
Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Tutorial 3 : Networking with Python|
Learning Python on the Go....

Dr. Bibhas Ghoshal

Assistant Professor

Department of Information Technology

Indian Institute of Information Technology Allahabad

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

IoT – Basic Idea

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Recall :
Interfacing sensors to the computing unit

Source: Book website: http://www.internet-of-things-book.com

Raspberry Pi

Breadboard

Jumper wires

Electrical
components

Sensors

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Vehicular Language : Python
Installation, Guide, Docs....

 www.python.org

http://www.python.org/

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Recall : Programming the Raspberry Pi
Learning Python on the Go.......

The latest version of Raspbian includes the RPI.GPIO Python library pre-installed,

 so you can simply import that into your Python code. The RPI.GPIO is a library that allows your Python application to easily
access the GPIO pins on your Raspberry Pi. The as keyword in Python allows you to refer to the RPI.GPIO library using the
shorter name of GPIO. There are two ways to refer to the pins on the GPIO: either by physical pin numbers (starting from pin 1 to
40 on the Raspberry Pi 2/3), or Broadcom GPIO numbers (BCM)

Python program which instructs the Rpi to blink
a LED - turn the LED high and low alternately

Module import

GPIO pin setup

Execute in loop

Send a HIGH signal to pin 18
Wait for 1 time unit

Send a LOW signal to pin 18
Wait for 1 time unit

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Interfacing Rpi to DHT11

Using the Adafruit DHT 11 library

1. git clone https://github.com/adafruit/Adafruit_Python_DHT.git

2. cd Adafruit_Python_DHT

3. sudo apt-get install build-essential python-dev

4. sudo python setup.py install

Python program that instructs the
Rpi to read data from the DHT11
module and print it

https://github.com/adafruit/Adafruit_Python_DHT.git

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

The Four Layered IoT Architecture

 Source : ITU-T

Focus of this
tutorial

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 IoT Protocol Stack

 Source : Internet

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Task : An application reads sequence of data
inputs via some wireless protocol ex. Bluetooth

1. Start – Start receiving data
2. Acknowledgment – send acknowledgement about the last data packet
3. Data – sensing node sends data packet containing displacement and orientation information
4. Stop – stop processing in the sensing node

Sensing Node

 (accelerometer)

Application

Commands :
START, Data, STOP

Displacement (x,y,z)
64 bit data over
Bluetooth

dx
dy
dz
da

Acknowledgement

Computation

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 1 : Initialization

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

device = 'COM3'
baudrate = 115200
Btserial = open_device(device,baudrate)

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 2 : setting up the sensor node – send cmd

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

device = 'COM3'
baudrate = 115200
Btserial = open_device(device,baudrate)
#write command to start interaction with
 the sensor node
cmd = START
write_device(btserial,cmd)

 cmd = header, payload,checksum

 Header is a single byte command ID
 Payloads could be multiple bytes command
 Last two bytes in any command are checksum.

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 3 : Check the number of packets received

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

#read data and understand it
pkt_len, num_rcvd = 64, 0
while (num_rcvd < 200):
 buffer = read_device(btserial,
pkt_len)
 …
 #Send the ack to sensor node
 …
 #do processing of the payload
 …
 num_rcvd += 1

def read_device(device,length):
 buffer = []
 device.flushInput()
 buffer = device.read(length)
 return buffer

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 4 : Receive data packets from sensor node

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

#read data and understand it
pkt_len = 64
buffer = read_device(btserial, pkt_len)
valid,packet_info,payload =
parse_pkt(buffer)
if (valid == False):
 continue
#do something with the info and payload

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 5 : Acknowledgement sent to sensor node

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No #read data and understand it
pkt_len = 64
buffer = read_device(btserial, pkt_len)
valid,packet_info,payload =
parse_pkt(buffer)
if (valid == False):
 continue
#do something with the info and payload

#read data and understand it
pkt_len = 64
buffer = read_device(btserial, pkt_len)
valid,packet_info,payload = parse_pkt(buffer)
if (valid == False): continue
#Send the ack to the sensor node
ack=create_ack(packet_info)
write_device(btserial, ack)
#do processing of the payload

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Flow Chart showing Data Transfer
Step 6 : Send STOP command to the node

beginbegin

Connect to the
sensor node

Connect to the
sensor node

Send START
command to
sensor node

Send START
command to
sensor node

Received n
inputs?

Received n
inputs?

receive data from
sensor node

receive data from
sensor node

Send STOP to
sensor node

Send STOP to
sensor node

endend

Send Acknowledgement
to sensor node

Send Acknowledgement
to sensor node

Yes

No

device = 'COM3'
baudrate = 115200
Btserial = open_device(device,baudrate)
#write command to start interaction with
 the sensor node
cmd = START
write_device(btserial,cmd)
#stop interacting with the sensor node
cmd = STOP
write_device(btserial,cmd)

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Sockets

Socket is a software object that acts as an end point of a bidirectional communication link between
server and client programs on network

Support in the operating system allows to implement clients and servers for both TCP and UDP
communication.

Python provides network service for server-client model.
Python has additionally libraries which allow higher access to specific application level network protocols

socket()

connect()

send()

receive()

close()

send()

receive()

socket()

bind()

listen()

accept()

Connection
Established

request

response

C
L
I
E
N
T

C
L
I
E
N
T

C
L
I
E
N
T

C
L
I
E
N
T

S
E
R
V
E
R

Socket Programming (TCP)

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Sockets

Socket is a software object that acts as an end point of a bidirectional communication link between server and client
programs on network

Sockets have two primary properties controlling the way they send data: the address family controls the OSI network
layer protocol used and the socket type controls the transport layer protocol.

Support in the operating system allows to implement clients and servers for both TCP and UDP communication.

Python provides network service for server-client model.
Python has additionally libraries which allow higher access to specific application level network protocols

socket()

bind()

send to ()

rcvfrom () sendto()

socket()

bind()

rcvfrom ()
request

response

C
L
I
E
N
T

C
L
I
E
N
T

C
L
I
E
N
T

C
L
I
E
N
T

S
E
R
V
E
R

Socket Programming (UDP)

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Ports

Port is a number to identify the sender or receiver of message.

Each host has 65,536 ports

Ports 0-1023 are reserved.

Protocol Port # Protocol Port #

FTP 20 SMTP 25

SSH 22 HTTP 80

TELNET 23 HTTPS 443

Ports above 1024 are reserved for user processes.

Socket must bound to port n server.

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Creating a Socket

 Getting Host Information

gethostbyname(hostname) : Provide the IP address associated with a
 hostname

gethostbyname_ex(hostname)

 socket(family, type): Opens a socket, family is one of AF_UNIX or AF_INET
 type is one of SOCK_DGRAM or SOCK_STREAM

>>> import socket
>>> socket.gethostbyname('localhost')
'127.0.0.1’

TCP socket
S = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Useful Functions on Socket

 accept() : accept a connection, returning new socket and client address

bind(addr) : bind the socket to a local address

close() : close the socket

connect(addr) : connect the socket to a remote address

listen(n) : start listening for incoming connections

recv(buflen[, flags]) : receive data

send(data[, flags]) : send data, may not send all of it

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 TCP Server

The socket module

Provides access to low-level network programming functions.

Example: A server that receives data and sends ack

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # TCP socket
s.bind(("",8888)) # Bind to local ip and port 8888
s.listen(5) # Start listening, hold upto 5 connections
while 1:
 client, addr = s.accept() # Wait for a connection
 print "Got a connection from ", addr
 data = client.recv(1024 # receive client's data upto 1024 byte
 print "Received data from client:", data
 client.send("Acknowledgement for received data") # Send ack back
 client.close()

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 TCP Client

The Client Program Connects to server, sends data and waits
for ack

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # Create TCP socket
s.connect(("127.0.0.1",8888))# Connect to server
s.send("Hello Server..") # Send message to server
msg = s.recv(1024) # Receive up to 1024 bytes
s.close() # Close connection
print "Server's message:", msg

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Problems with the TCP Server

 Lots of repetitive coding

Not really handling multiple (concurrent) clients

Clients are queued

Handled in sequential way

Real world server would need concurrency

Even more coding!

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

 Socket Server

Python module to simplify creation of realistic servers

Functionality to support basic network services such as HTTP, SMTP

from help(SocketServer)

Supports various server classes:
TCPServer(address, handler)
UDPServer(address, handler)
ForkingTCPServer(address, handler)
ForkingUDPServer(address, handler)
ThreadingTCPServer(address, handler)
ThreadingUDPServer(address, handler)

Need to define request handler, Derive from BaseRequestHandler class
Minimum requirement: define handle() method
handle()called each time a connection request is received

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Useful Python Modules for Networking

ftplib - for connecting to a ftp server

smtplib - for sending emails

urllib - To download contents of a URL

httplib - communication over HTTP

poplib/imaplib - email access protocols

JavaScript Object Notation (JSON) – read and write data interchange format
 Two structures – i. collection of name, value pairs (Dictionary)
 ii. ordered list of values (List)
 Usage : serializing and transmtting structured data over network
 Example : transmitting data between server and web application

Extensible Markup Language (XML) - data format for structured document interchange

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Example of a JSON and XML Format

JSON Format
{"menu": {
 "id": "file",
 "value": "File",
 "popup": {
 "menuitem": [
 {"value": "New", "onclick": "CreateNewDoc()"},
 {"value": "Open", "onclick": "OpenDoc()"},
 {"value": "Close", "onclick": "CloseDoc()"}
]
 }
}}

The same text expressed as XML:

<menu id="file" value="File">
 <popup>
 <menuitem value="New" onclick="CreateNewDoc()" />
 <menuitem value="Open" onclick="OpenDoc()" />
 <menuitem value="Close" onclick="CloseDoc()" />
 </popup>
</menu>

http://www.mozilla.org/docs/xul/xulnotes/xulnote_beasts.html

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

Encoding and Ecoding JSON in Python

import json

A basic python dictionary
py_object = {"c": 0, "b": 0, "a": 0}

Encoding
json_string = json.dumps(py_object)
print(json_string)
print(type(json_string))

Decoding JSON
py_obj = json.loads(json_string)
print()
print(py_obj)
print(type(py_obj))

Output:

{"c": 0, "b": 0, "a": 0}
<class 'str'>

{'c': 0, 'b': 0, 'a': 0}
<class 'dict'>

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

GET and POST requests in Python

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

GET requests in Python

importing the requests library
 import requests
api-endpoint
 URL = "http://maps.googleapis.com/maps/api/geocode/json"
location given here
 location = "iiita"
defining a params dict for the parameters to be sent to the API
 PARAMS = {'address':location}
sending get request and saving the response as response object
 r = requests.get(url = URL, params = PARAMS)
extracting data in json format
 data = r.json()

extracting latitude, longitude and formatted address
of the first matching location
 latitude = data['results'][0]['geometry']['location']['lat']
 longitude = data['results'][0]['geometry']['location']['lng']
 formatted_address = data['results'][0]['formatted_address']

printing the output
 print("Latitude:%s\nLongitude:%s\nFormatted Address:%s %(latitude, longitude,formatted_address))

Spring 2022
Internet of Things

Instructor : Dr. Bibhas Ghoshal

POST requests in Python

importing the requests library
 import requests

defining the api-endpoint
 API_ENDPOINT = "http://pastebin.com/api/api_post.php"

your API key here
API_KEY = "XXXXXXXXXXXXXXXXX"

your source code here
source_code = '''
print("Hello, world!")
a = 1
b = 2
print(a + b)
'''

data to be sent to api
data = {'api_dev_key':API_KEY,
 'api_option':'paste',
 'api_paste_code':source_code,
 'api_paste_format':'python'}

sending post request and saving response as response object
r = requests.post(url = API_ENDPOINT, data = data)

extracting response text
pastebin_url = r.text
print("The pastebin URL is:%s"%pastebin_url)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

