

Introduction to Big Data

Original Slides by Dr Sandeep Deshmukh, SadePach Labs Modifications by Dr Amey Karkare, IIT Kanpur

What is Big Data?

- Big data is data that exceeds the processing capacity of conventional database systems.
- The data is too big, moves too fast, or doesn't fit the structures of your database architectures.
- To gain value from this data, you must choose an alternative way to process it.

Definition

"Big data" is

high-volume, -velocity and -variety information assets

that demand cost-effective, innovative forms of information processing

for enhanced insight and decision making

By Gartner

Definition

"Big data" is

high-volume, -velocity and -variety information assets

that demand cost-effective, innovative forms of information processing

for enhanced insight and decision making

By Gartner

The Three V-s

Volume

- Quantity of data
- Data sets too large to store and analyse using traditional databases

Velocity

- Speed at which data is generated
- Speed at which data is moving around and analysed
- Processing should be faster than generation
- Analyse data while it is being generated without even putting it into databases

Variety

- Different types of data that we can use
- Generated by different entities
 - Humans
 - Machines (HW + SW)
 - Sensors

Additional V-s

Veracity

- Messiness or trustworthiness of the data
- Volumes makes up for quality
 - Eg. Tweets with spelling mistakes, short words
 - u→you, thr→there, teh→the

Value

Getting value out of Big Data!!!

Definition

"Big data" is

high-volume, -velocity and -variety information assets

that demand cost-effective, innovative forms of information processing

for enhanced insight and decision making

By Gartner

Definition

"Big data" is

high-volume, -velocity and -variety information assets

that demand cost-effective, innovative forms of information processing

for enhanced insight and decision making

By Gartner

Wikipedia Definition

- Big data is a term for <u>data sets</u> that are so large or complex that traditional <u>data processing</u> applications are inadequate...
- Challenges include <u>analysis</u>, capture, <u>data curation</u>, search, <u>sharing</u>, <u>storage</u>, <u>transfer</u>, <u>visualization</u>, <u>querying</u>, updating and <u>information privacy</u>. ...
- The term often refers simply to the use of <u>predictive analytics</u> or certain other advanced methods to extract value from data, and seldom to a particular size of data set. ...
- Accuracy in big data may lead to more confident decision making, and better decisions can result in greater operational efficiency, cost reduction and reduced risk.

Use cases

Use Case: Big Data in Oil & Gas Drilling

http://analytics-magazine.org/how-big-data-is-changing-the-oil-a-gas-industry/

Use Case: Uber - Pay Surge Pricing if Battery is Low

https://www.forbes.com/sites/amitchowdhry/2016/05/25/uber-low-battery/#19762c0474b3

Big Data Challenges

Big Data Challenges: Size does matter

1KB	Kilobyte	
1MB	Megabyte	
1GB	Gigabyte	1 GB = 1 hr
1TB	Terabyte	1 TB = 1024 hrs = 102 days
1PB	Petabyte	1 PB = 286 yrs > 1 lifetime
1EB	Exabyte	1 EB = 293K yrs
1ZB	Zettabyte	
1YB	Yottabyte	

Big Data Challenges: Vertical Vs Horizontal Scaling

Vertical Scaling

Horizontal Scaling

Big Data Challenges

Source:

https://s-media-cache-ak0.pinimg.com/736x/10/0c/d0/100cd0da1c19e5d6f850ed23c3633714.jpg

Big Data Challenges: Scale of infrastructure

Image Source: https://datacenter.legrand.com

Further Reading

- <u>A Brief History of Big Data Everyone Should Read</u>
- Beyond Volume, Variety and Velocity is the Issue of Big Data Veracity
- What is big data? OpenSource.com & O'Reilly
- <u>Uber Use Case</u>
- <u>5 Big Data Use Cases To Watch</u>
- Best Big Data Analytics Use Cases
- The 5 game changing big data use cases
- Big Data The 5 Vs Everyone Must Know
- <u>Top SlideShare Presentations on Big Data</u>
- Google Data Center 360° Tour

Questions?

How to store huge files?

Requirements?

- Efficient Access
- Effective utilization of space
- Redundancy (Failsafe)
 - Given: probability of 1 disk failing is 1% per year
 - What are the chances that 1 out of 10³ disk fails at a data center?

HDFS Hadoop distributed File System

HDFS

 Data storage system used by Hadoop
Hadoop: Project to develop open-source software for reliable, scalable, distributed computing*
Will discuss Hadoop later

- Components
- Architecture
- Tasks / Services

Components of HDFS

Secondary NameNode

Active NameNode

Standby NameNode

Terminology

- HDFS: Hadoop Distributed File System
- **Datanode**: A DataNode stores data in HDFS.
- Namenode: The centerpiece of an HDFS file system.
 - Keeps the directory tree of all files in the file system
 - Tracks where across the cluster the file data is kept.
 - Does not store the data of these files itself.
 - Active : Actively serving request
 - Standby: Becomes Active if the current Active node fails

Terminology

- Secondary Namenode:
 - helper node for namenode
 - Puts a checkpoint in filesystem which will help Namenode to function better

FS/namespace/meta ops

Storing file on HDFS

Motivation: Reliability, Availability, Network Bandwidth

- The input file (say 1 TB) is split into smaller chunks/blocks of 128 MB
- The chunks are stored on multiple nodes as independent files on data nodes

Storing file on HDFS

- To ensure that data is not lost, data can typically be replicated on:
 - local rack
 - remote rack (in case local rack fails)
 - remote node (in case local node fails)
 - randomly
- Default replication factor is 3

Storing file on HDFS

- Default replication factor is 3
 - \circ first replica of a block will be stored on a local rack
 - \bigcirc the next replica will be stored on a remote rack
 - the third replica will be stored on the same remote rack but on a different Datanode
 - O Why?

More replicas?

- the rest will be placed on random Datanodes
- As far as possible, no more than two replicas are kept on the same rack

Tasks of NameNode

Manages File System

mapping files to blocks and blocks to data nodes

Maintaining status of data nodes

Heartbeat

- Datanode sends heartbeat at regular intervals
- If heartbeat is not received, datanode is declared dead

Blockreport

- DataNode sends list of blocks on it
- Used to check health of HDFS

NameNode Functions

Replication

- On Datanode failure
- On Disk failure
- On Block corruption
- Data integrity
 - Checksum for each block
 - Stored in hidden file

- Rebalancing balancer tool
 - Addition of new nodes
 - Decommissioning
 - Deletion of some files

HDFS Robustness

Safemode

- At startup: No replication possible
- Receives Heartbeats and Blockreports from Datanodes
- Only a percentage of blocks are checked for defined replication factor
- Replicate blocks wherever necessary

All is well $? \rightarrow$ Exit Safemode

HDFS Summary

- □ Fault tolerant
- Scalable
- Reliable
- File are distributed in large blocks for
 - Efficient reads
 - Parallel access

Questions?

