
Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and Writers

 One-way tunnel

1Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Monitors - higher-level synchronization (Hoare, Hansen, 1974-5)

 Semaphores and event-counters are low-level and error-prone

 Monitors are a programming-language construct

 Mutual exclusion constructs generated by the compiler. Internal data

structures are invisible. Only one process is active in a monitor at any

given time - high level mutual exclusion

 Monitors support condition variables for thread cooperation.

 Monitor disadvantages:

o May be less efficient than lower-level synchronization

o Not available from all programming languages

2Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

3

Monitors
Only one monitor procedure active at any given time

monitor example
integer i;
condition c;

procedure p1();
.
.
.
end;

procedure p2();
.
.
.
end;
end monitor;

Slide taken from a presentation by Gadi Taubenfeld from IDC

4

Monitors: Condition variables

 Monitors guarantee “automatic” mutual exclusion

 Condition variables enable other types of synchronization

 Condition variables support two operations: wait and signal

o Signaling has no effect if there are no waiting threads!

 The monitor provides queuing for waiting procedures

 When one operation waits and another signals there are two ways to

proceed:

o The signaled operation will execute first: signaling operation

immediately followed by block() or exit_monitor (Hoare semantics)

o The signaling operation is allowed to proceed

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

5

type monitor-name = monitor

variable declarations

procedure entry P1 (…);

begin … end;

procedure entry P2 (…);

begin … end;

.

.

.

procedure entry Pn (…);

begin … end;

begin

initialization code

end

Figure 6.20 Monitor with Condition Variable

Shared data

x

y

Queues associated

with x, y conditions

…
operations

Initialization

code

Entry queue

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

6

Bounded Buffer Producer/Consumer with Monitors

Slide taken from a presentation by Gadi Taubenfeld from IDC

This code only works if a
signaled thread is the next to
enter the monitor (Hoare)

Any problem with this code?

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

7

Issues of non-Hoare semantics

Slide taken from a presentation by Gadi Taubenfeld from IDC

1. The buffer is full, k producers (for some k>1) are waiting on the full condition variable. Now, N

consumers enter the monitor one after the other, but only the first sends a signal (since count==N-1

holds for it). Therefore only a single producer is released and all others are not. The corresponding

problem can occur on the empty semaphore.

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

8

Issues of non-Hoare semantics (cont'd)

Slide taken from a presentation by Gadi Taubenfeld from IDC

2) The buffer is full, a single producer p1 sleeps on the full condition variable. A consumer executes

and makes p1 ready but then another producer, p2, enters the monitor and fills the buffer. Now p1

continues its execution and adds another item to an already full buffer.

Monitors - some comments

 Condition variables do not accumulate signals for later use

 wait() must come before signal() in order to be signaled

 No race conditions, because monitors have mutual exclusion

 More complex to implement – but done by compiler

 Implementation issues:

o How to interpret nested monitors?

o How to define wait, priority scheduling, timeouts, aborts ?

o How to Handle all exception conditions ?

o How to interact with process creation and destruction ?

9Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

10Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Implementing Monitors with Semaphores – take 1
semaphore mutex=1; /*control access to monitor*/
semaphore c /*represents condition variable c */

void enter_monitor(void) {
down(mutex); /*only one-at-a-time*/

}
void leave(void) {

up(mutex); /*allow other processes in*/
}

void leave_with_signal(semaphore c) /* leave with signaling c*/
{ up(c) /*release the condition variable, mutex not released */
}

void wait(semaphore c) /* block on a condition c */

{ up(mutex); /*allow other processes*/
down (c); /*block on the condition variable*/

}

Any problem with this code? May deadlock.

11Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Implementing Monitors with Semaphores - Correct

Semaphore mutex = 1; /* control access to monitor */

Cond c; /* c = {count; semaphore} */

void enter_monitor(void) {

down(mutex); /* only one-at-a-time */

}

void leave(void) {

up(mutex); /* allow other processes in */

}

void leave_with_signal(cond c) { /* cond c is a struct */

if(c.count == 0) up(mutex); /* no waiting, just leave.. */

else {c.count--;

up(c.s)}

}

void wait(cond c) { /* block on a condition */

c.count++; /* count waiting processes */

up(mutex); /* allow other processes */

down(c.s); /* block on the condition */

}

Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and writers

 One-way tunnel

12Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Monitors in Java

Originally, no condition variables (actually, only a

single implicit one)

Procedures are designated as synchronized

Synchronization operations:

o Wait

o Notify

o Notifyall

13Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Producer-consumer in Java (cont’d)

Class ProducerConsumer {

Producer prod = new Producer();

Consumer cons = new Consumer();

BundedBuffer bb = new BoundedBuffer();

Public static void main(String[] args) {

prod.start();

cons.start();

}}

14Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Producer-consumer in Java

Class Producer extends Thread {

void run() {

while(true) {
int item = produceItem();
BoundedBuffer.insert(item);

}}}

Class Consumer extends Thread {
int item
void run() {

while(true) {
item = BoundedBuffer.extract();
consume(item);

}}}

15Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Producer-consumer in Java (cont’d)

Class BoundedBuffer {
private int[] buffer = new int buff[N];
int first = 0, last = 0;
public synchronized void insert(int item) {

while((last – first) == N)
wait();

buff[last % N] = item;
notify();
last++; }

public synchronized int extract(int item) {
while(last == first)

wait();
int item = buff[first % N];
first++;
notify();
return item;

}}

What is the problem with this code?

16Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The problem with the code in previous slide

 Assume a buffer of size 1

 The buffer is empty, consumers 1, 2 enter the monitor and wait

 A producer enters the monitor and fills it, performs a notify and exits.

Consumer 1 is ready.

 The producer enters the monitor again and waits.

 Consumer 1 empties the buffer, performs a notify and exits.

 Consumer 2 gets the signal and has to wait again. DEADLOCK.

We must use notifyAll()!

17Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Monitors in Java: comments

 notify() does not have to be the last statement

 wait() adds the calling Thread to the queue of waiting threads

 a Thread performing notify() is not blocked - just moves one waiting Thread to

state ready

 once the monitor is open, all queued ready Threads (including former waiting

ones) are contesting for entry

 To ensure correctness, wait() operations must be part of a condition-checking

loop

18Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and writers

 One-way tunnel

19Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Barriers

 Useful for computations that proceed in phases

 Use of a barrier:
(a) processes approaching a barrier

(b) all processes but one blocked at barrier

(c) last process arrives, all are let through

20Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Fetch-and-increment(w)

do atomically

prev:=w

w:=w+1

return prev

The fetch-and-increment instruction

21Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

22Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

A simple barrier using fetch-and-inc

shared integer counter=0

Barrier()

counter := Fetch-and-increment(counter)

if (counter = n)

counter := 0

else

await (counter = 0)

Will this work ?

T1: counter set to zero by nth process

T2: nth process increments it again…

No waiting process has time to check that
counter = 0

23Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

One shared atomic bit

shared integer counter=0, bit go

local local-go, local-counter

Barrier()

local-go := go

local-counter := Fetch-and-increment(counter)

if (local-counter = n)

counter := 0

go := 1-go

else

await (local-go ≠ go)

All waiting processes are released by the atomic
bit go !!

24Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

A barrier using Binary Semaphores

shared atomic counter=0

binary semaphore arrival=1 departure=0

Barrier()

down(arrival)

counter := counter + 1

if(counter < n)

up(arrival)

else up(departure)

down(departure)

counter := counter – 1

if(counter > 0)

up(departure)

else up(arrival)

Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and writers

 One-way tunnel

25Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

26

The Sleeping Barber Problem

Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The sleeping barber problem (cont’d)

Barber shop - one service provider; many customers

 A finite waiting queue

 One customer is served at a time

 Service provider, barber, sleeps when no customers

are waiting

 Customer leaves if shop is full

 Customer sleeps while waiting in queue

27Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The sleeping barber: implementation

#define CHAIRS 5

semaphore customers = 0; // number of waiting customers

Semaphore barbers = 0; // number of available barbers: either 0 or 1

int waiting = 0; // copy of customers for reading

Semaphore mutex = 1; // mutex for accessing ‘waiting’

void barber(void) {

while(TRUE) {

down(customers); // block if no customers

down(mutex); // access to ‘waiting’

waiting = waiting - 1;

up(barbers); // barber is in..

up(mutex); // release ‘waiting’

cut_hair(); }

}

28Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The sleeping barber: implementation (cont’d)

void customer(void) {

down(mutex); // access to `waiting’

if(waiting < CHAIRS) {

waiting = waiting + 1; // increment waiting

up(customers); // wake up barber

up(mutex); // release ‘waiting’

down(barbers); // go to sleep if barbers=0

get_haircut();

}

else {

up(mutex); /* shop full .. leave */

}}

29Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Any problem with this code? Two customers on chair at once

30Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The sleeping barber: correct synchronization

#define CHAIRS 5

semaphore customers = 0; // number of waiting customers

semaphore barbers = 0; // number of available barbers: either 0 or 1

semaphore mutex = 1; // mutex for accessing ‘waiting’

semaphore synch = 0; // synchronizing the service operation

int waiting = 0; // copy of customers for reading

void barber(void) {

while(TRUE) {

down(customers); // block if no customers

down(mutex); // access to ‘waiting’

waiting = waiting - 1;

up(barbers); // barber is in..

up(mutex); // release ‘waiting’

cut_hair();

down(synch) //wait for customer to leave }

}

31Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The sleeping barber: correct synchronization (cont’d)

void customer(void) {

down(mutex); // access to `waiting’

if(waiting < CHAIRS) {

waiting = waiting + 1; // increment waiting

up(customers); // wake up barber

up(mutex); // release ‘waiting’

down(barbers); // go to sleep if barbers=0

get_haircut();

up(sync); //synchronize service

}

else {

up(mutex); /* shop full .. leave */

}}

Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and writers

 One-way tunnel

32Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The readers and writers problem

 Motivation: database access

 Two groups of processes: readers, writers

 Multiple readers may access database simultaneously

 A writing process needs exclusive database access

33Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers and Writers: 1st algorithm

void reader(void){
while(TRUE){

down(mutex);
rc = rc + 1;
if(rc == 1)

down(db);
up(mutex);
read_data_base();
down(mutex);
rc = rc - 1;
if(rc == 0)

up(db);
up(mutex); }

}

Int rc = 0 // # of reading processes
semaphore mutex = 1; // controls access to rc
semaphore db = 1; // controls database access

void writer(void){
while(TRUE){

down(db);
write_data_base()

up(db)
}

Who is more likely to run:
readers or writers?

34Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Comments on 1st algorithm

No reader is kept waiting, unless a writer has already

obtained the db semaphore

 Writer processes may starve - if readers keep coming in

and hold the semaphore db

 An alternative version of the readers-writers problem

requires that no writer is kept waiting once it is “ready” -

when a writer is waiting, no new reader can start reading

35Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers and Writers: writers’ priority

void reader(void){
while(TRUE){

down(Rdb);
down(Rmutex)

rc = rc + 1;
if(rc == 1)

down(Wdb);
up(Rmutex);

up(Rdb)
read_data_base();
down(Rmutex);

rc = rc - 1;
if(rc == 0)

up(Wdb);
up(Rmutex); }

}

Int rc, wc = 0 // # of reading/writing processes
semaphore Rmutex, Wmutex = 1; // controls readers/writers access to rc/wc
semaphore Rdb, Wdb = 1; // controls readers/writers database access

void writer(void){
while(TRUE){

down(Wmutex);
wc = wc + 1
if (wc == 1)

down (Rdb)
up(Wmutex)
down(Wdb)

write_data_base()
up(Wdb)
down(Wmutex)

wc=wc-1
if (wc == 0)

up(Rdb)
up(Wmutex)

36Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Comments on 2nd algorithm

 When readers are holding Wdb, the first writer to arrive grabs

Rdb

 All Readers arriving later are blocked on Rdb

 all writers arriving later are blocked on Wdb

 only the last writer to leave Wdb releases Rdb – readers can

wait…

 If a writer and a few readers are waiting on Rdb, the writer may

still have to wait for these readers. If Rdb is unfair, the writer may

again starve

37Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers and Writers: improved writers'
priority

void reader(void){
while(TRUE){

down(Mutex2)
down(Rdb);

down(Rmutex)
rc = rc + 1;
if(rc == 1)

down(Wdb);
up(Rmutex);

up(Rdb)
up(Mutex2)
read_data_base();
down(Rmutex);
rc = rc - 1;
if(rc == 0)

up(Wdb);
up(Rmutex); }

}

Int rc, wc = 0 // # of reading/writing processes
semaphore Rmutex, Wmutex, Mutex2 = 1;
semaphore Rdb, Wdb = 1;

void writer(void){
while(TRUE){

down(Wmutex);
wc = wc + 1
if (wc == 1)

down (Rdb)
up(Wmutex)
down(Wdb)
write_data_base()
up(Wdb)
down(Wmutex)
wc=wc-1
if (wc == 0)

up(Rdb)
up(Wmutex)

38Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Improved writers' priority

 After the first writer performs down(Rdb), the first reader that

enters is blocked after down(Mutex2) and before up(Mutex2)

 Thus no other readers can block on Rdb

 This guarantees that the writer has to wait for at most a single

reader

 Irrespective of the fairness of the Rdb semaphore’s queue

39Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers-writers with Monitors

Monitor reader_writer{

int numberOfReaders = 0;

boolean writing = FALSE;

condition okToRead, okToWrite;

public:

procedure startRead() {

if(writing || (notEmpty(okToRead.queue))) okToRead.wait;

numberOfReaders = numberOfReaders + 1;

okToRead.signal;

};

procedure finishRead() {

numberOfReaders = numberOfReaders - 1;

if(numberOfReaders == 0) okToWrite.signal;

};

40Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers-writers with Monitors (cont'd)

procedure startWrite() {

if((numberOfReaders != 0) || writing) okToWrite.wait;

writing = TRUE

};

procedure finishWrite() {

writing = FALSE;

if(notEmpty(okToWrite.queue))

okToWrite.signal

else

okToRead.signal;

};

}

41Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Behavior of Readers & Writers Monitor

Waiting Writers receive the db from leaving writers

Or from leaving (last) Readers

A leaving (last) Reader does not have to worry about

signaling the next Reader

Signal has the standard semantics

All waiting Readers enter before a waiting Writer,

when a Reader enters

42Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers-writers with Monitors (counting)
Monitor reader_writer{

boolean writing = FALSE;

condition okToRead, okToWrite;

int numberOfReaders = 0, waitingWrite=0

public:

procedure startRead() {

if(writing|| (waitingWrite>0))
okToRead.wait;

numberOfReaders = numberOfReaders + 1;

okToRead.signal;

};

procedure finishRead() {

numberOfReaders = numberOfReaders - 1;

if(numberOfReaders == 0) okToWrite.signal;

};

43Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Readers-writers with Monitors (counting)

procedure startWrite() {

if((numberOfReaders != 0) || writing)

waitingWrite++;

okToWrite.wait;

waitingWrite--;

writing = TRUE

};

procedure finishWrite() {

writing = FALSE;

if(waitingWrite>0))

okToWrite.signal

else

okToRead.signal;

};

}

44Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Monitor keeps writers' priority

 When there are waiting Writers, one of them will have a

chance to enter before any new Readers

 First line of startRead()

 After the exit of a (last) Writer, all waiting Readers can

enter before the next Writer can enter

 This is guaranteed in the last line of startRead() – each

entering Reader opens the door to the next one

45Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

Outline

 Monitors

o Monitors in Java

 Barrier synchronization

 The sleeping barber problem

 Readers and writers

 One-way tunnel

46Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

The one-way tunnel problem

 One-way tunnel

 Allows any number of processes in the

same direction

 If there is traffic in the opposite direction –

have to wait

 A special case of readers/writers

47Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

One-way tunnel - solution

void arrive(int direction) {

down(waiting[direction]);

down(mutex);

count[direction] += 1;

if(count[direction] == 1)

up(mutex);

down(busy)

else

up(mutex);

up(waiting[direction]);

}

int count[2];

Semaphore mutex = 1, busy = 1;

Semaphore waiting[2] = {1,1};

void leave(int direction) {

down(mutex);

count[direction] -= 1;

if(count[direction] == 0)

up(busy)}

up(mutex);

}

48Operating Systems, 2014, Meni Adler, Danny Hendler and Amnon Meisels

