Lab 2 : Operation on Process

August 12, 2015

Objective :

e Lab 2 is intended to learn how to create and work with how to manipulate
processes in Linux.

Recommended Systems/Software Requirements:

e Any flavour of Linux
References:
1. Uniz concepts and applications, Fourth Edition, Sumitabha Das, TMH.

Theoretical Background:

You are expected to refer to the text book and references mentioned in the
course wensite befor you start the lab.

Assignments:

1. Use the ps command to display the process attributes.

2. Learn the top command to display the resource utilization statistics of
processes

e Open a terminal and type the top command

e Start a browser and see the effect on the top display

e Compile a C program and observe the same effect (Use a long loop -
say while(1) to observe the effect)

e From the top display, answer the following:

— How much memory is free in the system?
— Which process is taking more CPU?
— Which process has got maximum memory share?
e Write a CPU bound C program and a I/O bound C program (e.g.
using more printf statements withing while(1) loop), compile and ex-
ecute both of them.

Observe the effect of their CPU share using the top display and com-
ment.



. Write a program in C that uses the fork system call. You can use the
program described in the lecture class on Process. Compile the program
and execute it.

. For the above C program, change the program such that the associated
child process will change the core image.

. In a C program, print the address of the variable and enter into a long
loop (say using while(1)).

e Start three to four processes of the same program and observe the
printed address values.

e Try the experiment of different OS and comment wheteher the ad-
dresses remain same on both OS or not?

. Use strace command to find out system call traces of an executing process.
You can use any process that has been crteated earlier.

e Find out a command on the shell such that the command does not
make a system call. Use strace to locate such a command.

e strace bash to observe how bash uses system calls to read commands
from the console and echo it back to screen.

. Write a C program to create threads. You can use the program demon-
strated in class which has been provided as additional resource in the
course website.



