Multithreaded Programming
with POSIX Pthreads

Processes Revisited

e A process is an active runtime environment that
accommodates a running program, providing an execution
state along with certain resources, including file handles and
registers, along with:

a program counter (Instruction Pointer)

a process id, a process group id, etc.

a process stack

one or more data segments

a heap for dynamic memory allocation

a process state (running, ready, waiting, etc.)

Informally, a process is an executing program

Multiprocessing Revisited

A multiprocessing or multitasking operating
system (like Unix, as opposed to DOS) can
have more than one process executing at any
given time

 This simultaneous execution may either be

— concurrent, meaning that multiple processes in a
run state can be swapped in and out by the OS

— parallel, meaning that multiple processes are
actually running at the same time on multiple
pProcessors

What is a Thread?

 Athreadis an encapsulation of some flow of

control in a program, that can be independently
scheduled

 Each process is given a single thread by default

 Athreadis sometimes called a lightweight
process, because it is similar to a process in that it
has its own thread id, stack, stack pointer, a signal
mask, program counter, registers, etc.

What is a Thread?

e All threads within a given process share
resource handles, memory segments (heap
and data segments), and code. THEREFORE :

— All threads share the same data segments and
code segments

Thread.Vs Progcess

Process ID Thread ID
Program Counter Program Counter
Signal Dispatch Signal Dispatch
Table Table
Registers Registers
Process Priority Thread Priority
Stack Pointer & Stack Pointer &
Stack Stack
Heap All threads share
the same
~_ memory, heap, =
Memory Map and file handles
(and offsets)
File Descriptor Table
N _

Processes Vs Threads:
Creation Times

Because threads are by definition lightweight, they can be created more
quickly that “heavy” processes:

— Sun Ultra5, 320 Meg Ram, 1 CPU
* 94 forks()/second
e 1,737 threads/second (18x faster)

— Sun Sparc Ultra 1, 256 Meg Ram, 1 CPU
* 67 forks()/second
e 1,359 threads/second (20x faster)

— Sun Enterprise 420R, 5 Gig Ram, 4 CPUs
e 146 forks()/second
* 35,640 threads/second (244x faster)

— Linux 2.4 Kernel, .5 Gig Ram, 2 CPUs

* 1,811 forks()/second
e 227,611 threads/second (125x faster)

Processes Vs Threads

 Threads can be created and managed more
quickly than processes because:

— Threads have less overhead than processes, for
example, threads share the process heap, all data
and code segments

— Threads can live entirely in user space, so that no
kernel mode switch needs to be made to create a
new thread

— Processes don’t need to be swapped to create a
thread

Analogies

e Just as a multitasking operating system can
have multiple processes executing
concurrently or in parallel, so a single process
can have multiple threads that are executing
concurrently or in parallel

* These multiple threads can be task swapped
by a scheduler onto a single processor (via a

LWP), or can run in parallel on separate
pProcessors

Benefits of Multithreading

e Performance gains

Amdahl’s Law: speedup =1/ ((1-p)+ (p/n))

the speedup generated from parallelizing code is the time executing
the parallelizable work (p) divided by the number of processors (n)
plus 1 minus the parallelizable work (1-p)

The more code that can run in parallel, the faster the overall program
will run

If you can apply multiple processors for 75% of your program’s
execution time, and you’re running on a dual processor box:
e 1/((1-.75)+(.75/ 2)) =60% improvement

Why is it not strictly linear? How do you calculate p?

Benefits of Multithreading (continued)

Increased throughput
Increased application responsiveness

e Replacing interprocess communications (you’re in one
process)

e Single binary executable runs on both multiprocessors as well
as single processors (processor transparency)

e Gains can be seen even on single processor machines,
because blocking calls no longer have to stop you.

What is POSIX Thread?

Each OS had it’s own thread library and style

That made writing multithreaded programs difficult because:
— you had to learn a new APl with each new OS
— you had to modify your code with each port to a new OS

POSIX (IEEE 1003.1c-1995) provided a standard known as
Pthreads

DCE threads were based on an early 4th draft of the POSIX
Pthreads standard (immature)

Unix International (Ul) threads (Solaris threads) are available
on Solaris (which also supports POSIX threads)

On the Scheduling of Threads

e Threads may be scheduled by the system
scheduler (OS) or by a scheduler in the thread
library (depending on the threading model).

e The scheduler in the thread library:

— will preempt currently running threads on the basis of
priority

— does NOT time-slice (i.e., is not fair). A running

thread will continue to run forever unless:

e athread call is made into the thread library
* a blocking call is made

e the running thread calls sched_yield()

Models

e Many Threads to One LWP
— DCE threads on HPUX 10.20

e One Thread to One LWP
— Windows NT
— Linux (clone() function)

e Many Threads to Many LWPs
— Solaris, Digital UNIX, IRIX, HPUX 11.0)

Many Threads to One LWP

> 3 > 3) AKA "user space threads".
All threads are "invisible"

T, Ts to the kernel (therefore

cannot be schdeduled
individually by the kernel).
Since there's only a single
LWP (kernel-scheduled
entity), user space threads

are multiplexed onto a

single processor. The
kernel sees this process

as "single threaded"
because it only sees a

LWP

single LWP.
KERNEL SPACE

very fast context switches between threads is executed
entirely in user space by the threads library

unlimited number of user threads (memory limit) can support
logical concurrency model only

parallelism is not possible, because all user threads map to a
single kernel-schedulable entity (LWP), which can only be
mapped on to a single processor

Since the kernel sees only a single process, when one user
space thread blocks, the entire process is blocked, effectively
block all other user threads in the process as well

One Thread to One LWP(Windows NT, Linux)
(there may be no real distinction between a thread and LWP)

)))

! T2 T3

LWP

USER SPACE
Each user space
thread is associated
with a single kernel
thread to which it is
permanently bound.
Because each user
thread is essentially a
kernel-schedulable
entity, parallel
execution is
supported.

KERNEL SPACE
The 1x1 model
executes in kernel
space, and is
sometimes called the
Kernel Threads
model. The kernel
selects kernel threads
to run, and each
process may have
one or more threads

1x1 Model Variances

Parallel execution is supported, as each user thread is directly
associated with a single kernel thread which is scheduled by
the OS scheduler

slower context switches, as kernel is involved

number of threads is limited because each user thread is
directly associated with a single kernel thread (in some
instances threads take up an entry in the process table)

scheduling of threads is handled by the OS’s scheduler,
threads are seldom starved

Because threads are essentially kernel entities, swapping
involves the kernel and is less efficient than a pure user-space
scheduler

Many Threads to Many LWPs
Solaris, Digital UNIX, IRIX, HPUX 11.0

1) 1) 1) T> T} T})) w USER SPACE

8 T9

CCCCCT CCCK C

Bound Thread

@ @ @ @ @ KERNEL SPACE
KT, KT, KT, KT, KT,

MxN Model Variances

Extraordinarily flexible, bound threads can be used to handle important
events, like a mouse handler

Parallel execution is fully supported

Implemented in both user and kernel space

Slower context switches, as kernel is often involved

Number of user threads is virtually unlimited (by available memory)

Scheduling of threads is handled by both the kernel scheduler (for LWPs)
and a user space scheduler (for user threads). User threads can be
starved as the thread library’s scheduler does not preempt threads of
equal priority (not RR)

The kernel sees LWPs. It does NOT see threads

Creating a POSIX Thread:

#tinclude <pthread.h>

void * pthread create(pthread t *thread, const
pthread_attr_t attr, void *(*thrfunc)(void *), void *args);

Each thread is represented by an identifier, of type pthread t

Code is encapsulated in a thread by creating a thread function
(cf. “signal handlers”)

Attributes may be set on a thread (priority, etc.). Can be set
to NULL.

An argument may be passed to the thread function as a void
* %k

Creation of a Thread: An Example

void *thread_routine(void * arg)

{

return arg;

main(int argc, char *argv|])
{
pthread _t = tid;
void * tResult;
int status;
status = pthread_create(&tid, NULL, thread routine, NULL);
status = pthread_join(tid, &tResult);

Life Cycle of a Thread

Ready
Running

Blocked
Terminated

Detaching a Thread

int pthread_detach(pthread_t threadid);

Detach a thread when you want to inform the operating
system that the threads return result is unneeded

Detaching a thread tells the system that the thread (including
its resources—like a 1Meg default stack on Solaris!) is no
longer being used, and can be recycled

A detached thread’s thread ID is undetermined.

Threads are detached after a pthread detach() call, after a
pthread join() call, and if a thread terminates and the
PTHREAD CREATE_DETACHED attribute was set on creation

“Wating” on a Thread

int pthread_join(pthread t thread, void**
retval);

pthread _join() is a blocking call on non-
detached threads

It indicates that the caller wishes to block until
the thread being joined exits

You cannot join on a detached thread, only
non-detached threads (detaching means you
are NOT interested in knowing about the
threads exit)

Exiting from a Thread Function

int pthread_exit(void * retval);

A thread ends when it returns from (falls out
of) its thread function encapsulation

A detached thread that ends will immediately
relinquish its resources to the OS

A non-detached thread that exists will release
some resources but the thread id and exit
status will hang around in a zombie-like state
until some other thread requests its exit status
via pthread_join()

Miscellaneous Functions

e pthread t pthread self(void);

— pthread_self() returns the currently executing
thread’s ID

e int sched yield(void);

— sched vyield() politely informs the thread
scheduler that your thread will willingly release
the processor if any thread of equal or lower
priority Is waiting

Miscellaneous Functions

* int pthread_setconcurrency(int threads);

— pthread setconcurrency() allows the process to
request a fixed minimum number of light weight
processes to be allocated for the process. This
can, in some architectures, allow for more
efficient scheduling of threads

