
Sensors

1. Temperature & Humidity Sensor (DHT11) :

DHT11 is a low-cost digital sensor for sensing temperature and humidity.
This sensor can be easily interfaced with any micro-controller such as
Arduino, Raspberry Pi etc… to measure humidity and temperature
instantaneously.

Working :

DHT11 sensor consists of a capacitive humidity sensing element and a
thermistor for sensing temperature. The humidity sensing capacitor has
two electrodes with a moisture holding substrate as a dielectric between
them. Change in the capacitance value occurs with the change in humidity
levels. The IC measure, process this changed resistance values and
change them into digital form.

For measuring temperature this sensor uses a Negative Temperature
coefficient thermistor, which causes a decrease in its resistance value with
increase in temperature. To get larger resistance value even for the
smallest change in temperature, this sensor is usually made up of
semiconductor ceramics or polymers.

Features :

● The temperature range of DHT11 is from 0 to 50 degree Celsius with
a 2-degree accuracy.

● Humidity range of this sensor is from 20 to 80% with 5% accuracy.

● The sampling rate of this sensor is 1Hz .i.e. it gives one reading for
every second.

● DHT11 is small in size with operating voltage from 3 to 5 volts. The
maximum current used while measuring is 2.5mA.

● DHT11 sensor has four pins- VCC, GND, Data Pin and a not
connected pin.

Code :

import sys

import Adafruit_DHT

import time

while True:

humidity, temperature = Adafruit_DHT.read_retry(11, 4)

print 'Temp: {0:0.1f} C Humidity: {1:0.1f} %'.format(temperature, humidity)

 time.sleep(1)

Interfacing with Pi:

Uses :

● This sensor is used in various applications such as measuring
humidity and temperature values in heating, ventilation and air
conditioning systems.

● Weather stations also use these sensors to predict weather

conditions.
● The humidity sensor is used as a preventive measure in homes

where people are affected by humidity.
● Offices, cars, museums, greenhouses and industries use this sensor

for measuring humidity values and as a safety measure.

2. Temperature sensor (LM35)

LM35 is a precession Integrated circuit Temperature sensor, whose output
voltage varies, based on the temperature around it. It is a small and cheap
IC which can be used to measure temperature anywhere between -55°C to
150°C. It can easily be interfaced with any Microcontroller that has ADC
function or any development platform like Arduino.

Features:

● Minimum and Maximum Input Voltage is 35V and -2V respectively.
Typically 5V.

● Can measure temperature ranging from -55°C to 150°C
● Output voltage is directly proportional (Linear) to temperature (i.e.)

there will be a rise of 10mV (0.01V) for every 1°C rise in temperature.
● ±0.5°C Accuracy
● Drain current is less than 60uA
● Low cost temperature sensor
● Small and hence suitable for remote applications

● The output signal through LM35 is analog.

 ​Interfacing with Pi:

The output of LM35 is an analog signal and the Raspberry PI does not
have any analog input pin so we need an analog to digital signal converter
in between.

MCP3008​ is a chip designed to convert analog signal in to digital data can
be used in between.

Source Code :

import spidev

from time import sleep

First open up SPI bus

spi = spidev.SpiDev()

spi.open(0, 0)

Initialize what sensor is where

tempChannel = 1

sleepTime = 1

def getReading(channel):

First pull the raw data from the chip

rawData = spi.xfer([1, (8 + channel) << 4, 0])

Process the raw data into something we understand.

processedData = ((rawData[1] & 3) << 8) + rawData[2]

return processedData

def convertVoltage(bitValue, decimalPlaces=2):

voltage = (bitValue * 3.3) / float(1023)

voltage = round(voltage, decimalPlaces)

return voltage

def convertTemp(bitValue, decimalPlaces=2):

Converts to degrees Celsius

temperature = ((bitValue * 330) / float(1023))

3300 mV / (10 mV/deg C) = 330

temperature = round(temperature, decimalPlaces)

return temperature

while (1):

tempData = getReading(tempChannel)

tempVoltage = convertVoltage(tempData)

temperature = convertTemp(tempData)

print ("Temp bitValue = {}; Voltage = {} V; Temp = {} C".format

 (tempData, tempVoltage, temperature))

sleep(sleepTime)

3.PIR Sensor

Overview

Passive Infrared Sensors, often referred to as PIR Sensors (also IR Motion Sensors and
Pyroelectric Sensors), are Motions Detectors that basically detects the changes in
Infrared Radiations emitted by a person.

Every living and non-living thing which has a temperature greater than absolute zero will
emit infrared radiations. Since the emitted energy is in the form of infrared radiation,
whose wavelength is greater than that of our visible light, we humans cannot see those
radiations.

But PIR Sensors are built to detect those infrared radiations. Hence, they are employed
in a variety of applications like Motion Detectors, Security Systems, Intruder Alert and
so forth.

The term “Passive” in the PIR Sensor means that the sensor will not emit any infrared
energy but rather detects infrared radiations emitted by other objects. This is in contra​st
to active sensors, which perform both the actions (emitting and detection).

Components Required

● Raspberry Pi 3 Model B
● PIR Sensor
● 5V Buzzer
● Connecting Wires
● Mini Breadboard
● Power Supply
● Computer

Interfacing with Pi:

Sample Code:

 import RPi.GPIO as GPIO

 import time

 sensor = 16
 buzzer = 18

GPIO.setmode(GPIO.BOARD)

GPIO.setup(sensor,GPIO.IN)

GPIO.setup(buzzer,GPIO.OUT)

GPIO.output(buzzer,False)

print "Initialzing PIR Sensor......"

time.sleep(12)

print "PIR Ready..."

print " "

try:

 while True:

 if GPIO.input(sensor):

 GPIO.output(buzzer,True)

 print "Motion Detected"

 while GPIO.input(sensor):

 time.sleep(0.2)

 else:

 GPIO.output(buzzer,False)

except KeyboardInterrupt:

 GPIO.cleanup()

4.IR Sensor:

 Overview

Infrared Sensors or IR Sensors are one of the frequently used sensor modules
by electronics hobbyists and makers. They are often used as Obstacle Detecting
Sensors or Proximity Sensors.

IR Sensors are also used in Contactless Digital Tachometers. Some of the other
applications where IR Sensors are implemented are Line Follower Robots,
Obstacle Avoiding Robots, Edge Avoiding Robots and many more.

Features:

● ATmega328P​microcontroller​
● Input​voltage​–​7-12V​
● 14​Digital​I/O​Pins​(6​PWM​outputs)​
● 6​Analog​Inputs​
● 32k​Flash​Memory​
● 16Mhz​Clock​Speed​

​

Interfacing with Pi:

Sample Code:

import RPi.GPIO as GPIO

import time

sensor = 16

buzzer = 18

GPIO.setmode(GPIO.BOARD)

GPIO.setup(sensor,GPIO.IN)

GPIO.setup(buzzer,GPIO.OUT)

GPIO.output(buzzer,False)

print "IR Sensor Ready....."

print " "

try:

 while True:

 if GPIO.input(sensor):

 GPIO.output(buzzer,True)

 print "Object Detected"

 while GPIO.input(sensor):

 time.sleep(0.2)

 else:

 GPIO.output(buzzer,False)

except KeyboardInterrupt:

 GPIO.cleanup()

5.Digital Light Sensor(BH1750):

Uses:

● It​is​used​in​automatic​brightness​adjustment​in​mobiles/LCD​
displays.​

● Turning​car​headlights​on/off​depending​on​the​environment​
​

Features:

● Power​Supply:​2.4V-3.6V​(typically​3.0V)​
● Highly​responsive​near​to​human​eye.​
● Very​small​effect​of​IR​radiation​
● Less​current​consumption:​0.12mA​

Interfacing with Pi:

The​following​diagram​shows​the​physical​wiring​between​BH1750​and​the​

Pi.​

● Wire​the​GND​pin​of​the​BH1750​to​Physical​Pin​6​(GND)​on​the​
Raspberry​Pi.​

● Wire​the​VCC​pin​of​the​BH1750​to​Physical​Pin​1​(3v3)​on​the​
Raspberry​Pi.​

● Wire​the​SDA​pin​of​the​Bh1750​to​Physical​Pin​3​(SDA)​on​the​
Raspberry​Pi.​

● Wire​the​SCL​pin​of​the​Bh1750​to​Physical​Pin​5​(SCL)​on​the​
Raspberry​Pi.​

​
Sample Code:

import time
import smbus
bus = smbus.SMBus(0) #(256MB)
#bus = smbus.SMBus(1) #(512MB)
addr = 0x23 # i2c adress
while True:
 data = bus.read_i2c_block_data(addr,0x11)
 print "Luminosity " + str((data[1] + (256 * data[0])) / 1.2) + "lx"

 time.sleep(0.5)

6. Accelerometer ADXL335:
Uses:​

● ​Used​for​tilt​screening​applications(e.g.​Racing​games​in​smartphones)​
● Used​in​construction​working​machines​like​drilling,​driving​piles​and​

demolition.​
● Used​in​disk​drive​protection,​Sports​and​health​devices.​

​

Working:

It​is​a​three​axis​analog​accelerometer​IC,​which​reads​x,​y​and​z​acceleration​as​​analog​

voltages.​​​By​measuring​the​amount​of​acceleration​due​to​gravity,​an​accelerometer​can​

figure​out​the​angle​it​is​tilted​at​with​respect​to​the​earth.​By​sensing​the​amount​of​

dynamic​acceleration,​the​accelerometer​can​find​out​how​fast​and​in​what​direction​the​

device​is​moving.​

​
Features:

● 3V-6V​DC​Supply​Voltage​
● Onboard​LDO​Voltage​regulator​
● Can​be​interface​with​3V3​or​5V​Microcontroller.​
● Free-Fall​Detection​
● Ultra​Low​Power:​40uA​in​measurement​mode,​0.1uA​in​standby@​2.5V​
● Analog​output​

​

Interfacing with Pi:

The following diagram shows how the physical wiring between ADXL335 and Pi.

● Wire​the​GND​pin​of​the​Accelerometer​to​Physical​Pin​6​(GND)​on​the​
Raspberry​Pi.​

● Wire​the​VCC​pin​of​the​Accelerometer​to​Physical​Pin​1​(3v3)​on​the​Raspberry​
Pi.​

● Wire​the​SDA​pin​of​the​Accelerometer​to​Physical​Pin​3​(SDA)​on​the​
Raspberry​Pi.​

● Wire​the​SCL​pin​of​the​Accelerometer​to​Physical​Pin​5​(SCL)​on​the​Raspberry​
Pi​

Reading Information from the Sensor(Python Script):

● Install​and​import​module​“board”​,​which​specifies​what​pins​are​available​on​a​
device.​

● Install​and​import​module​“busio”,​which​contains​a​variety​of​libraries​to​
handle​different​serial​protocols.​

● Finally​install​and​import​module​“adafruit_adxl34x”​which​contains​the​
required​code​to​read​the​sensor​ifo.​

Calibration :

The​calibration​is​done​by​determining​the​sensor​outputs​for​each​axis​
when​it​is​precisely​aligned​with​the​axis​of​gravitational​pull.​

Sample Code:

import time

import board

import busio

import adafruit_adxl34x

i2c = busio.I2C(board.SCL, board.SDA)

accelerometer = adafruit_adxl34x.ADXL345(i2c)

while True:

 print("%f %f %f"%accelerometer.acceleration)

 time.sleep(1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

