

Hadoop and MapReduce

Original Slides by Dr Sandeep Deshmukh, SadePach Labs Modifications by Dr Amey Karkare, IIT Kanpur

http://hadoop.apache.org/

Hadoop

- Framework that allows for the distributed processing of large data sets
 - across clusters of computers
 - using simple programming models.
- Designed to scale up from single servers to thousands of machines, each offering local computation and storage.
- Designed to detect and handle failures at the application layer
 - delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.

Hadoop Modules

- Hadoop Common
 - The common utilities that support the other Hadoop modules.
- Hadoop Distributed File System (HDFS[™])
 - A distributed file system that provides high-throughput access to application data.
- Hadoop YARN
 - A framework for job scheduling and cluster resource management.
- Hadoop MapReduce
 - A YARN-based system for parallel processing of large data sets.

Motivation - Traditional Distributed systems

- Processor Bound
- Using multiple machines
- Developer is burdened with managing too many things
 - Synchronization
 - Failures
- Data moves from shared disk to compute node
- Cost of maintaining clusters
- Scalability as and when required not present

What we need

Handling failure

- One computer = fails once in 1000 days
- 1000 computers = 1 per day

Petabytes of data to be processed in parallel

- 1 HDD= 100 MB/sec
- 1000 HDD= 100 GB/sec

Easy scalability

Relative increase/decrease of performance depending on increase/decrease of nodes

Hadoop: Myth Vs Truth

Myth	Truth	
HDFS is a database	HDFS is a Distributed File System	
Hadoop is a replacement of database warehouse	Compliments it, not a substitute	
Hadoop is a complete, single product	Ecosystem , not just a product. HDFS and MapReduce being the key components	
Hadoop is used only for unstructured data, web analytics	Enables many types of analytics	

Who is using Hadoop

Also see

https://www.dezyre.com/article/top-10-industries-using-big-data-and-121-companies-who-hire-hadoop-developers/ 69 MapReduce

What is MapReduce?

- It is a powerful paradigm for parallel computation
- Hadoop uses MapReduce to execute jobs on files in HDFS
- Hadoop will intelligently distribute computation over cluster
- Take computation to data

Origin: Functional Programming

map f [a, b, c] = [f(a), f(b), f(c)]

Returns a list constructed by applying a function (the first argument) to all items in a list passed as the second argument

Example:

map sq [1, 2, 3] = [sq(1), sq(2), sq(3)]= [1,4,9]

Origin: Functional Programming

reduce f [a, b, c] = f(a, b, c)OR f(a, f(b, c))

Returns a list constructed by applying a function (the first argument) on the list passed as the second argument

Example:

reduce sum [1, 4, 9] = sum(1, 4, 9)

= 14

Example: Sum of squares

Example: Sum of squares of even and odd

Programming model- key, value pairs

Format of input- output

(key, value)

Map:
$$(k_1, v_1) \rightarrow \text{list} (k_2, v_2)$$

Reduce: $(k_2, \text{list} v_2) \rightarrow \text{list} (k_3, v_3)$

Sum of squares of even and odd and prime

Many keys, many values

Format of input- output: (key, value)

Map:
$$(k_1, v_1) \rightarrow \text{list} (k_2, v_2)$$

Reduce: $(k_2, \text{list} v_2) \rightarrow \text{list} (k_3, v_3)$

Selecting Colors

Input:

1TB text file containing color names- Blue, Green, Yellow, Purple, Pink, Red, Maroon, Grey

Desired output:

Occurrence of colors Blue and Green

MapReduce Overview

MapReduce Overview

MapReduce Overview

Takes computation to data

MapReduce Summary

- Mapper, Reducer and Combiner act on <key, value > pairs
- Map function gets one record at a time as an input
- Combiner (if present) works on output of map
- Reducer works on output of map (or combiner, if present)
- Combiner can be thought of local-reducer
 - Reduces output of maps that are executed on same node

What Hadoop is not..

- Not for interactive file accessing
- Not meant for a large number of *small* files but for a small number of *large* files
- MapReduce cannot be used for any and all applications

Hadoop: Take Home

Takes computation to data

- Suitable for large data centric operations
- Scalable on demand
- □ Fault tolerant and highly transparent

Questions?

First hadoop programSecond hadoop program

Your first program in hadoop (DEMO)

Open up any tutorial on hadoop and first program you see will be of wordcount

Task: Given a text file, generate a list of words with the number of times each of them appear in the file

Input: Plain text file

Expected Output:

hadoop is a framework written in java hadoop supports parallel processing and is a simple framework

	• • •		2 • I
<pre><word, frequency=""> p</word,></pre>	<hadoop, 2=""></hadoop,>	<framework ,="" 2=""></framework>	<supports ,="" 1=""></supports>
	<is, 2=""></is,>	<written ,="" 1=""></written>	<parallel ,="" 1=""></parallel>
	<a ,="" 2="">	<in ,="" 1=""></in>	<processing., 1=""></processing.,>
	<java ,="" 1=""></java>	<and,1></and,1>	<simple,1></simple,1>

Mimicking the Hadoop Flow

- Create files "mapper.py" for Map and "reducer.py" for Reduce
- Mimic Hadoop using the Linux pipe (|)
 cat input.txt | mapper.py | sort | reducer.py

hadoop is a framework written in java hadoop supports parallel processing and is a simple framework

cat input.txt | mapper.py | sort | reducer.py

Actual Hadoop Flow

<u>http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/</u>

- Installation (From the above page)
- Running Hadoop On Ubuntu Linux (Single-Node Cluster) How to set up a pseudo-distributed, single-node Hadoop cluster backed by the Hadoop Distributed File System (HDFS)
- Running Hadoop On Ubuntu Linux (Multi-Node Cluster) How to set up a distributed, multi-node Hadoop cluster backed by the Hadoop Distributed File System (HDFS)
- Minor changes needed due to changes in recent hadoop distribution directory

Actual Hadoop Flow

: Snippets from http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

Copy input to HDFS

\$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg /user/hduser/gutenberg

Run the mapper and reducer

\$ bin/hadoop jar <path-to-jar>/hadoop-*streaming*.jar \
 -file /home/hduser/mapper.py -mapper /home/hduser/mapper.py-file \

/home/hduser/reducer.py -reducer /home/hduser/reducer.py \
-input /user/hduser/gutenberg/* -output /user/hduser/gutenberg-output

Actual Hadoop Flow

: Snippets from http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

Check the output

```
$ bin/hadoop dfs -cat /user/hduser/gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35"1
"40," 1
"A 2
"AS-IS". 2
"A 1
"Absoluti 1
[...]
hduser@ubuntu:/usr/local/hadoop$
```

Your second program in hadoop

Task:

Given a text file containing numbers, one per line, count sum of squares of odd, even and prime

Input:

File containing integers, one per line Expected Output:

<type, sum of squares> for odd, even, prime

<odd, 302> <even, 278> <prime, 323 >

2 5

3

5 6

3 7

9

Your second program in hadoop : Exercises

- 1. Mimic Hadoop Flow by writing appropriate mapper and reducer python scripts
- 2. Follow the tutorial to setup and run Single Node Hadoop cluster
- 3. Collaborate with others to setup and run Multi Node Hadoop cluster
 - Post on canvas any deviations from the steps given in the tutorial

Hadoop Distributions

cloudera

Pivotal

References

- Official Hadoop website- http://hadoop.apache.org/
- Hadoop presentation wiki-

http://wiki.apache.org/hadoop/HadoopPresentations?action=AttachFile

- http://developer.yahoo.com/hadoop/
- http://wiki.apache.org/hadoop/
- http://www.cloudera.com/hadoop-training/
- http://developer.yahoo.com/hadoop/tutorial/module2.html#basics

References

Further Reading

Hadoop: The Definitive Guide: Tom White

<u>http://developer.yahoo.com/hadoop/tutorial/</u>

<u>http://www.cloudera.com/content/cloudera-content/cloudera-d</u> <u>ocs/HadoopTutorial/CDH4/Hadoop-Tutorial.html</u>

Questions?