Programming with Python

File I/0
Exceptions
Modules and Import

un-17

File 1/0

Programming

File 1/0

* Files are persistent storage

Jun-17 Programming

File 1/0

* Files are persistent storage

* Allow data to be stored beyond program
lifetime

Jun-17 Programming

File 1/0

* Files are persistent storage

* Allow data to be stored beyond program
lifetime

* The basic operations on files are
— open, close, read, write

Jun-17 Programming

File 1/0

Files are persistent storage

Allow data to be stored beyond program
lifetime

The basic operations on files are
— open, close, read, write

Python treat files as sequence of lines

— sequence operations work for the data read
from files

un-17 Programming

un-17

File 1/0: open and close

Programming

un-17

File 1/0: open and close

open(filename, mode)

Programming

File 1/0: open and close

open(filename, mode)

* While opening a file, you need to supply
— The name of the file, including the path
— The mode in which you want to open a file
— Common modes are r (read), w (write), a (append)

Jun-17 Programming

File 1/0: open and close

open(filename, mode)

* While opening a file, you need to supply
— The name of the file, including the path
— The mode in which you want to open a file
— Common modes are r (read), w (write), a (append)

* Mode is optional, defaults to r

Jun-17 Programming

File 1/0: open and close

open(filename, mode)

* While opening a file, you need to supply
— The name of the file, including the path
— The mode in which you want to open a file
— Common modes are r (read), w (write), a (append)

* Mode is optional, defaults to r
» open(..) returns a file object

Jun-17 Programming

File 1/0: open and close

open(filename, mode)

While opening a file, you need to supply

— The name of the file, including the path

— The mode in which you want to open a file

— Common modes are r (read), w (write), a (append)
* Mode is optional, defaults to r

open(..) returns a file object

close() on the file object closes the file
— finishes any buffered operations

Jun-17 Programming

File 1/0: Example

>>> players = open('tennis players', 'w')

* Do some writing

« How to do it?
e see the next few slides

>>> players.close () # done with writing

Jun-17 Programming

File 1/0: read, write and append

Jun-17 Programming

File 1/0: read, write and append

* Reading from an open file returns the
contents of the file

— as sequence of lines in the program

Jun-17 Programming

File 1/0: read, write and append

* Reading from an open file returns the
contents of the file

— as sequence of lines in the program
* Writing to a file

— IMPORTANT: If opened with mode ‘W', clears
the existing contents of the file

— Use append mode ('a’) to preserve the
contents

— Writing happens at the end

Jun-17 Programming

File 1/0: Examples

>>> players = open('tennis players w')

>>> players.close() # done with writing

Jun-17 Programming

>>> plavyers

>>> players.
>>> players.
.write ('Andy Murray\n')
.write ('Novak Djokovic\n'")
.write('Leander Paes\n')
.close () # done with writing

>>> players
>>> players
>>> players
>>> players

Jun-17

File 1/0: Examples

= open('tennis players' "w')
write ('"Roger Federar\n')
write ('Rafael Nadal\n')

Programming

>>> players =

countries
countries
countries.
countries.
countrics
countrics

.

NONON Y
Vol NN
NSNS \/ \/ \/ \/

NS
v
'
\/
v
¥

Y

NS
v
'
\/
v

\/
v
o
\/
v
\/

Jun-17

File 1/0: Examples

open ('tennis players' "w')
>>> players.write ('Roger Federar\n')

>>> players.write('Rafael Nadal\n')

>>> players.write('Andy Murray\n')

>>> players.write ('Novak Djokovic\n')

>>> players.write ('Leander Paes\n')

>>> players.close () # done with writing

= open('tennis cc

untries',

write('Switzerland\n')

write('opain\w')
write('Britain\n')
writc ('Scroia\n')
writce ('India\n'")

Programming

» countrics.closc () # donce with writing

I - -
W

")

File 1/0: Examples

playcrs
(players)

Programming

File 1/0: Examples

>>> print(players)
<closcc f£ile 'tennls players!', mode 'w' at 0x
031A48B5> B

Jun-17 Programming

File 1/0: Examples

>>> print(players)

<closcd filc 'tennis players', mode 'w' at 0Ox
031A48B8>

>>> print(countries)

<cio_ea :1i 'tennls countries', mode 'w' at
0x031RA9C0> B

Jun-17

Programming

File 1/0: Examples

>>> print(players)

<closcd filc 'tennis players', mode 'w' at 0Ox
031A48B6>

>>> nrint(countries)

<ciosea file 'tennls countries', mode 'w' at
0x031RA9C0> B

>>> n = open('tennis players', 'r')

>>> ¢ = cpen('tennis countries', 'r')

Jun-17 Programming

File 1/0: Examples

>>> print(players)

<closcd fllo 'tennis players', mode 'w' at 0x
031NLBBE>

>>> nrint(countries)

<closed file '—onnls_COJntries‘, mode 'w' at
OxC31AA9CO>

>>> n = open('tennis players', 'r')

>>> ¢ = cpen('tennis countries', 'r')

2221

<opcn file 'tennis players', mode 'r' at 0xO03
17£910>

> C

<open file 'tennis countries', mode 'r' at 0x
C31RIAA/T0>

Jun-17 Programming

>>> pn = n.read() f reaa all pnlayers

Jun-17 Programming

>>> pn = n.read() f reaa all pnlayers

'Roger Federar\nRafzel Nadal\nAndy Murrayv\nNo
vak Djokovic\nLeander Paes\n'

Jun-17 Programming

*> pn = n.read() ff reaa all nlayers

'Roger Federar\nRafzel Nadal\nAndy Murrayv\nNo
vak Djokovic\nLeander Paes\n'

>>> o inl(pn)

Reger ederar

Ralzel Nadal

Ancdy Murray

Ncvaek Dijokovic

Leander Paes

~o N
~ s

Jun-17 Programming

>>>» ph = n.reacd() f reaa all players
>>> Dh
'"Roge

r Federar\nRaftael Nadal\nZndy Murrav\nNo
vak Djokovic\nLeander 2Paes\n'

>»> o0l ()
Reger lederar
RAalzel Nadal
Ancdy Murray
Ncvek Dijokovic
Leander Paes

Note empty line due to \n'

Jun-17 Programming

>>>» ph = n.reacd() f reaa all players
>>> Dh
'"Roge

r Federar\nRaftael Nadal\nZndy Murrav\nNo
vak Djokovic\nLeander 2Paes\n'

>»> o0l ()
Reger lederar
RAalzel Nadal
Ancdy Murray
Ncvek Dijokovic
Leander Paes

Note empty line due to \n'

o~
>>> n.close ()

Jun-17 Programming

Jun-17

File 1/0: Examples

cpen('tennis players T
- T

cpen ('tennis _countr 1es r r')

Programming

File 1/0: Examples

>>> n = open('tennis players' 'r?
>>> ¢ = cpen('tennis counvlleS', ")
>>> pn, pc = [1, []

>>>» for 1 _n n:

pni.append (1[:-1]) # ignore '\n'

>>»> n.close ()

Jun-17 Programming

\/
\\ /
/

4

/
\/
\
\
N7
v

/
\/
\
\
N7
v

/
\/
\
\
N7
v

4
v
2
’
Vi

A%

/
\I
\
v
\/ ’

>20

Jun-17

File 1/0: Examples

n = cpen('tennis players '_

c = copen('tennis <:ou11\,11e:3', ')
pn, pc = [1, []

for 1 n n:

pn.append (1[:-1]1) # ignore '\n’
n.close()

for 1 In c:
pc.append (1
c.close()

[:-1])

Programming

A%
\s /
/

v

A%
\s /
/

v

\s /
\\/ rs

A%

A%
\s /
/

v

v
2
’
Vi
/

Jun-17

File 1/0: Examples

n = cpen('tennis players' 'r'?
- 1

¢ = open('tennis countries', ”')

prn, pc = [1, [Note the use of for ...

for sequence

1l in n: <€

in

P, appHHJ([:-1]) # ignoz

;.close()
or 1 In C:

pc.append(Ll[:=-1])
c.close()

Programming

File 1/0: Examples

>>> n = open('tennis players' 'r?
»>>> ¢ = gpen('tennis COUMull%E', "')
»>>>»> pn, pc = [1, [Note the use of for ... in

>>»> for 1 -n n: <

for sequence

pr.append (1[:-11) # ignoz

S>3 J.LlU e ()

>>> for 1 1n cC:
pc.append (1[:-1])
>>> c.clase()

>>> print(pn, '\n', pc)

'"Roger Federar', 'Eafacl Nadal', 'Andy Murra
v', 'Ncvak Djokovic', 'Lcandcr Pacs']
'"Switzcrland', 'Spain', 'Britain',
'India]

Jun-17 Programming

un-17

File 1/0: Examples

Programming

10

~,

™~
-~

~,
-~
”

.~
>

~ ~
r r
/ /

Jun-17

File 1/0: Examples
name ccunlLry = []
1 oin range(len(pn)):
name countrv.append ((pn(i], pcl[i]))

Programming

10

File I/0O: Examples

>>> name ccunlry =
>>> for i in range (| eﬁ(p n)):
name country.append ((pnf[i], pcl[i]))

>>> prin. (name counlry)

| ("Rager Pede*gr' 'Switzerland'), ('Rafael N
adal', 'Spain'), 'Anry Murray', 'Britain'),
("Novak Djckovic!', '"Serbia'), ('Teander Paes!
, '"India')]

Jun-17 Programming

10

File I/0: Examples

>>> name counlry =
>>> faor i in range (- aﬁ(pn))
namc_uountry.appcnd((pn[i], pcli]))

>>> prin. (name counlry)

| ("Rager Pede*gr' 'Switzerland'), ('Rafael N
adal', 'Spain'), '“nry Murray', 'Britain'),
("Novak Djckovic!', '"Serbia'), ('Teander Paes!
;, "India')]

>>> nZce = dicl(name counlry)

>>> prinT(n20)

{'Rogcr Federar': 'Switzerland', 'Andy Murray
' '"Brilain', 'Leznder Paes': "Indiz', 'Nevak
Djokovic': 'Scrpnia', 'Eafacl Nadal': '"Spain'}

Jun-17 Programming

10

File I/0: Examples

>>> name counlry =
>>> faor i in range (- pﬂ(pn))
namc_uountry.appcnd((pn[i], pcli]))

>>> prin. (name counlry)

| ("Rager Pede*gr' 'Switzerland'), ('Rafael N
adal', 'Spain'), '“nry Murray', 'Britain'),
("Novak Djckovic!', "Serbia'), ('Teaznder Paes!
;, "India')]

>>> nzc¢ = dicl(name counlry)

>>> print(n2d) B

{'Rogcr Federar': 'Switzerland', 'Andy Murray
s 'Brilain', 'Leznder Paes': "Indiz', 'Nevak
Djokovic': 'Scrpnia', 'Eafacl Nadal': '"Spain'}
>>> prin.(n2c['Leander laes'])

Tndia

Jun-17 Programming

10

un-17

Exceptions

Programming

11

Exceptions

ex|cep;tion
[1k"sepj(a)n, ek sepj(a)n])

NOUN

1. a person or thing that is excluded from a general statement or does not follow a

rule:
"he always plays top tunes, and tonight was no exception” - [more]
synonyms: anomaly - irregularity - deviation - special case - [more]

Powered by Oxford Dictionaries - © Oxford University Press - Translation by Bing Translator

11
Jun-17 Programming

un-17

Exceptions

Programming

12

Exceptions

» Exceptions are Pythons's way of telling user
that something unexpected has happened

12
Jun-17 Programming

Exceptions

» Exceptions are Pythons's way of telling user
that something unexpected has happened

* Most often an indication of some failure
— Access violation (writing to a read-only file)
— Missing resource (reading a non-existent file)
— Type incompatibility (multiplying two strings)
— Bound violation (accessing a string beyond
limit)

12
Jun-17 Programming

Exceptions

» Exceptions are Pythons's way of telling user
that something unexpected has happened

* Most often an indication of some failure
— Access violation (writing to a read-only file)
— Missing resource (reading a non-existent file)
— Type incompatibility (multiplying two strings)
— Bound violation (accessing a string beyond
limit)
* We have seen exceptions in our example

12
Jun-17 Programming

Exceptions

>>> ¢ — open('tennis countrics', 'r')
>>> c.claose() # done, close -t
>>> c.read() # Bad reac: file already closec

13
Jun-17 Programming

Exceptions

>>> ¢ — open('tennis countrics', 'r')
>>> c.clase() # done, close T
>>> c.read () # Bad reac: file already closec

Traccback (most rccent call _ast):
Mile "<pyshel1#107>", Tine 1, 1n <module>
c.read () # Bad reac: file already closec
ValueError: I/0 operation on closed file

13
Jun-17 Programming

Exceptions

>>> ¢ — opcen('tennis countrice', 'r')
>>> c.claose() # doneT close T
>>> c.read() # Bad reac: file already closec
Traccbhack (most rccent call _ast):
File "<pyshe 1#107>", Tine 1, 1n <module>
c read() # Bad reac: file already closec
ValueErrcor D I/0 operation on closed file

Exception when reading a closed fil

13
Jun-17 Programming

un-17

Exceptions can be Handled

Programming

14

Exceptions can be Handled
* To recover from unexpected operation

Jun-17 Programming

14

Exceptions can be Handled

* To recover from unexpected operation
* try... except... else ...

Jun-17 Programming

14

Exceptions can be Handled

* To recover from unexpected operation
* try... except... else ...

try:

Operations that can raise exceptions.
except [Optional list of exceptions] :

In case of exceptions, do the recovery.
else: # else is optional

If no exception then do normal things.

Jun-17 Programming

14

Exceptions can be Handled

* To recover from unexpected operation
* try... except... else ...

try:

Operations that can raise exceptions.
except [Optional list of exceptions] :

In case of exceptions, do the recovery.
else: # else is optional

If no exception then do normal things.

o try ... finally ...

Jun-17 Programming

14

Exceptions can be Handled

* To recover from unexpected operation
* try... except... else ...

try:

Operations that can raise exceptions.
except [Optional list of exceptions]

In case of exceptions, do the recovery.
else: # else is optional

If no exception then do normal things.

o try ... finally ...

try:
Operations that can railse exceptions.
finally:
Execute irrespective of whether exception
was raised or not. Typically clean-up stuff.

14
Jun-17 Programming

=

Jun-17

W =

cepl.:

e (
82 ¥

w.wrlle('sucecess!

\Iu' - '::

Far r](Can w

Example

open('/largel . lxl.", "w")

10 Ko
"Can nol. wrile Lo Lhe lLargel

Nole: else 1s wilh excepl., nol

Il'—‘ ‘I"I

ase()

Programming

(1 Te!
‘A’i |h

ROOT direclory!!

15

un-17

More about try...except

Programming

16

More about try...except

* A try statement may have more than one
except clause

» to specify handlers for different exceptions.

Jun-17 Programming

16

More about try...except

* A try statement may have more than one
except clause

» to specify handlers for different exceptions.
* At most one handler will be executed.

16
Jun-17 Programming

More about try...except

* A try statement may have more than one
except clause

» to specify handlers for different exceptions.

At most one handler will be executed.

* An except clause may name multiple
exceptions as a parenthesized tuple.

Jun-17 Programming

16

More about try...except

* A try statement may have more than one
except clause

» to specify handlers for different exceptions.

At most one handler will be executed.

* An except clause may name multiple
exceptions as a parenthesized tuple.

* The last except clause may omit the
exception name

— Catches any exception

Jun-17 Programming

16

un-17

Modules

Programming

17

Modules

* As program gets longer, need to organize them
for easier access and easier maintenance.

17
Jun-17 Programming

Modules

* As program gets longer, need to organize them
for easier access and easier maintenance.

* Reuse same functions across programs without
copying its definition into each program.

17
Jun-17 Programming

Modules

* As program gets longer, need to organize them
for easier access and easier maintenance.

* Reuse same functions across programs without
copying its definition into each program.

« Python allows putting definitions in a file

— use them in a script or in an interactive instance of
the interpreter

17
Jun-17 Programming

Modules

* As program gets longer, need to organize them
for easier access and easier maintenance.

* Reuse same functions across programs without
copying its definition into each program.
« Python allows putting definitions in a file

— use them in a script or in an interactive instance of
the interpreter

 Such a file is called a module

— definitions from a module can be imported into
other modules or into the main module

17
Jun-17 Programming

un-17

Modules

Programming

18

Modules

* A module is a file containing Python
definitions and statements.

Jun-17 Programming

18

Modules

* A module is a file containing Python
definitions and statements.

 The file name is the module name with
the suffix .py appended.

Jun-17 Programming

18

Modules

* A module is a file containing Python
definitions and statements.

 The file name is the module name with
the suffix .py appended.

« Within a module, the module’s name is

available in the global variable _ _name__.

Jun-17 Programming

18

Modules Example

fib.py - C:\

@ fib.py - C:\Users\karkare\Goog e Drive\lITQ\Courses\2016Python\Pregrams\fib.py (2.7.12)

File Euil Furmal Run Oplivns Winduw Help

Modulc for fibonacci numbcrs

Jdef fib rec(n):
""1yrecursive fibonacci''!
1T (n <= 1):
return n

e
3(?}0

return fib rec(n-1) + fib rec(n-2)

el:

19
Jun-17 Programming

Modules Example

ot tip reci(n):
"Ulpecursive [ibonacci'™!
TN €= 1)+
e ULl n

Sz Lib orec{n-1) Cib reoc{n-2)

ol Lipn Ller(o)s
"11iterative fibonacei''!
cur, nxt 0, 1
Lor k 1o range(n):

cur, nxt — nxt, curinxt
e_uLr cur

il
™

Lin uploe(a):
'Thaiven retnrn 1iat of fihonacad
numpers < on'tte!

cur, nxt. =0, 1

13t L

while (cur < n):

at.apnond(cur)

cur, nxl — nxl, ocur+nxl

t.

»
r

-
g

Jun-17 Programming

20

Modules Example

sct tik rec(n):
"l yecursive [ibon
T (n €= 1):

e ULl o n

SIETF
Sz Lib orec{n-1)

acoci™!

Cib rec{n-2)

oL Lik iller(a)s
'S terative fibonacei't!
cur, nxt 0, 1
Lor k 1o range(n):
cur, nxt — nxt, curinxt
ce UL cur

CoLil uplo(o):
'"Tgiven n, rvetnrn 1iast of fihonacas
numoers <N
2Ty NRT = M ‘ 1

lst L.

while (cur < n):
at.aponond {(our)
cur, nxl - nxl,

~oTmnu™n 1st

CUL=I1Xx L

Jun-17 Programming

>>> import

e, 1, 1,

rib
>>> tib.fib upto(h)

2y

3]

20

Modules Example

ot tip rec(n):
"Ulyecursive [ibonacol''!
T (n €= 1):
e ULl o n
olsos
Sz Lib orec{n-1)
oL Lik iller(a)s
'"Titerative fibonacei ™'
cur, nxt U, 1
Lor k 1o range(n):
cur, nxt — nxt, curinxt
e ULl cur

Gel [ib uplo(o):
'Thaiven retnr™m 1iat of fihonacad
numpers < on'tte!
cur, nxt. =0, 1
13t L
while (cur < n):
lat.apnond (cur)
cur, nxl - nxlb, cur+nxl
»oTmnrn st

»
r

Jun-17 Programming

Cib rec{n-2)

-

>>> imporT tib
>>> tib.fib upto(h)
¢, 1, 1, 2, 3]

> fib.fib rec(10)

4

~
-

b

vV

>> fib.fib i1tcr (20)

65

Sy VoL
\‘]v

20

ot tip rec(n):

'l yecursive

Ton <= 1)
e ULl n

‘-|-"".'

b rec{n-1)

oL Lik iller(a)s
'"TTiterative
cur, nxt 0, 1
Lor k 1o range(n):
cur, nxt — nxt,
e ULl cur

Gel [ib uplo(o):

ven

[T QR S I I
L8 vl

:

numpers < on'tte!

cur, nxt. =0, 1

13t L

while (cur < n):
lat.apnond (cur)
cur, nxl - nxl,

»oTmnrn st

Jun-17

Modules Example

Liponacel™ !

Cib rec{n-2)

fibonacei1 ™!

Y InNXT

of fibonacos

cur+nxl

Programming

>>> imporT tib
tib.fib upto(b)

1o, 1, 1, 2, 3
> fib.fib rec(10)

4

\

Ny

-«

\’
N/

~
-

Sy

N/
v

\/
v

fib.fib 1tcr(20)

Sy VoL

RV,
oy N
Wy

fib. namc
N

-\
N
NS

v

h
(-

20

»cf rie rec(n):
'"TTyecursive [ibonacol
T(n €= 1)

el ULlrl N

T

sz Liborec(n-1) Lib reoc{n-2)
CLlip Iler (o)
'"Titerative fibonacei ™'
cur, nxt 0, 1
Lor k 1o range(n):
cur, nxth — nxt, curinxt
celusr cur

fel [ib uplo(a):
vt retnrn liat of fibonacos
mpers < ottt
cur, nxt. =0, 1

o+
1st |

aqiven n,

cur, oxl — nxlb, ocur-+nxl
oTirn st

Jun-17 Programming

>>> imporT tib
>>> ftib.fib upto(b)
¢, 1, 1, 2, 3]

fib.fib rec(10)

b}
’
Vi

A %4
\\/

AV Sa
~J Vv O

b '\v/'

i

Hh

ib.fib 1tcr (20)

ey

ikb. name

- \/
Fh W
o N/
- Hh

}_' v
o

Within a module, the
module’s name is
available as the value of
the global variable

__hame__.

un-17

Importing Specific Functions

Programming

21

Importing Specific Functions

« To import specific functions from a module

un-17 Programming

21

Importing Specific Functions

. To import specific functions from a module

LD [ib uplo

un-17 Programming

21

Importing Specific Functions

« To import specific functions from a module
>>> LD Cib uplo
>>> fin upto (6) B
| U J 1 r l ’ éz ’ :)I / b |

Jun-17 Programming

21

Importing Specific Functions

« To import specific functions from a module
D> 1D [ib uplo
>>»»> 1o npto(s6)
Lo, 1, 1, 2, 3, 5]
>>> [ib diler (1)

Jun-17 Programming

21

Importing Specific Functions

« To import specific functions from a module
>>> [rom [“acosl Lib ouplo

>»> fio npto(6) B

Lo, 1, 1, 2, 3, 5]

>>> [ib diler (1)

Traccbac< (most rccent call last):
File "<pyshellf#lo>", 1line 1, 1in <module>
[ik iler (1)

NameRr~or: nams 'fib 17er' g not defined

Jun-17 Programming

21

Importing Specific Functions

« To import specific functions from a module

>>> o Lib [ib uplo
>>> fio npto(s)

Lo, 1, 1, 2, 3, 5|

>>> [1 1ler (1)

Traccbacx< (most rccent ¢

call last) :
File "<pyshell#lo>", 1line 1, 1in <module>

[ik iler (1)
NameFRr~or: name '"fib 1Tter' 8 not definsd

« This brings only the imported functions in the current
symbol table
— No need of modulename. (absence of fib. in the example)

21
Jun-17 Programming

Importing ALL Functions

>>> from fib 1mport *
>>> fi1b upto (6)

(o, 1, 1, 2, 3, o]
>>> fib 1ter (8)

21 B

un-17 Programming

22

Importing ALL Functions

« To import all functions from a module, in the
current symbol table

>>> fib =
>>> fi1b upto (6)

o, 1, 1, 2, 3, o]
>>> fib 1ter (8)

21

Jun-17 Programming

22

Importing ALL Functions

« To import all functions from a module, in the
current symbol table

>>> from fib 1mport *
>>> fi1b upto (6)

[0, 1, 1, 2, 3, 5]
>>> fib 1ter (8)

21

* This imports all names except those beginning
with an underscore (_).

Jun-17 Programming

22

un-17

main

in Modules

Programming

23

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

Jun-17 Programming

23

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if

23
Jun-17 Programming

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if
you imported it, but with the name set to

23
Jun-17 Programming

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if
you imported it, but with the name set to

" _main__".

23
Jun-17 Programming

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if
you imported it, but with the name set to

" main__".
» By adding this code at the end of your module
1f name == " main ":

. # Some code here

23
Jun-17 Programming

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if
you imported it, but with the name set to

" main__".
» By adding this code at the end of your module
1f name == " main ":

. # Some code here

you can make the file usable as a script as well as an

23
Jun-17 Programming

main in Modules

* When you run a module on the command line with
python fib.py <arguments>

the code in the module will be executed, just as if
you imported it, but with the name set to

" main__".
» By adding this code at the end of your module
1f name == " main ":

. # Some code here
you can make the file usable as a script as well as an
importable module

23
Jun-17 Programming

un-17

main

in Modules

Programming

24

main in Modules

if name == """ main

import sys
print (fib iter (int(sys.argv[l])))

24
Jun-17 Programming

main in Modules

1f name == " main
_Imporg_sys
print (fib iter (int(sys.argv[l])))
* This code parses the command line only if the
module is executed as the “main” file:
S python fib.py 10

59

24
Jun-17 Programming

main in Modules

1f name == " main
_Imporg_sys
print (fib iter (int(sys.argv[l])))
* This code parses the command line only if the
module is executed as the “main” file:
S python fib.py 10

55
* |f the module is imported, the code is not run:

24
Jun-17 Programming

main in Modules

1f name == " main
_Imporg_sys
print (fib iter (int(sys.argv[l])))
* This code parses the command line only if the
module is executed as the “main” file:
S python fib.py 10

55
* |f the module is imported, the code is not run:
>>> import fib

24
Jun-17 Programming

