Tutorial 2 : Process Management

August 20, 2019

Objective :

e This assignment is intended to learn how to create, work with and ma-
nipulate processes in Linux. You are expected to refer to the text book
and references mentioned in the course website befor you start the lab.
Some sample codes for process creation using fork system call have been
provided for your reference.

Instructions

e You are expected to run all the sample codes provided in the Helpful Re-
sources section. It will help you understand how OS virtualizes CPU and
memory. Some of the codes are related to process creation and execution
using Unix based system calls such as fork,exit,wait and ezxec

Tutorials

1. Tutl : Memory Virtualization :

Physical memory model presents Memory as an array of bytes. The
data stored at an address of memory can be read by providing the address
of the location wehere the data resides. Similarly, while writing data to
any address of a memory, one needs to specify the address for writing as
well as the data to be written to the given address. Memory is accessed
all the time when a program is running. A program keeps all of its data
structures in memory, and accesses them through various instruction. In-
structions themeselves reside in the memory which have to be fetched.

Instructions : Execute the code mem.c from the Helpful Resources sec-
tion. Make sure to include the common.h file in the same folder as the

mem.c. To execute use the following commands : gcc mem.c
./a.out 0x200000

The program does a couple of things. First, it allocates some memory(line
al). Then, it prints out the address of the memory (a2), and the puts the
number zero into the first slot of the newly allocated memory(a3). Finally,
it loops, delaying for a second and incrementing the value stored at the

address held in p. With every print statement, it also prints out what is
called the process identifier (the PID) of the running program. This PID
is unique per running process. The newly allocated memory is at address
0x200000. As the program runs, it slowly updates the value and prints
out the result.

Now, we again run multiple instances of this same program to see what
happens.

Instructions : Open another tab in the terminal and execute the code
mem.c again. To execute use the following commands : gcc mem.c
./a.out 0x200000

To check whether two instances of mem have been created, use the ps
-l command in a third tab of the terminal. You will find two processes
named a.out . These are your two instances of mem.c

It is worth noting that each running program has allocated memory at
the same address 0x200000, and yet each seems to be updating the value
at 0x200000 independently! It is as if each running program has its own
private memory, instead of sharing the same physical memory with other
running programs.

Indeed, that is exactly what is happening here as the OS is virtualizing
memory. Each process accesses its own private virtual address space(sometimes
just called its address space), which the OS somehow maps onto the phys-
ical memory of the machine. A memory reference within one running
program does not affect the address space of other processes(or the OS
itself); as far as the running program is concerned, it has physical mem-
ory all to itself. The reality, however, is that physical memory is a shared
resource, managed by the operating system.

. Tut2 : Process Creation :

Theoretical Background

Processes are the primitive units for allocation of system resources. Each
process has its own address space and (usually) one thread of control. A
process executes a program; you can have multiple processes executing the
same program, but each process has its own copy of the program within
its own address space and executes it independently of the other copies.
Processes are organized hierarchically. Each process has a parent process,
which explicitly arranged to create it. The processes created by a given
parent are called its child processes. A child inherits many of its attributes
from the parent process. A process ID number names each process. A
unique process ID is allocated to each process when it is created. The
lifetime of a process ends when its termination is reported to its parent
process; at that time, all of the process resources, including its process 1D,
are freed.

Processes are created with the fork() system call (so the operation of
creating a new process is sometimes called forking a process). The child

process created by fork() is a copy of the original parent process, except
that it has its own process 1D.

After forking a child process, both the parent and child processes continue
to execute normally. If you want your program to wait for a child process
to finish executing before continuing, you must do this explicitly after the
fork operation, by calling wait() or waitpid(). These functions give you
limited information about why the child terminated—for example, its exit
status code.

A newly forked child process continues to execute the same program as
its parent process, at the point where the fork call returns. You can use
the return value from fork to tell whether the program is running in the
parent process or the child process. When a child process terminates, its
death is communicated to its parent so that the parent may take some
appropriate action. A process that is waiting for its parent to accept its
return code is called a zombie process. If a parent dies before its child,
the child (orphan process) is automatically adopted by the original “init”
process whose PID is 1

Instructions : Execute the code forkl.c and forkl.c from the Helpful
Resources section to see how processes are created using fork system call.
About fork : The fork function is the primitive for creating a process. It
is declared in the header file "unistd.h”. The fork function creates a new
process.If the operation is successful, there are then both parent and child
processes and both see fork return, but with different values: it returns a
value of 0 in the child process and returns the child’s process ID in the
parent process. If process creation failed, fork returns a value of -1 in the
parent process and no child is created.

The specific attributes of the child process that differ from the parent
process are:

(a) The child process has its own unique process ID.

(b) The parent process ID of the child process is the process ID of its
parent process. The child process gets its own copies of the parent
process’s open file descriptors.Subsequently changing attributes of
the file descriptors in the parent process won’t affect thefile descrip-
tors in the child, and vice versa. However, both processes share the
file position associated with each descriptor.

(¢) The elapsed processor times for the child process are set to zero.

(d) The child doesn’t inherit file locks set by the parent process.

(e)

(f)

Monitoring Process : To monitor the state of your processes under

Unix use the ps command. Usually ps -/ which list of all currently run-

ning processes.

The child doesn’t inherit alarms set by the parent process

The set of pending signals for the child process is cleared.

. Tut3 : Creating Multiple Processes :

Execute multiple_fork.c to see how mutiple processes can be created

4. Tut4 : Processes Completion :

Execute fork_wait.c to see how a process (parent) can be made to wait
until another process (child) gets completed.

The wait() function will force a parent process to wait for a child process
to stop or terminate. wait() returns the pid of the child or -1 for an error.
The exit status of the child is returned to status_ptr. The function is de-
clared in the header file "sys/wait.h” and the syntax is

pid_t wait(int status_ptr)

exit() terminates the process which calls this function and returns the exit
status value. The syntax is : void exit (int status)

Both UNIX and C (forked) programs can read the status value. By conven-
tion, a status of 0 means normal termination. Any other value indicates
an error or unusual occurrence. Many standard library calls have errors
defined in the sys/stat.h header file. We can easily derive our own con-
ventions

sleep() command suspends a process for a period of time
Syntax : unsigned int sleep (seconds))

5. Tutb : Orphan and Zombie Processes :

Orphan process : When a parent dies before its child, the child is au-
tomatically adopted by the original “nit” process whose PID is 1. To,
illustrate this insert a sleep statement into the child’s code. This ensured
that the parent process terminated before its child

Execute orphan_process.c to see an orphan process is created. Once the
orphan has been created, use the ps -l command to find who becomes the
parent of the orphan.

Zombie process : A process that terminates cannot leave the system until
its parent accepts its return code. If its parent process is already dead, it’ll
already have been adopted by the “init” process, which always accepts its
children’s return codes. However, if a process’s parent is alive but never
executes a wait (), the process’s return code will never be accepted and
the process will remain a zombie.

Execute zombie_process.c to see how a zombie process is created. Use the
ps -l command to find to indicate the zombie being created.

6. Tut6 : Execute a new program :

Execute the code fork_execute.c from the Helpful Resources section to see
how a process is created and then overwritten by a new program. The code
here uses the fork() call to create a new process and then loads the child
with the image of a new program (in this case the “Is”. The new program
to overwrite the child is provided as argument to the exec() system call.

7. Tut7 : Modifying Data in Child Process :

Execute the code modify_data_in_child.c from the Helpful Resources sec-
tion to see how a data gets modified in the child process while the parent
maintains the oroginal copy of the data. The interesting point to note
would be how the same variable intialized to some value before the fork
would retain the value in the parent but would be update din the child.
However, the address of the variable in both parent and child would be
the same. Identify the reason and report.

8. Assignments :

(a)

(b)

Write a program in C that creates a child process, waits for the
termination of the child and lists its PID, together with the state in
which the process was terminated (in decimal and hexadecimal)

In a C program, print the address of the variable and enter into a
long loop (say using while(1)).

e Start three to four processes of the same program and observe
the printed address values.

e Show how two processes which are members of the relationship
parent-child are concurrent from execution point of view, initially
the child is copy of the parent, but every process has its own data.

Test the source code below:

for(i=1;i <10;i 4+ +){
Jork();
printf(“The process with the PID=%d” getpid());

}

In the next phase, modify the code, such as after all created pro-
cesses have finished execution, in a file process_management.tzt the
total number of created processes should be stored.

Write two programs : one called client.c, the other called server.c.
The client program lists a prompter and reads from the keyboard two
integers and one of the characters '+’ or ’-". The read information is
transmitted with the help of the system call excel to a child process,
which executes the server code. After the child (server) process fin-
ishes the operation, it transmits the result to parent process (client)
with the help of the system call ezxit. The client process prints the
result on the screen and also reprints the prompter, ready for a new
reading.

