
Programming

Programming with Python

File I/O
Exceptions
Modules and Import

Jun-17
!1

Programming

File I/O

Jun-17
 2

Programming

File I/O

• Files are persistent storage

Jun-17
 2

Programming

File I/O

• Files are persistent storage
• Allow data to be stored beyond program

lifetime

Jun-17
 2

Programming

File I/O

• Files are persistent storage
• Allow data to be stored beyond program

lifetime
• The basic operations on files are
– open, close, read, write

Jun-17
 2

Programming

File I/O

• Files are persistent storage
• Allow data to be stored beyond program

lifetime
• The basic operations on files are
– open, close, read, write

• Python treat files as sequence of lines
– sequence operations work for the data read

from files

Jun-17
 2

Programming

File I/O: open and close

Jun-17
 3

Programming

File I/O: open and close

open(filename, mode)

Jun-17
 3

Programming

File I/O: open and close

open(filename, mode)
• While opening a file, you need to supply
– The name of the file, including the path
– The mode in which you want to open a file
– Common modes are r (read), w (write), a (append)

Jun-17
 3

Programming

File I/O: open and close

open(filename, mode)
• While opening a file, you need to supply
– The name of the file, including the path
– The mode in which you want to open a file
– Common modes are r (read), w (write), a (append)

• Mode is optional, defaults to r

Jun-17
 3

Programming

File I/O: open and close

open(filename, mode)
• While opening a file, you need to supply
– The name of the file, including the path
– The mode in which you want to open a file
– Common modes are r (read), w (write), a (append)

• Mode is optional, defaults to r
• open(..) returns a file object

Jun-17
 3

Programming

File I/O: open and close

open(filename, mode)
• While opening a file, you need to supply
– The name of the file, including the path
– The mode in which you want to open a file
– Common modes are r (read), w (write), a (append)

• Mode is optional, defaults to r
• open(..) returns a file object
• close() on the file object closes the file
– finishes any buffered operations

Jun-17
 3

Programming

File I/O: Example

Jun-17
 4

• Do some writing
• How to do it?
• see the next few slides

Programming

File I/O: read, write and append

Jun-17
 5

Programming

File I/O: read, write and append

• Reading from an open file returns the
contents of the file
– as sequence of lines in the program

Jun-17
 5

Programming

File I/O: read, write and append

• Reading from an open file returns the
contents of the file
– as sequence of lines in the program

• Writing to a file
– IMPORTANT: If opened with mode 'w', clears

the existing contents of the file
– Use append mode ('a') to preserve the

contents
–Writing happens at the end

Jun-17
 5

Programming

File I/O: Examples

Jun-17
 6

Programming

File I/O: Examples

Jun-17
 6

Programming

File I/O: Examples

Jun-17
 6

Programming

File I/O: Examples

Jun-17
 7

(

()

)

Programming

File I/O: Examples

Jun-17
 7

(

()

)

Programming

File I/O: Examples

Jun-17
 7

(

()

)

Programming

File I/O: Examples

Jun-17
 7

(

()

)

Programming

File I/O: Examples

Jun-17
 7

(

()

)

Programming

File I/O: Examples

Jun-17
 8

()

Programming

File I/O: Examples

Jun-17
 8

()

Programming

File I/O: Examples

Jun-17
 8

()

Programming

File I/O: Examples

Jun-17
 8

Note empty line due to '\n'

()

Programming

File I/O: Examples

Jun-17
 8

Note empty line due to '\n'

()

Programming

File I/O: Examples

Jun-17
 9

]

()

Programming

File I/O: Examples

Jun-17
 9

]

()

Programming

File I/O: Examples

Jun-17
 9

]

()

Programming

File I/O: Examples

Jun-17
 9

Note the use of for ... in
for sequence

]

()

Programming

File I/O: Examples

Jun-17
 9

Note the use of for ... in
for sequence

]

()

Programming

File I/O: Examples

Jun-17
 10

()

()

()

Programming

File I/O: Examples

Jun-17
 10

()

()

()

Programming

File I/O: Examples

Jun-17
 10

()

()

()

Programming

File I/O: Examples

Jun-17
 10

()

()

()

Programming

File I/O: Examples

Jun-17
 10

()

()

()

Programming

Exceptions

Jun-17
 11

Programming

Exceptions

Jun-17
 11

Programming

Exceptions

Jun-17
 12

Programming

Exceptions
• Exceptions are Pythons's way of telling user

that something unexpected has happened

Jun-17
 12

Programming

Exceptions
• Exceptions are Pythons's way of telling user

that something unexpected has happened
• Most often an indication of some failure
– Access violation (writing to a read-only file)
– Missing resource (reading a non-existent file)
– Type incompatibility (multiplying two strings)
– Bound violation (accessing a string beyond

limit)

Jun-17
 12

Programming

Exceptions
• Exceptions are Pythons's way of telling user

that something unexpected has happened
• Most often an indication of some failure
– Access violation (writing to a read-only file)
– Missing resource (reading a non-existent file)
– Type incompatibility (multiplying two strings)
– Bound violation (accessing a string beyond

limit)

• We have seen exceptions in our example

Jun-17
 12

Programming

Exceptions

Jun-17
 13

Programming

Exceptions

Jun-17
 13

Programming

Exceptions

Jun-17
 13

Exception when reading a closed file

Programming

Exceptions can be Handled

Jun-17
 14

Programming

Exceptions can be Handled
• To recover from unexpected operation

Jun-17
 14

Programming

Exceptions can be Handled
• To recover from unexpected operation
• try ... except ... else ...

Jun-17
 14

Programming

Exceptions can be Handled
• To recover from unexpected operation
• try ... except ... else ...

Jun-17
 14

try:
 Operations that can raise exceptions.
except [Optional list of exceptions] :
 In case of exceptions, do the recovery.
else: # else is optional
 If no exception then do normal things.

Programming

Exceptions can be Handled
• To recover from unexpected operation
• try ... except ... else ...

• try ... finally ...

Jun-17
 14

try:
 Operations that can raise exceptions.
except [Optional list of exceptions] :
 In case of exceptions, do the recovery.
else: # else is optional
 If no exception then do normal things.

Programming

Exceptions can be Handled
• To recover from unexpected operation
• try ... except ... else ...

• try ... finally ...

Jun-17
 14

try:
 Operations that can raise exceptions.
finally:
 Execute irrespective of whether exception
 was raised or not. Typically clean-up stuff.

try:
 Operations that can raise exceptions.
except [Optional list of exceptions] :
 In case of exceptions, do the recovery.
else: # else is optional
 If no exception then do normal things.

Programming

Example

Jun-17
 15

()

()

Programming

More about try…except

Jun-17
 16

Programming

More about try…except

• A try statement may have more than one
except clause
▪ to specify handlers for different exceptions.

Jun-17
 16

Programming

More about try…except

• A try statement may have more than one
except clause
▪ to specify handlers for different exceptions.

• At most one handler will be executed.

Jun-17
 16

Programming

More about try…except

• A try statement may have more than one
except clause
▪ to specify handlers for different exceptions.

• At most one handler will be executed.
• An except clause may name multiple

exceptions as a parenthesized tuple.

Jun-17
 16

Programming

More about try…except

• A try statement may have more than one
except clause
▪ to specify handlers for different exceptions.

• At most one handler will be executed.
• An except clause may name multiple

exceptions as a parenthesized tuple.
• The last except clause may omit the

exception name
– Catches any exception

Jun-17
 16

Programming

Modules

Jun-17
 17

Programming

Modules

• As program gets longer, need to organize them
for easier access and easier maintenance.

Jun-17
 17

Programming

Modules

• As program gets longer, need to organize them
for easier access and easier maintenance.

• Reuse same functions across programs without
copying its definition into each program.

Jun-17
 17

Programming

Modules

• As program gets longer, need to organize them
for easier access and easier maintenance.

• Reuse same functions across programs without
copying its definition into each program.

• Python allows putting definitions in a file
– use them in a script or in an interactive instance of

the interpreter

Jun-17
 17

Programming

Modules

• As program gets longer, need to organize them
for easier access and easier maintenance.

• Reuse same functions across programs without
copying its definition into each program.

• Python allows putting definitions in a file
– use them in a script or in an interactive instance of

the interpreter
• Such a file is called a module
– definitions from a module can be imported into

other modules or into the main module

Jun-17
 17

Programming

Modules

Jun-17
 18

Programming

Modules

• A module is a file containing Python
definitions and statements.

Jun-17
 18

Programming

Modules

• A module is a file containing Python
definitions and statements.

• The file name is the module name with
the suffix .py appended.

Jun-17
 18

Programming

Modules

• A module is a file containing Python
definitions and statements.

• The file name is the module name with
the suffix .py appended.

• Within a module, the module’s name is
available in the global variable __name__.

Jun-17
 18

Programming

Modules Example

Jun-17
 19

fib.py - C:\

Programming

Modules Example

Jun-17
 20

Programming

Modules Example

Jun-17
 20

Programming

Modules Example

Jun-17
 20

Programming

Modules Example

Jun-17
 20

Programming

Modules Example

Jun-17
 20

Within a module, the
module’s name is
available as the value of
the global variable
__name__.

Programming

Importing Specific Functions

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

Jun-17
 21

Programming

Importing Specific Functions

• To import specific functions from a module

• This brings only the imported functions in the current
symbol table
– No need of modulename. (absence of fib. in the example)

Jun-17
 21

Programming

Importing ALL Functions

Jun-17
 22

Programming

Importing ALL Functions

• To import all functions from a module, in the
current symbol table

Jun-17
 22

Programming

Importing ALL Functions

• To import all functions from a module, in the
current symbol table

• This imports all names except those beginning
with an underscore (_).

Jun-17
 22

Programming

__main__ in Modules

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if
 you imported it, but with the __name__ set to

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if
 you imported it, but with the __name__ set to
 "__main__".

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if
 you imported it, but with the __name__ set to
 "__main__".
• By adding this code at the end of your module

if __name__ == "__main__":
 ... # Some code here

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if
 you imported it, but with the __name__ set to
 "__main__".
• By adding this code at the end of your module

if __name__ == "__main__":
 ... # Some code here

 you can make the file usable as a script as well as an

Jun-17
 23

Programming

__main__ in Modules

• When you run a module on the command line with
python fib.py <arguments>

 the code in the module will be executed, just as if
 you imported it, but with the __name__ set to
 "__main__".
• By adding this code at the end of your module

if __name__ == "__main__":
 ... # Some code here

 you can make the file usable as a script as well as an
 importable module

Jun-17
 23

Programming

__main__ in Modules

Jun-17
 24

Programming

__main__ in Modules
if __name__ == "__main__":
 import sys
 print (fib_iter(int(sys.argv[1])))

Jun-17
 24

Programming

__main__ in Modules
if __name__ == "__main__":
 import sys
 print (fib_iter(int(sys.argv[1])))

• This code parses the command line only if the
module is executed as the “main” file:
$ python fib.py 10
55

Jun-17
 24

Programming

__main__ in Modules
if __name__ == "__main__":
 import sys
 print (fib_iter(int(sys.argv[1])))

• This code parses the command line only if the
module is executed as the “main” file:
$ python fib.py 10
55

• If the module is imported, the code is not run:

Jun-17
 24

Programming

__main__ in Modules
if __name__ == "__main__":
 import sys
 print (fib_iter(int(sys.argv[1])))

• This code parses the command line only if the
module is executed as the “main” file:
$ python fib.py 10
55

• If the module is imported, the code is not run:
 >>> import fib

Jun-17
 24

