Tutorial 3 : Networking with Python|

Learning Python on the Go....

Dr. Bibhas Ghoshal

Assistant Professor

Department of Information Technology

Indian Institute of Information Technology Allahabad

1N Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

loT — Basic ldea

How loT works ?

Embedded
Hardware

Actuators

Sensor
data Sender
Circuitry

Control
Circuitry

INTERNET End Device

Sensors End Device

\l
/1

’
\

2 Internet of Things M
2 Instructor : Dr. Bibhas Ghoshal

Recall :

Interfacing sensors to the computing unit

— Breadboard

Raspberry Pi

Electrical
components

Sensors

Source: Book website: http://www.internet-of-things-book.com

< Internet of Things M
2 Instructor : Dr. Bibhas Ghoshal

Vehicular Language : Python
Installation, Guide, Docs....

www.python.org

Python

e python’ o, -

About Downloads Documentation Community Success Stories News Events

B Compound Data Types

Lists (known as arrays in other languages) are one of the
compound data types that Python understands. Lists can be
indexed, sliced and manipulated with other built-in
functions. More about lists in Python 3

['BANANA', 'APPLE', 'LIME']

[(0, 'Banana'), (1, 'Apple'), (2, 'Lime')]

Python is a programming language that lets you work quickly
and integrate systems more effectively. »»» Learn More

() Get Started &% Download & Jobs

Whether you're new to Python source code and installers Documentation for Python's Looking for work or have a Python
programming or an experienced are available for download for all standard library, along with tutorials related position that you're trying to
developer, it's easy to learn and use versions! and guides, are available online. hire for? Our relaunched

Python. community-run jeb board is the
Latest: Python 3.10.2 docs.python.org

Internet of Things
Instructor : Dr. Bibhas Ghoshal

http://www.python.org/

Recall : Programming the Raspberry Pi

Learning Python on the Go.......

Module import import RP1i.GPIO as GPIO
—I import time
GPIO pin setup GPIO0.setmode(GPIO.BCM)
—l GPIO.setwarnings(False)
Execute in |Oop GPIO. Se‘tup (18 ’ GPIO. OUT)

—while True:
print("LED on")

Send a HIGH signal to pin 18
Wait for 1 ime unit—l GI?IO.output(lB, GPIO.HIGH)
time.sleep(1)

Send a LOW signal to pin 18 § Print ("LED off")
Wait for 1 time uni GPIO.output(18,GPIO.LOW)
time.sleep(1)

Python program which instructs the Rpi to blink
a LED - turn the LED high and low alternately

fritzing

The latest version of Raspbian includes the RPI.GPIO Python library pre-installed,

so you can simply import that into your Python code. The RPI1.GPIO is a library that allows your Python application to easily
access the GPIO pins on your Raspberry Pi. The as keyword in Python allows you to refer to the RPI.GPIO library using the
shorter name of GPIO. There are two ways to refer to the pins on the GPIO: either by physical pin numbers (starting from pin 1 to
40 on the Raspberry Pi 2/3), or Broadcom GPIO numbers (BCM)

< Internet of Things M
2 Instructor : Dr. Bibhas Ghoshal

Interfacing Rpi to DHT11

Using the Adafruit DHT 11 library

1. git clone https://github.com/adafruit/Adafruit_Python_DHT.git
2. cd Adafruit_Python_DHT
3. sudo apt-get install build-essential python-dev

4. sudo python setup.py install

#!/usr/bin/python
import sys
import Adafruit DHT

while True:
hum, temp = Adafruit DHT.read retry(11, 4)
print('Temp:0.1fC Humidity: 0.1f%" %(temp, hum)

Python program that instructs the
fritaing Rpi to read data from the DHT11

module and print it
Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

https://github.com/adafruit/Adafruit_Python_DHT.git

The Four Layered IoT Architecture

Smart | ~ Smart . Smart Smart
 Cities Energy ~ Health
[B (A Y, ™
Q % Application Q w
E% !ai;ir loT Applications % §
X Service and Application »w O
28 support T8
28 layer Generic Support Specific Support S e
oo \ y o0
== w &
25 a
2 g 1 Network Capabilit) £35
« orking Capabilities =
3 % Network "é"g
33 || laver Transport Capabilities 23
o9 |\ :
o = =
52 |(£
S8 | Device Devices Gateways .
R layer y Focus of this
\ ¥\ \) tutorial
Source : ITU-T
I~ Internet of Things

.z Instructor : Dr. Bibhas Ghoshal

loT Protocol Stack

Technical Challenges

B Security

Bl R Application —~
SensorML EE . ® Data modeling

- ® Event/data notification
b Session Control - *® Reliability
MQTT, AMQP, etc. | ® Scalability

i " Reliability
RakglEpRRlE Transport ' = Complexity (SCTP)

" ® Naming and addressing

IPU‘I‘;IPUG; ELDWPAN, Network '"‘i . Securitv

ROLL, etc. ._® Resource control

" w Signaling load
802.15.4, 802.11 |

PHY & L2 — ® Authentication

GSM, LTE, 5G, etc. |

._® Channel control

Source : Internet
I~ Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

Task : An application reads sequence of data
Inputs via some wireless protocol ex. Bluetooth

Commands:
START, Data, STOP

Displacement (x,y,z)
GB 64 bit data over
Bluetooth

Acknowledgement

1. Start - Start receiving data
2. Acknowledgment - send acknowledgement about the last data packet
3. Data - sensing node sends data packet containing displacement and orientation information

4. Stop - stop processing in the sensing node

Internet of Things

\l
2l)
W

Instructor : Dr. Bibhas Ghoshal

4

ALLAHABAD

E ity B

Flow Chart showing Data Transfer

Connect to the
sensor node

Send START
command to
sensor node

Received n Yes Send STOP to
inputs? g sensor node

receive data from
sensor node

Send Acknowledgement
to sensor node

Internet of Things
g, Instructor : Dr. Bibhas Ghoshal

A\
A

i
\

Flow Chart showing Data Transfer

Step 1 : Initialization

device = 'COM3'
Connect to the baudrate = 115200
sensor node Btserial = open device (device,baudrate)

Send START
command to

sensor node

Received n Yes Send STOP to
inputs? g sensor node

receive data from
sensor node

Send Acknowledgement
to sensor node

Internet of Things
g, Instructor : Dr. Bibhas Ghoshal

A\
A

i
\

Flow Chart showing Data Transfer

Step 2 : setting up the sensor node - send cmd

device = "COM3'
C — baudrate = 115200
ONAECLIOTAS Btserial = open device (device,baudrate)
sensor node . - . . .
#write command to start interaction with
Send START the sensor node
command to cmd = START
sensor node write device (btserial, cmd)

Received n \CIR Send STOP to
inputs? g sensor node

l cmd = header, payload,checksum

Header is a single byte command 1D
Payloads could be multiple bytes command

Last two bytes in any command are checksum.

receive data from
sensor node

Send Acknowledgement
to sensor node

A\
A

Internet of Things
Instructor : Dr. Bibhas Ghoshal

lg
£-
i

'l
g
X i=

T

[N

Flow Chart showing Data Transfer

Step 3 : Check the number of packets received

Connect to the
sensor node

Send START
command to

sensor node

Received n Yes

#read data and understand it
pkt len, num rcvd = 64, 0
while (num rcvd < 200):
buffer = read device (btserial,
pkt len)

#Send the ack to sensor node
#do processing of the payload

num_rcvd += 1

inputs?

receive data from
sensor node

Send Acknowledgement
to sensor node

A\
A

’
\

1T
ALLAHABAD

[3 :I Gty et B

Internet of Things

Instructor : Dr. Bibhas Ghoshal

Send STOP to
d sensor node

l def read device (device, length):

@ buffer = []
device.flushInput ()
buffer = device.read(length)
return buffer

Flow Chart showing Data Transfer

Step 4 : Receive data packets from sensor node

#read data and understand it
pkt len = 604

Connect to the buffer = read device (btserial, pkt len)

sensor node valid,packet info,payload =
parse pkt (buffer)

Send START if (valid == False):

command to continue

sensor node #do something with the info and payload

Received n \CIR Send STOP to
inputs? g sensor node

receive data from
sensor node

Send Acknowledgement
to sensor node

A\
A

Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

’
\

Flow Chart showing Data Transfer

Step 5 : Acknowledgement sent to sensor node

#read data and understand it
pkt len = o64
Connect to the buffer = read device (btserial, pkt len)

sensor node valid, packet info,payload = parse pkt (buffer)
if (valid == False): continue

Send START #Send the ack to the sensor node

command to ack=create_ack (packet info)

sensor node write device (btserial, ack)

#do processing of the payload

Received n \CIR Send STOP to
inputs? g sensor node

l #read data and understand it

pkt len = 64
@ buffer = read device (btserial, pkt len)

valid, packet info,payload =
parse_pkt (buffer)

receive data from

sensor node

if (valid == False):
continue
Send Acknowledgement #do something with the info and payload

to sensor node

Internet of Things
Instructor : Dr. Bibhas Ghoshal

A\
A

lg
£-
i

'l
g
X i=

T

[N

Flow Chart showing Data Transfer

Step 6 : Send STOP command to the node

device = 'COM3'

baudrate = 115200

Btserial = open_device (device,baudrate)
Connect to the #fwrite command to start interaction with
sensor node the sensor node

cmd = START

write device (btserial, cmd)

#stop interacting with the sensor node
cmd = STOP

write device (btserial, cmd)

Received n \CIR Send STOP to
inputs? g sensor node

Send START
command to

sensor node

receive data from
sensor node

Send Acknowledgement
to sensor node

Internet of Things

A\
A

lg
£-
i

'l
g
X i=

Instructor : Dr. Bibhas Ghoshal

T

[N

Socket is a software object that acts as an end point of a bidirectional communication link between
server and client programs on network

Support in the operating system allows to implement clients and servers for both TCP and UDP
communication.

Python provides network service for server-client model.
Python has additionally libraries which allow higher access to specific application level network protocols

socket()
C socket() l S
Co, bi d E

L gsfab C‘f/o/7 o ()

E : ccept() V

reques . ivel)
N response E
T R

close() Socket Programming (TCP)

Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

Socket is a software object that acts as an end point of a bidirectional communication link between server and client
programs on network

Sockets have two primary properties controlling the way they send data: the address family controls the OSI network
layer protocol used and the socket type controls the transport layer protocol.

Support in the operating system allows to implement clients and servers for both TCP and UDP communication.
Python provides network service for server-client model.
Python has additionally libraries which allow higher access to specific application level network protocols

socket()

socket() y ld()
in

!

binf() revfrom ()
request
sendlto 0

response
rcvfrom ()< sendto()

< Internet of Things m
2 Instructor : Dr. Bibhas Ghoshal

S
E
R
V
E
R

Socket Programming (UDP)

H4zm—ro

Port is a number to identify the sender or receiver of message.

Each host has 65,536 ports

Ports 0-1023 are reserved.

Protocol ____JPerth | Protecal | Portd
FTP 20

SMTP 25
SSH 22 HTTP 80
TELNET 23 HTTPS 443

Ports above 1024 are reserved for user processes.

Socket must bound to port n server.

I~ Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

Creating a Socket

Getting Host Information

gethostbyname (hostname) : Provide the IP address associated with a

hostname
gethostbyname ex (hostname)

>>> import socket

>>> socket.gethostbyname ('localhost')
'127.0.0.17

socket (family, type) : Opens asocket, family is one of AF_UNIX or AF_INET
type is one of SOCK_DGRAM or SOCK_STREAM

TCP socket
S = socket.socket (socket.AF INET, socket.SOCK STREAM)

< Internet of Things m
2 Instructor : Dr. Bibhas Ghoshal

Useful Functions on Socket

accept () : accept a connection, returning new socket and client address
bind (addr) : bind the socket to a local address
close () : close the socket
connect (addr) : connectthe socket to a remote address
listen (n) : startlistening for incoming connections
recv (buflen[, flags]) : receive data
send (data[, flags]) : send data, may not send all of it
I~ Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

TCP Server

The socket module

Provides access to low-level network programming functions.
Example: A server that receives data and sends ack

import socket
s = socket.socket (socket.AF INET, socket.SOCK STREAM) # TCP socket

s.bind(("",8888)) # Bind to local ip and port 8888
s.listen (5) # Start listening, hold upto 5 connections
while 1:
client, addr = s.accept() # Wait for a connection
print "Got a connection from ", addr
data = client.recv (1024 # receive client's data upto 1024 byte
print "Received data from client:", data

client.send ("Acknowledgement for received data") # Send ack back
client.close ()

I~ Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

TCP Client

The Client Program Connects to server, sends data and waits
for ack

import socket
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
Create TCP socket

s.connect (("127.0.0.1",8888)) # Connect to server

s.send ("Hello Server..") # Send message to server
msg = s.recv (1024) # Receive up to 1024 bytes
s.close () # Close connection

print "Server's message:", msg

i< Internet of Things

Instructor : Dr. Bibhas Ghoshal

Problems with the TCP Server

Lots of repetitive coding

Not really handling multiple (concurrent) clients
Clients are queued

Handled in sequential way

Real world server would need concurrency

Even more coding!

1N Internet of Things

Instructor : Dr. Bibhas Ghoshal

Socket Server

Python module to simplify creation of realistic servers
Functionality to support basic network services such as HTTP, SMTP

from help (SocketServer)

Supports various server classes:
TCPServer (address, handler)
UDPServer (address, handler)
ForkingTCPServer (address, handler)
ForkingUDPServer (address, handler)
ThreadingTCPServer (address, handler)
ThreadingUDPServer (address, handler)

Need to define request handler, Derive from BaseRequestHandler class
Minimum requirement: define handle () method

handle () called each time a connection request is received

Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

Useful Python Modules for Networking

ftplib - for connecting to a ftp server
smtplib - for sending emails
urllib - To download contents of a URL
httplib - communication over HTTP
poplib/imaplib - email access protocols
JavaScript Object Notation (JSON) - read and write data interchange format
Two structures - i. collection of name, value pairs (Dictionary)
ii. ordered list of values (List)

Usage : serializing and transmtting structured data over network
Example : transmitting data between server and web application

Extensible Markup Language (XML) - data format for structured document interchange

Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

Example of a JSON and XML Format

JSON Format

{"menu": {

Ilidll: Ilfi'l-ell’
"value": "File",
"popup™: {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}
]
}

13
The same text expressed as XML:

<menu 1id="file" value="File">
<popup=>
<menuitem value="New" onclick="CreateNewDoc()" />
<menuitem value="Open" onclick="0OpenDoc()" />
<menuitem value="Close" onclick="CloseDoc()" />
</popup>
</menu>

I~ Internet of Things
2 Instructor : Dr. Bibhas Ghoshal

http://www.mozilla.org/docs/xul/xulnotes/xulnote_beasts.html

Encoding and Ecoding JSON in Python

import json

A basic python dictionary
py_object = {"c": 0, "b": 0, "a": 0}

Encoding

json_string = json.dumps(py_object)
print(json_string)
print(type(json_string))

Decoding JSON

py_obj = json.loads(json_string)
print()

print(py_obj)
print(type(py_obj))

Output:

{llcll: 0, Ilbll: 0, Ilall: e}
<class 'str'>

{'c': 0, 'b': 0, 'a': 0}
<class 'dict'>

Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

GET and POST requests in Python

Server

Get Request

Download

Gemaltofile.txt

_ Internet
AT Interface server HTTP write

upload S
' Pojt Request ith
Data

I~ Internet of Things
Lz Instructor : Dr. Bibhas Ghoshal

GET requests in Python

importing the requests library
import requests
api-endpoint
URL = "http://maps.googleapis.com/maps/api/geocode/json"
location given here
location = "iiita"
defining a params dict for the parameters to be sent to the API
PARAMS = {'address':location}
sending get request and saving the response as response object
r =requests.get(url = URL, params = PARAMS)
extracting data in json format
data =r.json()

extracting latitude, longitude and formatted address

of the first matching location
latitude = data['results'[[0]['geometry'[['location’]['lat’]
longitude = data['results'[[0]['geometry']['location’]['Ing']
formatted_address = data['results'][0]['formatted_address']

printing the output
print("Latitude:%s\nLongitude:%s\nFormatted Address:%s %(latitude, longitude,formatted_address))

< Internet of Things m
2 Instructor : Dr. Bibhas Ghoshal

POST requests in Python

importing the requests library
import requests

defining the api-endpoint
API_ENDPOINT = "http://pastebin.com/api/api_post.php"

your APl key here
API_KEY = "XXXXXXXXXXXXXXXXX"

your source code here
source_code=""
print("Hello, world!")
a=1

b=2

print(a + b)

data to be sent to api

data ={'api_dev_key":API_KEY,
'api_option':'paste’,
'api_paste_code":source_code,
'api_paste_format':'python'}

sending post request and saving response as response object
r = requests.post(url = API_ENDPOINT, data = data)

extracting response text
pastebin_url=r.text
print("The pastebin URL is:%s"%pastebin_url)

Internet of Things

2 Instructor : Dr. Bibhas Ghoshal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

