
Lab 2 : Operation on Process

August 12, 2015

Objective :

• Lab 2 is intended to learn how to create and work with how to manipulate
processes in Linux.

Recommended Systems/Software Requirements:

• Any flavour of Linux

References:

1. Unix concepts and applications, Fourth Edition, Sumitabha Das, TMH.

Theoretical Background:

You are expected to refer to the text book and references mentioned in the
course wensite befor you start the lab.

Assignments:

1. Use the ps command to display the process attributes.

2. Learn the top command to display the resource utilization statistics of
processes

• Open a terminal and type the top command

• Start a browser and see the effect on the top display

• Compile a C program and observe the same effect (Use a long loop -
say while(1) to observe the effect)

• From the top display, answer the following:

– How much memory is free in the system?

– Which process is taking more CPU?

– Which process has got maximum memory share?

• Write a CPU bound C program and a I/O bound C program (e.g.
using more printf statements withing while(1) loop), compile and ex-
ecute both of them.
Observe the effect of their CPU share using the top display and com-
ment.

1



3. Write a program in C that uses the fork system call. You can use the
program described in the lecture class on Process. Compile the program
and execute it.

4. For the above C program, change the program such that the associated
child process will change the core image.

5. In a C program, print the address of the variable and enter into a long
loop (say using while(1)).

• Start three to four processes of the same program and observe the
printed address values.

• Try the experiment of different OS and comment wheteher the ad-
dresses remain same on both OS or not?

6. Use strace command to find out system call traces of an executing process.
You can use any process that has been crteated earlier.

• Find out a command on the shell such that the command does not
make a system call. Use strace to locate such a command.

• strace bash to observe how bash uses system calls to read commands
from the console and echo it back to screen.

7. Write a C program to create threads. You can use the program demon-
strated in class which has been provided as additional resource in the
course website.

2


