
Tutorial 3 : CPU Scheduling

August 27, 2019

Objective :

• Tutorial 3 is intended to help you learn some of the CPU scheduling al-
gorithms discussed in class by implementing and simulating their perfor-
mance.

Instructions:

• You are expected to run all the sample codes provided. It will help you
understand diiferent ways of implementing the scheduler and compare the
performance of the different implementations

• fcfs.c : Program for first come, first served (FCFS scheduling algorithm.
FIFO simply queues processes in the order that they arrive in the ready
queue. In this, the process that comes first will be executed first and next
process starts only after the previous gets fully executed.

• fcfs 1.c : Program for FCFS CPU Scheduling with different arrival times.
FIFO simply queues processes in the order they arrive in the ready queue.
Here, the process that comes first will be executed first and next process
will start only after the previous gets fully executed.

• sjf.c : Program for Shortest Job First (or SJF) CPU Scheduling (Non-
preemptive). The scheduling policy that selects the waiting process with
the smallest execution time to execute next. SJN is a non-preemptive
algorithm.
Basic Idea : Sort all the processes in increasing order according
to burst time.Then simply, apply FCFS

• sjf preeemptive.c : Program for Shortest Job First (SJF) scheduling (Pre-
emptive). In this scheduling algorithm, the process with the smallest
amount of time remaining until completion is selected to execute
Basic Idea : Traverse until all process gets completely executed.
a) Find process with minimum remaining time at every single
time lap.
b) Reduce its time by 1.
c) Check if its remaining time becomes 0
d) Increment the counter of process completion.
e) Completion time of current process = current time +1;
e) Calculate waiting time for each completed process.
wt[i]= Completion time - arrival time-burst time
f)Increment time lap by one.

1



• rr.c : Program for Round Robin scheduling. Round Robin is a CPU
scheduling algorithm where each process is assigned a fixed time slot in a
cyclic way.
Basic Idea :
Create an array rem bt[] to keep track of remaining burst time
of processes. This array is initially a copy of bt[] (burst times
array)

Create another array wt[] to store waiting times of processes.
Initialize this array as 0.
Initialize time : t = 0
Keep traversing the all processes while all processes are not
done.

Do following for i’th process if it is not done yet.
If rem bt[i] > quantum
(i) t = t + quantum
(ii) bt rem[i] -= quantum;
Else // Last cycle for this process
(i) t = t + bt rem[i];
(ii) wt[i] = t - bt[i]
(ii) bt rem[i] = 0;

2


