
40 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Lysis: A Platform for IoT Distributed Applications
Over Socially Connected Objects
Roberto Girau, Salvatore Martis, and Luigi Atzori, Senior Member, IEEE

Abstract—This paper presents Lysis, which is a cloud-based
platform for the deployment of Internet of Things (IoT) applica-
tions. The major features that have been followed in its design
are the following: each object is an autonomous social agent; the
platform as a service (PaaS) model is fully exploited; reusabil-
ity at different layers is considered; the data is under control
of the users. The first feature has been introduced by adopting
the social IoT concept, according to which objects are capable
of establishing social relationships in an autonomous way with
respect to their owners with the benefits of improving the net-
work scalability and information discovery efficiency. The major
components of PaaS services are used for an easy management
and development of applications by both users and programmers.
The reusability allows the programmers to generate templates of
objects and services available to the whole Lysis community. The
data generated by the devices is stored at the object owners
cloud spaces. This paper also presents a use-case that illus-
trates the implementation choices and the use of the Lysis
features.

Index Terms—Cloud computing, Internet of Things (IoT),
social Internet of Things (SIoT), social networks.

I. INTRODUCTION

SOCIETY is moving toward an “always connected”
paradigm, where the Internet user is shifting from persons

to things, leading to the so called Internet of Things (IoT). In
this respect, successful solutions are expected to embody a
huge number of smart objects identified by unique address-
ing schemes providing services to end-users through standard
communication protocols. Accordingly, the huge numbers of
objects connected to the Internet and that permeate the envi-
ronment we live in, are expected to grow considerably, causing
the production of an enormous amount of data that must
be stored, processed and made available in a continuous,
efficient, and easily interpretable manner. Cloud computing
can provide the right technologies to implement the infras-
tructure that meets these requirements and can integrate
sensors, data storage devices, analytic tools, artificial intel-
ligence, and management platforms. Additionally, the pricing
model on consumption of cloud computing, enables access

Manuscript received May 13, 2016; revised September 6, 2016; accepted
September 30, 2016. Date of publication October 10, 2016; date of cur-
rent version February 8, 2017. This work was supported in part by the
Project SocialMobility, P.O.R. FESR 2007–2013 Regione Sardegna—Asse
VI Competitivit 6.2.1 a, CUP F25C10001420008, and in part by the Telit
Communications SpA under project “Platform for the deployment of dis-
tributed applications in Vanets and WSNs.”

The authors are with the Department of Electrical and
Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
(e-mail: roberto.girau@diee.unica.it; salvatore.martis@diee.unica.it;
l.atzori@diee.unica.it).

Digital Object Identifier 10.1109/JIOT.2016.2616022

to end-to-end services in an on-demand fashion and in any
place. At the same time, service-oriented technologies, Web
services, ontologies, and semantic Web allow for construct-
ing virtual environments for application development and
deployment [1].

In the last five years many IoT architectural proposals
and implementations appeared in the literature and in the
market. A great effort has been devoted to defining archi-
tectures and relevant functionalities which often rely on the
concept of virtualizing the physical objects. Indeed, virtual
objects (VOs) implement the digital counterparts of the phys-
ical devices (PDs), spoke for them and introduce some func-
tionalities that could not be taken by the real world objects,
such as: supporting the discovery and mash up of services,
fostering the creation of complex applications, improving
the objects energy management efficiency, as well as mak-
ing inter-objects communications possible by translating the
used dissimilar languages. Additionally, virtualization tech-
nologies can hide the physical characteristics of industrial
equipment implementing an effective connection, communi-
cation, and control between the real world and the virtual
counterpart. Some of the existing implementations have also
been designed to exploit the cloud computing features. In this
context, an important category is that of distributed cloud-
based applications, where different components are executed
in separate platforms, devices included. Indeed, the appli-
cation level functions are assigned to different virtual and
real components to reduce latency and bottlenecks. This is
the case for instance of Xively [2] and Paraimpu [3], where
the data sensed by the devices is processed locally and the
results are sent to the cloud to trigger the execution of
some centralized tasks. Something similar happens also in
Carriots [4], where the user can also write some code with
provided domain-specific languages that can be executed in
the cloud when something is detected in the devices. Other
platforms, such as iCore [5] and Compose [6], bring forward
the concept of distributed applications: the codes to be exe-
cuted in the cloud is distributed to different virtual entities at
different levels. Some simple triggers are executed by sim-
ple virtual entities, the complex operations are assigned to
aggregations of simple virtual entities, and operations of man-
agement functions are assigned to Web services. Usually, such
virtual entities are managed by central elements running in
the cloud.

As it is discussed in the following section, we still believe
that to fully exploit the potentialities of the IoT paradigm,
there is a strong need for further advancements in the design of

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 41

platforms that make easier the communications among objects,
help the developers in creating new applications on top of the
available objects’ services, allow the users to have complete
control of their own data and objects, and are reliable and
efficient to support the interaction of billions of objects.

To further advance in this respect, this paper provides the
following major contributions.

1) We analyze the major requirements that should be
addressed by an IoT platform to make easy the deploy-
ment of services, sharing of code, and services among
different users, guarantee that every user can correctly
handle the data generated by her own objects.

2) We present the IoT solution named Lysis,1 which
addresses the previously presented requirements. The
major feature of Lysis is that relies on a platform as
a service (PaaS) model that allows the users to have
complete control over their data, which is not always
assured by alternative solutions. The platform also fos-
ters reusability of services and software developed by
third parties and users.

3) The concept of social IoT is followed to develop the
virtualization layer. As a result, each object is an
autonomous social agent, according to which objects
are capable of establishing social relationships in an
autonomous way with respect to their owners with
the benefits of improving the network scalability and
information discovery efficiency.

4) The notion of social objects is used to develop an
architecture that allows for deploying fully distributed
applications. Accordingly, the application is deployed as
a collaboration among social objects that are running in
different cloud spaces and that are owned by different
users, whereas in past works all the involved system
components are managed by the same entity. In Lysis,
these social objects are implemented in a horizontal dis-
tribution by using independent Web services that run in
the cloud spaces managed by the users.

5) A use-case is presented to show the way we imple-
mented the Lysis architecture and its potentialities.
Performance evaluations are also shown in terms of scal-
ability and reduction of computational load at the PDs.

This paper is organized as follows. Section II presents
the considered requirements, past works and Lysis novelties.
Section III describes the major layers of the Lysis plat-
form. Section IV illustrates the way we have addressed the
requirements. Section V analyzes a use-case and provides
performance evaluations. Section VI provides a comparison
of Lysis with alternative solutions and Section VII draws final
conclusions.

II. REQUIREMENTS, PAST WORKS,
AND LYSIS INNOVATION

In this section, we present the key requirements that have
been considered as the major input in this paper, with relevant

1Lysis is the only dialogue of Plato in which the philosopher Socrates
discusses the nature of friendship with his disciples.

past works. We also highlight the major novelties of the
proposed Lysis platform.

A. Distributed Social Objects

There are recent studies demonstrating that the issues related
to the management and effective exploitation of the expected
huge numbers of heterogeneous devices could find a solution
in the use of social networking concepts and technologies [7].
For instance, Ortiz et al. [8] introduced the idea of objects able
to participate in conversations that were previously only avail-
able to humans. Analogously, the research activities reported
in [9] consider that, being things involved into the network
together with people, social networks can be built based on the
IoT and are meaningful to investigate the relations and evolu-
tion of objects in IoT. In [10], explicitly, the social IoT (SIoT)
concept is formalized, which is intended as a social network
where every node is an object capable of establishing social
relationships with other things in an autonomous way accord-
ing to rules set by the owner. In this paper, authors demonstrate
that an approach derived from human social networking can
provide a high level of scalability due to a high correlation
between required information data and social relationships.
According to this model the registered objects are augmented
with the attitude to create the following relationships.

1) Ownership Object Relationship: Created between
objects that belong to the same owner.

2) Co-Location Object Relationship: Created between sta-
tionary devices located in the same place.

3) Parental Object Relationship: Created between objects
of the same model, producer and production batch.

4) Co-Work Object Relationship: Created between objects
that meet each others at the owners’ workplace, as the
laptop and printer in the office.

5) Social Object Relationship: Created as a consequence
of frequent meetings between objects, as it can happen
between smartphones of people who use the same bus
every day to go to school/work and people hanging out
at the same bar/restaurant/gym.

Each type of relationship is created whenever certain condi-
tions are satisfied. Each social object has to verify the occur-
rence of these conditions by analyzing its own profile [this
is the case for the ownership object relationship (OOR) and
parental object relationship], its own movement patterns [this
is the case of the co-location object relationship (CLOR)] and
the context of the device [co-work object relationship (CWOR)
and social object relationship (SOR)]. With reference to the
last case, the object has to understand in which places it is
located during the day and to detect when it is located in the
working places. Whenever it encounters for a given period of
time other objects in this place, then it starts the process about
the creation of the CWOR.

Girau et al. [11] is a past implementation of the SIoT
paradigm developed starting from the open source project
ThingSpeak.2 Whereas the general SIoT features have been
implemented in this platform, it makes use of a centralized
approach, where the objects do not communicate directly with

2[Online]. Available: https://thingspeak.com/

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

42 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

each other, but through the server, also to establish social
relationships. This is inherited by the ThingSpeak project
which, as most of the existing solutions, focuses on the server-
object communication rather than object-to-object interactions.
Whereas this prototype allowed for verifying the efficacy of
the social networking concepts in IoT, it does not exploit the
benefits of a distributed approach that can be achieved by
allowing object-to-object direct and autonomous communica-
tions. Indeed, with the distributed approach we can improve
the scalability, which is also demonstrated in our performance
evaluation section.

B. Virtualization

A network with the expected huge number of IoT connected
devices introduces big issues in terms of navigability, manage-
ment, ubiquity, scalability, reliability, and sustainability of the
network and offered services. Not only it is a matter of num-
bers but also of heterogeneity and the limited resources that
frequently characterize the PDs. Most of these issues can be
addressed through the virtualization layer [12], which is where
the VO implements the digital counterpart of the PDs, spokes
for it and introduces some functionalities that could not be
taken by the real world objects, such as: supporting the discov-
ery and mash up of services, fostering the creation of complex
applications, improving the objects energy management effi-
ciency, as well as making the interobjects communications
possible by translating the used dissimilar languages.

The virtualization feature has been introduced by major
research projects. In the IoT-A project, physical entities are
represented in the digital word by means of virtual entities,
which are the access point to the real world by IoT appli-
cations through well-defined and standardized interfaces [13].
In the Compose platform, virtual representations of physical
objects are named service objects, which support the han-
dling of communications, the processing of sensor data, and
the description of objects’ characteristics to support seman-
tic discovery mechanisms [6]. This platform has the limit
in terms of the functionalities the object owners are pro-
vided with for the management of their own objects. Also
in the European FP7 iCore project [5], [14], virtualization is
a major feature. The proposers define the VO as the virtual
alter ego of any real-world object (RWO), which are dynam-
ically created and destroyed. Herein, cognitive technologies
guarantee a constant link between RWO and VO and ensure
self-management and self-configuration. iCore also proposes
an aggregation layer where composite VOs implement com-
plex services that are reused by different applications. The
iCore team has developed a preliminary prototype, which how-
ever has not been devised for being deployed in the cloud.
The autonomicity of VO is also addressed in the Cognitive
IoT (CIoT) paradigm [15]. Herein, Wu et al. stated that con-
necting the objects is not enough but they should be able
to learn, think, and understand from both the real and the
social worlds. In CIoT, VOs are interconnected and act as
agents with minimal human intervention, interact with each
other by exploiting the context-awarness, storing and learning

the acquired knowledge, and adapt themselves to situations
through efficient decision-making mechanisms.

There are two major contributions of this paper in this area.
First, to the authors’ knowledge the state of the art misses
a platform that fully implements the complete functionalities
of VOs for IoT. Second, we extend these functionalities by
creating the social VO (SVO), where the social behavior is
injected into the VOs.

C. PaaS in IoT

Many platforms exploit cloud computing technologies to
provide IoT services in different environments, such as smart
home [16], smart cities [17], smart management of invento-
ries [18], eHealth [19], [20], environmental monitoring [21],
social security and surveillance [22], mine security [23], and
Internet of Vehicles [24]. Although very effective for the pur-
pose they have been proposed, these solutions are most of
times vertical implementations, lacking in horizontal enlarge-
ability to become cross-application platforms, de facto limiting
their adoption in other IoT domains. Indeed, in these realiza-
tions, domain-specific or project-specific requirements drove
the design of the major system components and determine
most technological elements ranging from sensors and smart
devices to middleware components and application logic. This
is discussed in [25], where Li et al. highlighted that isolated
IoT platforms are implemented like silos and have been also
named virtual verticals. Accordingly, any client of IoT solu-
tions is isolated from the others and just share the storage and
computing resources. They then propose an additional compo-
nent, named “domain mediator” İto make the different PaaS
IoT platforms talk each-other. This issue is also the focus of
Gubbi et al. [26] that present a user-centric cloud-based model
to design new IoT applications through the interaction of pri-
vate and public cloud showing an attempt of usage of cloud
computing to provide horizontal solutions.

Differently from these past works, in Lysis we fully exploit
the PaaS model for the implementation of a cross-application
IoT platform.

D. Data Ownership

Existing IoT services provided in software as a service
modality are rapidly conquering the market as it does not
require the user to manage the infrastructure, to configure the
used platform and services [2], [3], [27], [28]. The users are
then granted with the required cloud space for storing sensor
data and to run simple applications such as trigger actuations,
send alerts, and visualize log graphs. In the near future, these
services will permeate our everyday activities with all our
devices connected in the cloud where any information about
our activities will be stored and analyzed, without however,
any user control about where this information is stored and
who can access to. This process is felt as a strong threat to
the user privacy and people feel increasingly observed, causing
a strong feeling of distrust of the whole series of applications
that offer services using data from personal devices. On the
basis of these considerations, we have designed our platform
so that the data generated by the devices is kept in the owner

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 43

Fig. 1. Four levels of the Lysis architecture.

cloud space. In this way, the produced information remains in
the hands of the user that can dispose of this data at her will.

E. Reusability

A prerequisite to ensure efficiency in IoT platforms is
related to the reusability of data. Requests for the same data
from the same sensors from different IoT applications cause
extreme inefficiency in accessing hardware and result in a
waste in terms of energy and bandwidth, if not handled prop-
erly. This issue should be handled by the virtualization level,
as the data requests for a chosen physical sensor should be
aggregated by its virtual counterpart allowing for saving vital
energy. A similar way of thinking can be done at the aggre-
gation level. A set of VOs can be aggregated to provide a
service, which can be needed by multiple applications. Also
in this case, the composition of VO must have the necessary
intelligence to adapt to multiple requests of the same pattern.
Decisions on which simple VO services to aggregate should
be taken on the basis of the context.

Reusability also refers to the code and services as done
by the FI-WARE project [29], where the objective is to build
the basic platform of the Internet of the future made of basic
elements (generic enablers) that allow for sharing functions on
a multiplicity of areas in the Internet. In the specific domain of
IoT, instantiating a new process for the communication with
the PD and processing of the data should not require rewriting
code already developed but should rely on sharing of codes
among the communities of users and developers. The sharing
should be done at all the architectural layers, from the PDs
drivers till the upper most application layer. This represent
another important requirement for the studied solution.

III. OVERALL LYSIS ARCHITECTURE

Fig. 1 shows the overall architecture of the Lysis platform
through four functional levels: 1) the lower level is made up of
the “things” in the real world; 2) the one above is the virtual-
ization level, which interfaces directly with the real world and
is made up of SVOs; 3) the level of aggregation is responsible
for composing different SVOs to set up entities with aug-
mented functionalities called micro engines (MEs); and 4) the

Fig. 2. (a) PDs able to communicate with the platform. (b) Objects that need
a GW to interact with the platform.

last level is the application level in which user-oriented macro
services are deployed.

In the following sections we briefly describe the major com-
ponents, whereas more details with reference to the introduced
novelties are provided in Section IV.

A. Real World Level

As well-investigated in the iCore project [5], the lowest level
is always made up of the RWO. Some of these are PDs able
to directly communicate through the Internet, such as smart-
phones, laptops and TV set-top-boxes [see Fig. 2(a)]. Some
others cannot directly access to the Internet and have to use
local gateways (GWs) [see Fig. 2(b)].

The PDs and the GWs implement the following modules to
be part of the platform.

1) Hardware Abstraction Layer: It communicates with the
corresponding module in the virtualization level. Its
major role is to introduce a standardized communication
procedure between the platform and the extremely var-
iegate set of PDs, simplifying the platform southbound
APIs. It is also in charge of creating a secure point-to-
point communication (encrypted) with the SVOs.

2) Data Handler: It intervenes whenever there is the need
to process data from sensors before being sent by the
PD-hardware abstraction layer (HAL) to the virtualiza-
tion level. For example, data coming from sensors could
be strings of hexadecimals, which have to be processed
to extract actual numerical values to encapsulate them
in JSON format ready for dispatching.

3) Device Management: It implements the real device logic
with reference to the participation of the PD to the
Lysis platform, e.g., controlling the sensing frequency,
managing local triggers, and overseeing the energy con-
sumption. It also runs the code that can be updated in
run-time locally in the PD.

4) Environment Interface/Protocol Adapter: In the case of
the PD, it consists in the hardware drivers for all local
sensors and actuators. In the case of the GW, it imple-
ments the communication with the ICT objects through
the available protocol.

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

44 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

The HAL component is necessary to overcome the signif-
icant heterogeneity of the real word devices and to make the
service always reachable. This is not always true for SVO to
RWO communications. Most of times hypertext transfer proto-
col (HTTP) and constrained application protocol are unusable
if behind a network address translation service, so it is better
to use either protocols like MQTT/AMQP that use persistent
sockets or vendor push protocols like Google Cloud Messaging
or Apple Push Notifications. In case of multiple communica-
tion channels, the HAL has to manage the switching among
these. This happens for instance when the device is equipped
with two or more communication interfaces, such as cellu-
lar and satellite, which have to be used according to the user
preferences (e.g., to save money). These issues are addressed
by the HAL component in the RWO and in the visualization
layer with a smart management of the possible communication
protocols.

Virtually, all the physical devices can be abstracted in the
cloud through the HAL. However, there are two limitations
in this respect. First, for some real-time applications, sensed
data in the cloud is useless and this is particularly true when
the device should quickly react to the surrounding context.
Whereas edge and fog computing technologies tend to reduce
the latency [30], this may not be enough. Additionally, it also
happens that applications require device-to-device communi-
cations as some decisions have to be taken in a cooperative
way, and again this prevents from completely exploiting the
cloud virtual counterparts. In this case, the device management
modules has the role to accept code injected from the cloud to
perform local processing. Indeed, it is able to receive, under-
stand and execute code sent from the upper levels. To allow
the highest reachable abstraction, a virtual machine is needed
on the devices able to interpret programming languages like
Python and Node.js.

Second, for some devices the vendors do not disclose all
the details to have complete access to some capabilities. For
this reason the abstraction allows only for accessing to a con-
trolled view of the device sensors. It also happens that the
device is only reachable through vendor Web services avail-
able through the cloud. For example, satellite communication
systems based on short burst data do not support device direct
communications letting only a connection with a control plat-
form through REST APIs. Again, the SVO-HAL can connect
to this platform and make this connection transparent to appli-
cation developers, but still the data is preprocessed giving a
limited view of the device capabilities.

B. Virtualization Level

The hardest challenge of the IoT is to be able to address the
deployment of applications involving heterogeneous objects,
often moving in large and complex environments, in a way that
satisfies the quality requirements of the application itself, while
not overloading the network resources. For this reason, the VO
has become a key component of many IoT platforms, repre-
senting the digital counterpart of any real (human or lifeless,
static or mobile, solid or intangible) entity in the IoT.

Fig. 3. Components of the SVO.

In our solution this layer assumes an even more important
role as it is augmented with the social behavior, bringing to
the concept of SVO. When designing the SVO we had to iden-
tify the functionalities that were in common with all the SVOs
independently from the PD characteristics and define the social
enabler, as shown in Fig. 3. The other functionalities, which
are mostly affected by the specific device characteristics, are
implemented by the VO module. The “type” of RWO is rep-
resented by a template of VO. For example, every smartphone
model has the same VO template; however, there is a differ-
ent VO instance per smartphone PD, which is the actual Web
service running in the cloud.

The template consists of the VO schema, a semantic descrip-
tion of the related RWO. Capabilities and resources of the real
object are depicted inside the VO schema. The second compo-
nent of the template is the software agent source code, which
is the computational engine of the VO to be run in the cloud.

The VO schema can be seen as the semantic description of
the class of RWOs of the same type, while the VO Profile
is a precise description of the object itself. It is important
for the installer to complete the semantic description of the
instance of VO to allow for a correct search of the resources
needed for the creation of services. It can also be modified
by the RWO itself through the SVO-HAL or by the social
enabler which can extract a social context description. A major
component in the VO is data points representing sensors and
actuators available through REST APIs, which are available
for the levels above. In addition to allowing access to the
HW, the SVO-API allows for setting a minimum of logic if
this than that on SVOs, whose actions can involve the object
itself or even its friends. The SVO-API also provides access to
social resources to dynamically change the behavior of each
SVO within the social network, to search the resources, and
to receive feedback needed to evaluate the trustworthiness of
friends.

C. Aggregation Level

The ME is an entity that is created to implement part of the
applications running in the upper layer. It is a mash-up of one
or more SVOs and other MEs. With reference to this entity
there are two important components: 1) the instance and 2) the
schema. The instance is a piece of programming code running
in the cloud; it must be able to reuse the output of an instance
to respond to requests that present the same inputs in order to
save redundant data requests that consume bandwidth and CPU

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 45

Fig. 4. Components of the social enabler.

unnecessarily. It must also be able to understand whether there
is a malfunctioning in one of the input or output. In this case,
it requires the reassignment of resources to the control unit.
Each ME is described by a schema that contains a semantic
description of the input, the output (if any) and the processing
activities. It also contains a summary of the help that is useful
to support the developers in using MEs.

D. Application Level

At this level the applications are deployed and executed
exploiting one or more MEs. The interface with the user also
assumes a key role; in fact, although we are in the field of
the IoT solutions, which are centered around device-device
communications, the center of gravity at the end is still the
user. An application at this level shows a font-end interface to
the user, and a back-end interface to the underlying layers.

IV. ADDRESSING THE KEY REQUIREMENTS

In the following we describe the choices that have been
taken to satisfy the requirements of Section II. We also analyze
the trustworthiness and security issues.

A. Social VO

The social enabler (SE) extends the functionalities of the VO
and, consequently, the relevant real world object by adding
social capabilities. The SE is in charge of the socialization
of the SVO by allowing the establishment, management, and
termination of social relations. A social graph connecting each
SVO with the others according to their friendships is used to
find the services required at the application level. The type and
strength of relationships created among objects also deliver
key information for predicting the trustworthiness of an object
to provide a desired service [31]. Fig. 4 shows the modules
implemented in the SE.

It is important to highlight that the frequent interactions
among the social objects for the implementation of the SIoT
paradigm was the major element that brought us to imple-
ment SVOs as autonomous processes that could implement all
the requested functionalities in a distributed way. Accordingly,
once the SVO is instantiated it interacts with the other mem-
bers of the community without the need of a centralized
component, which could represent a limit to the system
scalability.

The owner control module interfaces directly with the GUI
platform. It allows the user to manage general permissions of

the SVO resources and allows for the management of permis-
sions and rules about the establishment of social relations. It
interfaces directly with the relationship management module
that contains the logic for the creation of the social relations
foreseen in the SIoT paradigm. It uses an alerting system to
send and update the information related to the life in the
social network. Also, it is in charge of handling the asso-
ciation to groups divided by topic as it happens in human
social networks. The SVO search (SVOS) module implements
an algorithm of SVOS required in the upper levels. The search
algorithm will be explained in the following, and uses the
trust values computed for the friends and stored in the local
database to build a ranking list of SVOs. These values of trust
are created and updated by the trustworthiness management
module and stored in the local database. The identity manage-
ment module manages all the operations of authentication and
authorization by means of cryptography tokens and different
levels of API keys to access to resources (at hardware level
or at SVO level) depending on the required permissions. At
SVO level, three classes of permissions are foreseen: 1) pub-
lic; 2) private; and 3) friend. In the first case, accessing to the
resources is allowed to anyone without the need of any API
key. If the permissions are set to “private” the owner key is
required. Of course, in this case only, applications instantiated
by the owner are allowed to access to resources. Last, if the
permissions are set to “friend,” the access is allowed only by
SVO friends which have a friend API key. The owner key is
generated when the user creates a new account on the plat-
form for the first time and it is stored in the user profile. It can
be obtained by the Lysis deployer only and can be reset by
the user through the user interface on the Lysis platform. The
friend API key is generated by the SVO and redistributed to its
friends (and friends of friends) to access the shared resources
(i.e., the friend resources) as a result of the search process.
The identity management module is also in charge of manag-
ing the binding to the hardware. We talk about static binding
when the association is made during SVO deployment. The
association is persistent and grants full access to hardware
resources. We talk about dynamic binding when the associa-
tion is opportunistic and for a limited period of time. There are
two ways to achieve a dynamic binding: 1) hard binding, when
the association is set up between PD-HAL and SVO-HAL and
2) soft binding, when the association is set up between SVO
and SVO. In the first case, the association is allowed only to
SVOs that are OOR friends (belonging to the same owner):
the requester asks for a PD hard binding to the controlling
SVO. This one verifies the relationship type and, if autho-
rized, sends a cryptography token and URLs to both PD-HAL
and requesting SVO. In the soft binding, the association is set
up at the virtualization level, so that only resources with pub-
lic or friend permissions are allowed to be accessed to. In this
case, the requesting SVO has fictitious resources pointing to
real resources of the granting SVO.

The most powerful modules in the SVO are those that deal
with trust management (TM) and with SVOS. The algorithm
related to the former has been discussed in details in [31] and
incorporated in this Lysis platform. The latter is discussed
herein. SVOS is the functionality the application layer is

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

46 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 5. Objects involved in an SVO search process.

provided with when there is the need of a service and/or infor-
mation that can be provided by other objects. Accordingly, this
function is triggered every time there is an SVO (say SVO-a)
that needs to interact with an other SVO (say SVO-b), which
have to be found on-the-fly to reach the application goals. To
this a profile of SVO-b is used, which is indeed a descrip-
tion of the desired service that should be capable to provide.
A key role is taken by a node called SVO root (SVOR),
which is elected among all the SVOs owned by the same
owner of SVO-a. It is elected as the most powerful node
that is well-connected with other nodes and represents the
first node to interact with when someone has to be found by
any other friend in the co-ownership community (recall that
this is made by all the SVOs belonging to the same person).
The SVOS module accepts requests from the upper levels.
Once the SVOS is activated, the first action is to check if the
required profile matches its own profile. In this case, the SVOS
responds with its own resources. If it is not the case, it checks
its local database if there are matches among its friends. In
case of positive result, the SVOS returns the address of the
found resource(s) (more than one node may match the pro-
file) and the friend API key(s) to access to it. In the case
of mismatch, the query is forwarded to its friends with high
potentials to know the target node or with links with strong
network hubs, as shown in Fig. 5. The process is repeated
until a positive result is found, which is then returned to the
SVOS that sends it to the higher levels. Since each SVO is
able to respond to SVOS queries, other SVOs in OOR provide
the necessary redundancy to the SVOR in case of congestion
or malfunctioning. The strength of this system is that there are
no single points of failure, and in the case of failing nodes, the
network adapts itself by forwarding the requests toward alter-
native routes of the social graph. In addition, using the SVO
with greater centrality decreases the chance of forwarding the
request outside the SVOR.

B. PAAS Oriented Solution

A PaaS service provides the tools needed to develop, run,
and manage Web applications, such as the execution containers
of Web services and related databases for data storage. Since
Lysis is a virtualization-based IoT PaaS, it must also provide
all the tools to deploy SVOs, MEs, and Apps, as well as tools
for the search of these ones and a development environment
for developers.

Fig. 6. SVO deployment process.

Fig. 7. ME deployment process.

1) SVO Deployment: To deploy SVOs in the cloud, Lysis
provides the infrastructural elements shown in Fig. 6. From
the template repository the user chooses the correct template
for the installation of each SVO. The template is then taken
as input by the SVO deployer, which is in charge of instan-
tiating the agent and giving an initial configuration to SVO.
The deployer works only during the set up phase because once
instantiated the SVO is an autonomous Web service able to
introduce self-updates and manage the communication with its
friends as in a human social network. Once instantiated, the
SVO runs in the user cloud space.

2) ME Deployment: Fig. 7 shows the elements of the aggre-
gation level. Herein, SVO resources are combined in different
MEs, which are entities that inherit some or all of the function-
alities of the SVOs and are augmented with more advanced
features such as: statistical analysis, data forecasting, and arti-
ficial intelligent cooperation. Associations between MEs and
SVOs are managed by the ME controller. During this phase,
the controller triggers the execution of the search operation to
find the right SVO and to retrieve the relevant permissions.
This SVO search functionality is the one implemented by the
root SVO of the user where the App is running.

To be found by the ME controller, each ME has to be doc-
umented in the registry. This element of the aggregation level
contains a database of instances of active MEs. Each line of the
DB is related to a single ME and contains: the ME ID, the ME
URLs, the access permissions, and the time-stamp of the last
check.

The ME controller is the coordination element of the entire
level. When an application at the upper level sends a query
for the first time, the MEC checks all the involved MEs ask-
ing for the related URLs to the ME registry. It asks for SVO
search to the SVOR of the user who started the application

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 47

Fig. 8. Application deployment process.

from which takes the owner key. Once it has the resources
by the SVOs, it associates them to the MEs which register
the query ID and the required resources (input and output)
in the local database. Finally, the MEC notifies the latest ME
in the processing chain to the application. This ME will also
be the one elected as responder to the queries of the applica-
tion. Fig. 8 shows all the steps that lead applications to run in
Cloud. Users can choose among a list of applications in the
repository, and the deployer puts the source code in the user
cloud space, as shown for the SVOs.

C. Reusability

The ME, which offers reusable and commonly shared func-
tions serving a multiplicity of application areas, is usually
developed by the Lysis platform maintainer. By observing
queries on the ME controller, it is possible to identify recurring
patterns of queries. Then, new MEs serving these patterns are
developed and deployed. Nevertheless, third party ME devel-
opment is allowed: there could be a pay per use service at
aggregation level too.

To promote horizontal spread of IoT cloud applications we
foresee two development environments: 1) a scripting environ-
ment and 2) a GUI environment. In the first case the developer
is required to know the programming language of the container
of the PaaS platform hosting the implementation of the Lysis
architecture. The actual query that should be sent to the ME
controller is written in a domain specific language (JSON or
XML). In that query, semantic search and processing chains
are defined. Differently, the GUI development platform pro-
vides a Web platform where it is possible to connect the blocks
in the processing chain. These blocks are nothing but the MEs
and the SVOs. In this case, the developer is required to set
only few parameters of the blocks without knowing any pro-
gramming language. The result in both cases, is the source
code of a Web application. The code must then be verified
and certified by the Lysis platform maintainers before being
placed in the repository. The application repository can then be
visited by the user who can choose which application could be
installed in the user cloud space. In fact, just as with the case
of the VO, the burden of running the application is taken by the
user, who can maintain full ownership of data. Accordingly, a
classic IoT data logging platform that in old IoT cloud archi-
tectures is performed by a single Web application with one db
managed by the service provider and serving multiple users,
evolves into a system of multiple Web applications, each under
responsibility of the user who uses the service.

D. Data Ownership

One of the main features of the proposed architecture with
respect to other IoT architectures is the fact that the user keeps
the ownership of their own SVOs and consequently of the
relevant data. Indeed, the deployer deploys the SVOs in the
container of the user cloud space so that she is directly respon-
sible for her own data and for the running and storage costs
in the cloud. Indeed, whereas the template repository and the
deployer are hosted in the Lyser service provider infrastruc-
ture, once the SVO is created it is under the complete control
of the owner who can decide to change its configuration and
kill the process whenever she wants.

The same happens at the application level when a similar
process is implemented. The applications are selected from the
repository hosted in the Lysis platform but the Lysis instanti-
ates it in the user cloud space. Clearly, it is possible because
these operations are done by the user herself (and has the
permissions to do it).

E. Security and Trustworthiness

Security issues have to be analyzed at both southbound
and northbound SVO interfaces. As to the former, as seen
in Section III-A, at the time of binding an SVO with a PD,
they exchange identifiers and encryption keys, representing the
weakest phase during which successful sniffing attacks could
compromise any future SVO/PD activities. From this moment
on, the communication is encrypted and secure. However, still,
the keys could be stolen from weak and simple devices. As
to the northbound interfaces, data access is regulated by the
ME controller that provides a layer of anonymity between
users and providers of resources. In the case of mono-cloud
provider, i.e., the MEs and the SVOs are running in the same
provider space, the encryption of the communication is not
needed because they take place within the infrastructure of the
cloud provider and any security problem is overcome by the
ability to ensure the security of this overall infrastructure. In
the case of a multiprovider infrastructure or hybrid cloud/local
server scenario, each interface represents a vulnerable point in
the architecture for which security technologies related to Web
applications such as asymmetric key encryption SSL/TLS over
HTTP/MQTT are needed [32].

Security has to be addressed in conjunction with the eval-
uation of the objects’ trust in an IoT environment, as there
are misbehaving nodes that can perform discriminatory attacks
on the basis of their social relationships for their own gain
penalizing others nodes. In addition, misbehaving nodes with
close social ties can coalesce and monopolize a service class.
Since the trust evaluation of the nodes is highly integrated
with the search of the IoT services, the concept of TM it is of
paramount importance. There are research works which can
demonstrate how the social approach of the SIoT paradigm
can be useful for trustworthiness evaluation. Nitti et al. [31]
showed a subjective algorithm which can be executed by SVOs
to retrieve a trust ordered list of resources needed by the upper
layers. One of the drawbacks of these algorithms is the high
traffic between nodes needed to keep updated friend trust val-
ues and the relevant required computational power. In Lysis,

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

48 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 9. SocialMobility application: execution process.

the use of the SVO distributed approach and of the PaaS
technologies partially limits this issue.

V. USE-CASE AND PERFORMANCE EVALUATION

A. Lysis Implementation

To implement Lysis, we chose the Google App
Engine (GAE) PaaS as container at the different archi-
tectural levels. The platform is available to any user with a
Google account at: http://www.lysis-iot.com. The
choice was guided by the fact that any user is provided
with an user-friendly environment where to instantiate 25
free Web services. This fact is very important to get an
initial population of SVOs allowing people to try this new
IoT environment. Furthermore, GAE comes with key useful
APIs [33]: Search API and Maps API. The former allowed us
to implement on each SVO a template repository of friends
by means of document representation enabling full-text search
through the social graph; the latter allowed us to use an
uniform repository of locations which are needed for the
social relations CWOR and CLOR, which rely on information
about objects positions. Specifically, the search API provides
a model for indexing documents that contain structured data
and supports text search on string fields. The documents and
indexes are stored in separate datastores optimized for search
operations. It does not fit applications with large result sets;
however, it is used in our social environment, where there
is a separate database instance for each SVO, with a limited
size given by the number of friends. The search API are
principally used during SVO discovery, according to which
an SVO looks for friends that may provide a target service in
its local database.

B. Analysis of Use-Case

In this section, we use a social infomobility scenario as an
illustrative example to show how the platform works. In this

scenario, a user arrives at a new airport where her smartphone,
already registered to the Lysis platform and with the relevant
middleware installed, becomes friend with the airport multi-
media infopoint while waiting for the baggage. The new friend
immediately sends a message suggesting the installation of the
SocialMobility App, which is confirmed by the user. Other
infopoints in the surroundings, one for each means of trans-
port, can give information about waiting time, ticket price,
provided transport services, and nearby ticket selling points.
Information about taxi fares are offered by an ME that car-
ries out statistical analyses on the services provided by the
taxis in the city. Once the SocialMobility App on the user
cloud space is installed, the process follows the steps shown
in Fig. 9. A trigger in the user smartphone sends an alert
to the App when a hotel reservation occurs with the related
hotel position (1). Then, the App sends a query for infomo-
bility resources to the aggregation level by means of the ME
controller (2), (3). The latter forwards the query to the SVOR
of the user (4). The information is available since the user
smartphone has an SOR relationship with the airport info-
point, which has CLOR relationships with the bus infopoint,
taxi infopoint, and train infopoint. The SVOR responds with
the resources and the friend API key needed to access those
resources (5). The ME controller aggregates the received out-
put into an instance of the ME that takes care of dealing
with all the value requests to the needed SVOs queried by the
App (6), (7). Indeed, note that at this point there is no need
to reach the application level but this part of App is imple-
mented by this ME. There is also another ME in the process
since the information about taxis is provided by a private taxi
statistic ME which aggregate positions, paths, and fares of
hundreds of taxis in a city. It is important to highlight that
this last ME may not be instantiated by the considered appli-
cation; indeed, it is likely it was already running as needed
by other applications which all for different purposes need the
same service. The final aggregated information is delivered to

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 49

the requesting application, which renders it in a responsive
Web view (8).

In the social mobility scenario, we have shown a typical
automatic social interaction among devices. The user SVOR
is responsible to start a discovery among SVO friends to find
the requested resource. The requested information is at a two
hop distance from the SVOR but the query is forwarded for
one hop, from SVOR to airport infopoint, since this one has a
description of its friends (bus, train, and taxi infopoints) and
knows whether they can satisfy the request. Respect to other
IoT platforms described in Section II, there is not need for
dedicated elements such as SVO template repository, SVO reg-
istry, SVO management unit, and any other centralized system,
since this information or actions are distributed among the
social network of objects. The information about hundreds of
objects such as that provided by taxis are aggregated by a Web
service, the taxi ME, which guarantees the vehicle privacy,
giving at the same time high level information through the
OOR relationship between the taxi infopoint and all the taxis
belonging to the same company. There is only one application
running in the cloud usable by any Lysis-enabled device so
that the SocialMobility developer had only to make one appli-
cation without the need of creating one for each HW platform.
As described in Section IV and by exploiting the Google API,
user applications, and SVOs are deployed on the user cloud
space granting data ownership to the user.

C. Performance Analysis

Two important aspects of the proposed platform are the scal-
ability and the reduction of computation overhead at the PDs
thanks to the use of the virtualization layer. We show some
performance results with respect to these in the following.

A first experiment is related to the analysis of the time
needed to search a service provider in the SIoT community.
To this, we created a network of social objects with synthetic
data as done in past studies [31], [34]. In these experiments we
considered two types of social graph: a first one with a constant
average friend number for each node, which brings to a graph
diameter that increases with the population size (Lysis-a) and
a second one with an average number of friends per node that
increases with the population size so that the network diame-
ter is constant (Lysis-b). For each type, we considered graphs
with a population size in the range 100–50 000. The results
are compared with those of a commonly adopted approach
(no-Lysis) for an IoT solution with an NoSQL DB without
social links between the nodes, as in the ThingSpeak solution,
which are taken from [35]. Fig. 10 shows that when the popu-
lation size is small, Lysis performs bad because the requested
interactions among SIoT friend nodes impact on the latency
more than the time for the database look-up. However, when
the population size increases, the overhead for these commu-
nications is balanced with a low number of queries to look
for the service provider in the SIoT, as it is quickly found
with only few hops from the service client. Differently, in
the no-Lysis solution the search in the whole database clearly
increases significantly. Accordingly, the Lysis-a and Lysis-b
curves cross the no-Lysis curve when the population size is

Fig. 10. Information search latency at increasing size of the IoT population
when using Lysis with a constant number of friends (Lysis-a), with a number
of friends that increases with the population (Lysis-b), and with a conventional
IoT solution (no-Lysis).

Fig. 11. Device CPU load when executing a crowdsensing application with
the former SIoT and Lysis platforms.

approximately 16.000 and 35.000 nodes, respectively. This
graph also shows that the performance of Lysis depends on
the number of friends (see differences between Lysis-a and
Lysis-b in the figure) per node and their selection is then
quite important for the platform scalability, as studied in [34].
Indeed, each node has an average number of friends which
is higher in Lysis-b than in Lysis-a, resulting in a bigger
local database to store information about the friends in the
former case with respect to the later case. Accordingly, in
Lysis-b, the database latency increases (with the average num-
ber of friends), resulting in worse performance than the Lysis-a
case.

The computation overhead at the PD is show in Fig. 11,
which graphs the CPU load in a smartphone device for a
crowdsensing application. This application consists in the
retrieval of temperature values from friends (five Android
devices and six Raspberry pi 2). In Lysis all this process is
done through the VO in the cloud. Differently, in the former
SIoT platform, the computation is made entirely on the client
(smartphone): retrieval of measured values from friends and
computation of average values. In the former SIoT, for grow-
ing numbers of friends the CPU load increases in a linear
manner, whereas, in the case of Lysis, it remains almost con-
stant. This proves that the execution of applications in Lysis
has a far less effect in terms of CPU load and energy con-
sumption compared to previous SIoT implementation and, in
general, compared to platforms that are based on running the
applications on the PDs.

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

50 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

TABLE I
REQUIREMENT-BASED COMPARISONS OF IOT PLATFORMS

VI. COMPARISON WITH ALTERNATIVE SOLUTIONS

The number of IoT platforms that are being proposed is
rapidly increasing as a consequence of the huge economic
market value that the IoT-related applications are expected
to take soon. Razzaque et al. [36] is a proof of this fervent
activity where tenths of solutions in this field are surveyed
with a focus on the middleware functionalities, which go from
resource discovery to event management, from context aware-
ness to privacy management. To highlight the novelties of our
proposed solution with respect to the existing platforms in a
concise yet effective way, herein, we concentrate on the major
requirements we have taken as the starting point of this paper
and we have made a comparison accordingly with five alter-
native solutions as representative of different categories. The
final results are shown in Table I, which are commented on
the following.

iCore [5] is an European FP7 project which gave a first
extended definition of VO, as before the virtualization was
only a marginal feature just related to the abstraction of PD
functionalities. Indeed, in iCore there has been a significant
work on the definition of the interactions between VOs, giv-
ing them some major cognitive capabilities. However, there is
not any analyses about the setting where to execute these VO
processes and there is not any available implementation of the
whole platform. Additionally, the communications among the
VOs are only partially distributed as a central management
unit is necessary to implement important functionalities, such
as VO search. The issue of data ownership is not addressed in
this solution. Reusability is also a key aspect that is addressed
in this project.

Xively platform [2] (formerly Cosm and Pachube) is a com-
mercial IoT solution to transmit, store, and access to the data
generated by the objects. The major focus is in the creation
of big communities of objects (and owners) and to provide
tools for the management of data objects and to simplify the
development of applications. It exploits the PaaS features only
partially as it does not provide an execution environment for
IoT applications. Data is stored in the provider database and no
separate datastore is available for each user. As to the reusabil-
ity of the software, it is only available at the driver level so that
the community can share the firmware for common devices.
Instead, reusability is not a feature provided at the application
level neither for the sharing of data. Virtualization consists
only in a datapoint in the database for the access to the data
related to each object.

The efforts to synchronize tasks for M2M standards led to
the oneM2M Global Initiative [37] in order to develop globally

recognized technical specifications for a relevant service com-
mon level. In the virtualization layer, resources are uniquely
addressable entities in an RESTful architecture. The specifica-
tions do not refer to any particular implementation approach
and there is no reference to the data ownership.

Paraimpu [3] is a social Web of Things platform to connect
physical and virtual things to the Web. In this case, vir-
tual things are resources available in other IoT platforms and
are not intended as autonomous software agents. Moreover,
the term social is intended from a human point of view as
Paraimpu gives the possibility of sharing things among users
through the human social networks. The PaaS approach is
again implemented only to provide the user with the possi-
bility to instantiate interfaces to access the devices but there
are not functionalities for the deployment of applications. Also
in this case the data is owned by the platform provider.

The first SIoT platform [11] was created as an add-on to the
ThingSpeak solution, introducing the object social behavior as
an functionality of the central server. In this implementation,
the VOs are just entries in the central remote database for
data logging and the relevant actions about data management,
included social relationship management, are performed in a
centralized way. The PaaS technologies are not considered.

As it has been described in the previous sections, the Lysis
platform implements all these features as these were the major
requirements. It can be observed that virtualization and the
use of the PaaS approach are characteristics that can be found
in alternative solutions, but the combination of these features
with the distributed social approach in the implementation of
the VO makes Lysis a distinctive solution.

VII. CONCLUSION

In this paper, we have presented the IoT platform called
Lysis, which presents four major features: 1) it has been
designed to exploit the PaaS service model; 2) the SVO is
a key element; 3) user data and applications are stored and
executed in the user cloud space; and 4) reusability of tem-
plates and applications is put forward. The implementation of
the platform on the GAE PaaS showed that this solution was
greatly facilitated by the available API for semantic search and
localization. Other important aspects remain to be explored:
the issue of task allocation among the real objects and the vir-
tual counterparts through runtime code injection into the real
devices; deployment of the SVO in distributed cloud (edge/fog
clouds) to follow the PD to reduce latency; large use-cases
deployments.

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

GIRAU et al.: LYSIS: PLATFORM FOR IoT DISTRIBUTED APPLICATIONS OVER SOCIALLY CONNECTED OBJECTS 51

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[2] Xively. Accessed on Jun. 2016. [Online]. Available: http://xively.com
[3] Paraimpu. Accessed on Jun. 2016. [Online]. Available:

https://www.paraimpu.com/
[4] Carriots. Accessed on Jun. 2016. [Online]. Available:

https://www.carriots.com/
[5] (2012). ICORE-Project Deliverable 2.1. [Online]. Available:

http://www.iot-icore.eu
[6] COMPOSE. (2012). Collaborative Open Market to Place Objects at

Your Service. [Online]. Available: http://www.compose-project.eu/
[7] L. Atzori, D. Carboni, and A. Iera, “Smart things in the social

loop: Paradigms, technologies, and potentials,” Ad Hoc Netw., vol. 18,
pp. 121–132, Jul. 2014.

[8] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and N. Crespi, “The
cluster between Internet of Things and social networks: Review and
research challenges,” IEEE Internet Things J., vol. 1, no. 3, pp. 206–215,
Jun. 2014.

[9] L. Ding, P. Shi, and B. Liu, “The clustering of Internet, Internet of
Things and social network,” in Proc. 3rd Int. Symp. Knowl. Acquisition
Model., Wuhan, China, 2010, pp. 417–420.

[10] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social Internet of
Things (SIoT)—When social networks meet the Internet of Things:
Concept, architecture and network characterization,” Comput. Netw.,
vol. 56, no. 16, pp. 3594–3608, 2012.

[11] R. Girau, M. Nitti, and L. Atzori, “Implementation of an experimental
platform for the social Internet of Things,” in Proc. IEEE 7th Int. Conf.
Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Taichung,
Taiwan, 2013, pp. 500–505.

[12] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The virtual object as
a major element of the Internet of Things: A survey,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1228–1240, 2nd Quart., 2016.

[13] (2012). IoT-A-Project Deliverable 1.4. [Online]. Available:
http://www.iot-a.eu

[14] V. Foteinos et al., “Cognitive management for the Internet of Things:
A framework for enabling autonomous applications,” IEEE Veh. Technol.
Mag., vol. 8, no. 4, pp. 90–99, Dec. 2013.

[15] Q. Wu et al., “Cognitive Internet of Things: A new paradigm beyond
connection,” IEEE Internet Things J., vol. 1, no. 2, pp. 129–143,
Apr. 2014.

[16] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C.-H. Lung, “Smart
home: Integrating Internet of Things with Web services and cloud
computing,” in Proc. IEEE 5th Int. Conf. Cloud Comput. Technol.
Sci. (CloudCom), vol. 2. Bristol, U.K., 2013, pp. 317–320.

[17] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information frame-
work for creating a smart city through Internet of Things,” IEEE Internet
Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[18] L. A. Amaral et al., “eCloudRFID—A mobile software framework archi-
tecture for pervasive RFID-based applications,” J. Netw. Comput. Appl.,
vol. 34, no. 3, pp. 972–979, 2011.

[19] C. Doukas and I. Maglogiannis, “Bringing IoT and cloud comput-
ing towards pervasive healthcare,” in Proc. IEEE 6th Int. Conf. Innov.
Mobile Internet Services Ubiquitous Comput. (IMIS), Palermo, Italy,
2012, pp. 922–926.

[20] S. M. R. Islam, D. Kwak, M. D. H. Kabir, M. Hossain, and K.-S. Kwak,
“The Internet of Things for health care: A comprehensive survey,” IEEE
Access, vol. 3, pp. 678–708, 2015.

[21] B. B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma, “Cloud
computing for Internet of Things & sensing based applications,” in
Proc. IEEE 6th Int. Conf. Sens. Technol. (ICST), Kolkata, India, 2012,
pp. 374–380.

[22] B. Kantarci and H. T. Mouftah, “Trustworthy sensing for public safety
in cloud-centric Internet of Things,” IEEE Internet Things J., vol. 1,
no. 4, pp. 360–368, Aug. 2014.

[23] E. Sun, X. Zhang, and Z. Li, “The Internet of Things (IOT) and cloud
computing (CC) based tailings dam monitoring and pre-alarm system in
mines,” Safety Sci., vol. 50, no. 4, pp. 811–815, 2012.

[24] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Software-defined
networking for RSU clouds in support of the Internet of Vehicles,” IEEE
Internet Things J., vol. 2, no. 2, pp. 133–144, Apr. 2015.

[25] F. Li, M. Voegler, M. Claessens, and S. Dustdar, “Efficient and scalable
IoT service delivery on cloud,” in Proc. IEEE 6th Int. Conf. Cloud
Comput. (CLOUD), Santa Clara, CA, USA, 2013, pp. 740–747.

[26] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[27] ThingWorx. Accessed on Jun. 2016. [Online]. Available:
http://www.thingworx.com/

[28] Sen.se. Accessed on Jun. 2016. [Online]. Available: https://sen.se/
[29] (2011). FIWARE-Project. Accessed on Jun. 2016. [Online]. Available:

http://www.fiware.org/
[30] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and

its role in the Internet of Things,” in Proc. 1st Edition MCC Workshop
Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13–16.

[31] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness management in the
social Internet of Things,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 5,
pp. 1253–1266, May 2014.

[32] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,”
Computer, vol. 44, no. 9, pp. 51–58, Sep. 2011.

[33] Google. Google Search API. Accessed on Jun. 2016. [Online]. Available:
https://cloud.google.com/appengine/docs/java/search/

[34] M. Nitti, L. Atzori, and I. P. Cvijikj, “Friendship selection in the social
Internet of Things: Challenges and possible strategies,” IEEE Internet
Things J., vol. 2, no. 3, pp. 240–247, Jun. 2015.

[35] Y. Li and S. Manoharan, “A performance comparison of SQL and
NoSQL databases,” in Proc. IEEE Pac. Rim Conf. Commun. Comput.
Signal Process. (PACRIM), Victoria, BC, Canada, 2013, pp. 15–19.

[36] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for Internet of Things: A survey,” IEEE Internet Things J.,
vol. 3, no. 1, pp. 70–95, Feb. 2016.

[37] oneM2M. Accessed on Jun. 2016. [Online]. Available:
https://www.onem2m.org/

Roberto Girau received the M.S. degree in telecommunication engineering
from the University of Cagliari, Cagliari, Italy, in 2012 for his thesis entitled
“Trustworthiness Management in the Social Internet of Things.” He is cur-
rently pursuing the Ph.D. degree at the University of Cagliari. His doctoral
dissertation is entitled “Integration of Cloud Computing and Social Internet
of Things: Study, Design and Development of a Cloud Platform for Social
Internet of Things.”

Salvatore Martis received the bachelor’s degree in electronic engineering,
and the M.Sc. degree in telecommunications engineering from the University
of Cagliari, Cagliari, Italy, in 2011 and 2014, respectively.

He is currently a Research Fellow with the DIEE, University of Cagliari.

Luigi Atzori (SM’09) is an Associate Professor with the Department of
Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy,
where he leads the Laboratory of Multimedia and Communications. His
current research interests include multimedia communications and computer
networking (wireless and wireline), with emphasis on multimedia QoE,
multimedia streaming, NGN service management, service management in
wireless sensor networks, and architecture and services in the Internet of
Things.

Dr. Atzori is a Chair of the Steering Committee of the IEEE Multimedia
Communications Committee. He is the Coordinator of the Marie Curie Initial
Training Network on QoE for multimedia services (qoenet-itn.eu), which
involves ten European Institutions in Europe and one in South Korea. He
is an Editorial Board member of the IEEE INTERNET OF THINGS JOURNAL,
Ad Hoc Networks (Elsevier), and Digital Communications and Networks
(Elsevier). He served as a Technical Program Chair for various international
conferences and workshops. He served as a Reviewer and a Panelist for many
funding agencies, including FP7, cost action, Italian MIUR, and regional
funding agencies.

Authorized licensed use limited to: INDIAN INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 23,2021 at 08:01:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

