threads.These implementations differed substantially from each
other making it difficult for programmers to develop portable threaded
applications.

In order to take full advantage of the capabilities provided by threads, a
standardizedprogramming interface was required. For UNIX systems, this
interface has been specified by the IEEE POSIX 1003.1c standard (1995).
Implementations which adhere to this standard arereferred to as POSIX
threads, or Pthreads. Most hardware vendors now offer Pthreads inaddition to
their proprietary API's.

Pthreads are defined as a set of C language programming types and procedure
calls. Vendors usually provide a Pthreads implementation in the form of a
header/include file and a library, which you link with your program.

Why pthreads?

The primary motivation for using Pthreads is to realize potential program
performance gains.

1. When compared to the cost of creating and managing a process, a thread
can be created with much less operating system overhead. Managing threads
requires fewer system resources than managing processes.

2. All threads within a process share the same address space. Inter-thread
communication is more efficient and in many cases, easier to use than inter-
process communication.

3. Threaded applications offer potential performance gains and practical
advantages over non-threaded applications in several other ways:

4. Overlapping CPU work with I/O: For example, a program may have sections
where it is performing a long I/O operation. While one thread is waiting for an
I/O system call to complete, other threads can perform CPU intensive work.

Priority/real-time scheduling: tasks, which are more important, can be
scheduled to supersede or interrupt lower priority tasks.

Asynchronous event handling: tasks, which service events of indeterminate
frequency and duration, can be interleaved. For example, a web server can
both transfer data from previous requests and manage the arrival of new
requests.

 Multi-threaded applications will work on a uniprocessor system; yet naturally
take advantage of a multiprocessor system, without recompiling.

 In a multiprocessor environment, the most important reason for using Pthreads
is to take advantage of potential parallelism. This will be the focus of the
remainder of this session.

The pthreads API :

The subroutines which comprise the Pthreads API can be informally grouped
into three major classes:

Thread management: The first class of functions work directly on threads -
creating, detaching, joining, etc. They include functions to set/query thread
attributes (joinable, scheduling etc.)

Mutexes: The second class of functions deal with a coarse type of
synchronization, called a "mutex", which is an abbreviation for "mutual
exclusion". Mutex functions provide for creating, destroying, locking and
unlocking mutexes. They are also supplemented by mutex attribute functions
that set or modify attributes associated with mutexes.

Condition variables: The third class of functions deal with a finer type of
synchronization - based upon programmer specified conditions. This class
includes functions to create, destroy, wait and signal based upon specified
variable values. Functions to set/query condition variable attributes are also
included.

Naming conventions: All identifiers in the threads library begin with pthread_

pthread_ : Threads themselves and miscellaneous subroutines

pthread_t : Thread objects

pthread_attr : Thread attributes objects

pthread_mutex : Mutexes

pthread_mutexattr : Mutex attributes objects.

pthread_cond : Condition variables

pthread_condattr : Condition attributes objects

pthread_key : Thread-specific data keys

Thread Management Functions:

The function pthread_create is used to create a new thread, and a thread to
terminate itself uses the function pthread_exit. A thread to wait for termination
of another thread uses the function pthread_join.

Function 1:

int pthread_create (pthread_t * threadhandle, pthread_attr_t *attribute,void
*(*start_routine)(void *),*arg)

pthread_t * threadhandle : Thread handle returned by reference
 pthread_attr_t *attribute : Special Attribute for starting thread, may be NULL
void *(*start_routine)(void *) : Main Function which thread executes
void *arg : An extra argument passed as a pointer

Info:
Request the PThread library for creation of a new thread. The return value is 0
on success. The return value is negative on failure. The pthread_t is an abstract
datatype that is used as a handle to reference the thread.

Function 2:

void pthread_exit (void *retval /* return value passed as a pointer */);

Info:
This Function is used by a thread to terminate. The return value is passed as a
pointer. This pointer value can be anything so long as it does not exceed the
size of (void *). Be careful, this is system dependent. You may wish to return an
address of a structure, if the returned data is very large.

Function3:

int pthread_join (pthread_t threadhandle, /* Pass threadhandle */ void
**returnvalue /* Return value is returned by ref. */);

Info:

Return 0 on success, and negative on failure. The returned value is a pointer
returned by reference. If you do not care about the return value, you can pass
NULL for the second argument.

Thread Initialization:

Include the pthread.h library : #include <pthread.h>
Declare a variable of type pthread_t : pthread_t the_thread
 When you compile, add -lpthread to the linker flags :
cc or gcc threads.c -o threads -lpthread

Initially, threads are created from within a process. Once created, threads are
peers, and may create other threads. Note that an "initial thread" exists by
default and is the thread, which runs main.

Terminating Thread Execution:

int pthread_cancel (pthread_t thread) pthread_cancel sends a cancellation
request to the thread denoted by the thread argument. If there is no such
thread, pthread_cancel fails. Otherwise it returns 0.

Thread Attributes:
Threads have a number of attributes that may be set at creation time. This is
done by filling a thread attribute object attr of type pthread_attr_t, then passing
it as second argument to pthread_create. Passing NULL is equivalent to passing
a thread attribute object with all attributes set to their default values. Attribute
objects are consulted only when creating a new thread. The same attribute
object can be used for creating several threads. Modifying an attribute object
after a call to pthread_create does not change the attributes of the thread
previously created.

int pthread_attr_init (pthread_attr_t *attr)
pthread_attr_init initializes the thread attribute object attr and fills it with
default values for the attributes. Each attribute attrname can be individually
set using the function pthread_attr_setattrname and retrieved using the
function pthread_attr_getattrname.

int pthread_attr_destroy (pthread_attr_t *attr)
pthread_attr_destroy destroys the attribute object pointed to by attr releasing
any resources associated with it. attr is left in an undefined state, and you must
not use it again in a call to any pthreads function until it has been reinitialized.

int pthread_attr_setattr (pthread_attr_t *obj, int value)
Set attribute attr to value in the attribute object pointed to by obj. See below
for a list of possible attributes and the values they can take. On success, these
functions return 0. int pthread_attr_getattr (const pthread_attr_t *obj, int
*value)
Store the current setting of attr in obj into the variable pointed to by value.
These functions always return 0. The following thread attributes are supported:
`detachstate'

Thread Identifiers:

pthread_self ()
Returns the unique thread ID of the calling thread.
The returned data object is opaque cannot be easily inspected.

pthread_equal (thread1, thread2)
Compares two thread IDs: If the two IDs are different 0 is returned, otherwise a
non-zero value is returned.
Because thread IDs are opaque objects, the C language equivalence operator
== should not be used to compare two thread IDs. Example: Pthread

Tutorials on Creation and Termination:

//thread_example1.c
#include <stdio.h>
#include <pthread.h>

void *kidfunc(void *p)
{ printf ("Kid ID is ---> %d\n", getpid());
 }

main ()
{
pthread_t kid ; pthread_create (&kid, NULL, kidfunc, NULL) ;
printf ("Parent ID is ---> %d\n", getpid()) ;
pthread_join (kid, NULL) ;
printf ("No more kid!\n") ;
}
Sample output
Parent ID is ---> 29085 Kid ID is ---> 29085 No more kid!

Are the process id numbers of parent and child thread the same or
different?

//thread_example2.c

#include <stdio.h>
#include <pthread.h>

int glob_data = 5 ;
void *kidfunc(void *p)
{ printf ("Kid here. Global data was %d.\n", glob_data) ; glob_data = 15 ;
printf ("Kid Again. Global data was now %d.\n", glob_data) ;
}

int main ()
{
 pthread_t kid ;
 pthread_create (&kid, NULL, kidfunc, NULL) ;
 printf ("Parent here. Global data = %d\n", glob_data) ;
 pthread_join (kid, NULL) ;
 printf ("End of program. Global data = %d\n", glob_data) ;
}

Sample output :
Parent here. Global data = 5 Kid here. Global data was 10. Kid Again. Global
data was now 15. End of program. Global data = 15
Do the threads have separate copies of glob_data?

//thread_example3.c
/* Multithreaded C Program Using the Pthread API */
#include<pthread.h>
#include<stdio.h>
int sum; /*This data is shared by the thread(s) */
void *runner(void *param); /* the thread */
main(int argc, char *argv[]) {
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */
if(argc != 2)
{
fprintf(stderr,"usage: a.out <integer value>\n");
exit();
}
if(atoi(argv[1]) < 0)
{
fprintf(stderr, "%d must be >= 0 \n", atoi(argv[1]));
exit();
}
/* get the default attributes */
pthread_attr_init(&attr);
/*create the thread */
pthread_create(&tid,&attr,runner,argv[1]);
/* Now wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);
}
/*The thread will begin control in this function */
void *runner(void *param)
{
int upper = atoi(param);
int i;
sum=0;
if(upper > 0)
{
for(i=1; i <= upper;i++)
sum += i;
}
pthread_exit(0);
}
Sample Output:
iiita>gcc thread_example3.c
iita>./a.out 10
sum = 55

Explanation:
Above Program creates a separate thread that determines the summation of a
non-negative integer. In a thread program, separate thread begin execution in
a specified function . In above program it is the runner function. When this
program begins, a single thread of control begins in main. After some
initialization, main creates a second thread that begins control in the summer
function.
All Pthread programs must include the pthread.h header file. The statement
pthread_t tid declares the identifier for the thread we will create. Each thread
has a set of attributes including stack size and scheduling information. The
pthread_attr_t attr declaration represents the attributes for the thread. We will
set the attributes in the function call pthread_attr_init(&attr). Because we did
not explicitly set any attributes, we will use the default attribute provided.
A separate thread is created with the pthread_create function call . In addition
to passing the thread identifier and the attributes for the thread. We also pass
the name of the function where the new thread will execution, in this case
runner function. Lastly , we pass the integer parameter that was provided on
the command line, argv[1].
At this point , the program has two threads : the initial thread in main and the
thread performing the summation in the runner function. After creating the
second thread, the main thread will wait for the runner thread to complete by
calling the pthread_join function. The runner thread will complete when it calls
the function pthread_exit. Multiple Threads:
The simple example code below creates 5 threads with the pthread_create()
routine. Each thread prints a "Hello World!" message, and then terminates with
a call to pthread_exit().

//thread_example4.c
#include <pthread.h>
 #include <stdio.h>
 #define NUM_THREADS 5
 void *PrintHello(void *threadid)
 { printf("\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);
 }

int main()
{

pthread_t threads [NUM_THREADS];
int rc, t;
for(t=0; t < NUM_THREADS; t++)
{

 printf ("Creating thread %d\n", t);
 rc = pthread_create (&threads[t], NULL, PrintHello, (void *) t);
 if (rc)
 {
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }

}

 pthread_exit(NULL);
}
Sample output
iiita>
Creating thread 0
Creating thread 1
Creating thread 2
Creating thread 3
Creating thread 4
0: Hello World!
1: Hello World!
2: Hello World!
3: Hello World!
4: Hello World!

Difference between processes and threads:
//thread_example5.c
#include <stdio.h>
#include <pthread.h>
#include <unistd.h> int this_is_global;
 void thread_func(void *ptr);

 int main()
{
 int local_main; int pid, status;
pthread_t thread1, thread2;
printf("First, we create two threads to see better what context they share...\n");
this_is_global=1000;
printf("Set this_is_global=%d\n",this_is_global);

pthread_create(&thread1, NULL, (void*)&thread_func, (void*) NULL);
pthread_create(&thread2, NULL, (void*)&thread_func, (void*) NULL);
pthread_join(thread1, NULL); pthread_join(thread2, NULL);

printf("After threads, this_is_global=%d\n",this_is_global);
printf("\n");
printf("Now that the threads are done, let's call fork..\n");
local_main=17; this_is_global=17;

printf("Before fork(), local_main=%d, this_is_global=%d\n",local_main,
this_is_global);

pid=fork();
 if (pid == 0)
{

/* this is the child */
printf("In child, pid %d: &global: %X, &local: %X\n", getpid(),

&this_is_global, &local_main);

local_main=13; this_is_global=23;

printf("Child set local main=%d, this_is_global=%d\n",local_main,
this_is_global);

 exit(0);
}

else
{

 /* this is parent */
printf("In parent, pid %d: &global: %X, &local: %X\n", getpid(),
&this_is_global, &local_main);
wait(&status);
 printf("In parent, local_main=%d, this_is_global=%d\n",local_main,
this_is_global);

}

exit(0); }

void thread_func(void *dummy)
{

 int local_thread;
printf("Thread %d, pid %d, addresses: &global: %X, &local: %X\n",
pthread_self(),getpid(),&this_is_global, &local_thread);

this_is_global++;
printf("In Thread %d, incremented this_is_global=%d\n", pthread_self(),
this_is_global);

 pthread_exit(0);

}
Sample output :

First, we create two threads to see better what context they
share...
Set this_is_global=1000
Thread 4, pid 2524, addresses: &global: 20EC8, &local: EF20BD6C
In Thread 4, incremented this_is_global=1001
Thread 5, pid 2524, addresses: &global: 20EC8, &local: EF109D6C
In Thread 5, incremented this_is_global=1002
After threads, this_is_global=1002
Now that the threads are done, let's call fork..
Before fork(), local_main=17, this_is_global=17
In child, pid 2525: &global: 20EC8, &local: EFFFFD34
Child set local main=13, this_is_global=23
In parent, pid 2524: &global: 20EC8, &local: EFFFFD34
In parent, local_main=17, this_is_global=17

