
Application Layer Protocols : MQTT

Dr. Bibhas Ghoshal

IIIT Allahabad

2

Data Protocols in IoT

● Devices talk to each other – devices northbound and southbound

● Gateways talk to the cloud northbound and devices southbound

● Device to Device (D2D)

● Device to Cloud (D2C)

3

MQTT Protocol
•MQTT - Message Queuing Telemetry Transport

• Enables a publish/subscribe messaging model in an extremely lightweight way.

• Useful for connections with remote locations where a small code footprint is required

• Publish Subscribe Model :

4

MQTT : History and Requirements

● Invented in 1999 by Andy Stanford-Clark (IBM) and Arlen Nipper
(Arcom, now Cirrus Link)

● Protocol for minimal battery loss and minimal bandwidth to connect
with oil pipelines via satellite

● Core Features of MQTT:
● Simple implementation – arbitrary messages upto 256MB

● Quality of Service data delivery – in oder deliver per publisher

● Lightweight and bandwidth efficient – little client state, TCP/Websockets

● Data agnostic

● Continuous session awareness

5

MQTT Architecture

● Space Decoupling - Pub. And Sub. do not know each other (ip/port)

● Time Decoupling – do not have to be actively connected all time

● Synchronization Decoupling – sending/ receiving at own speed
● Scalability

● Message Filtering

6

MQTT Quality of Service (QoS) Levels

QoS 0 : At most once “ Fire and Forget”, no confirmation

Guaranteed delivery

QoS 1 : At least once , with confirmation required

(msgs may delivered more than once)

QoS 2 : Exactly once , 2-phase commit

MQTT supports Persistent Messages

Ideal for internet connectivity

Automatic keep alive messages

QoS 1 and 2 messages are queued for clients which may be offline

But not timed out

7

Disconnect, Last Will & Testament and Retained
Messages

Clients which disconnect intentionally use Disconnect
message

MQTT broker will automatically publish Last Will and
Testament message son behalf of clients with
unintentionally terminated messages

MQTT supports Retained messages which are
automatically delivered when clients subscribes to a topic

8

MQTT Vs. HTTP

MQTT HTTP

Purpose Messaging Documents

Protocol Efficiency High Average

Power Efficiency Yes No

Client Languages Many Many

9

Message Filtering by Broker
● Subject based Filtering

filtering is based on the subject or topic that is part of each message. The
receiving client subscribes to the broker for topics of interest

● topics are strings with a hierarchical structure that allow filtering based on a
limited number of expressions

● Content based Filtering
● the broker filters the message based on a specific content filter-language.

● The receiving clients subscribe to filter queries of messages for which they
are interested.

● content of the message must be known beforehand and cannot be
encrypted or easily changed.

● Type based Filtering
● filtering based on the type/class of a message (event) in case Object

Oriented languages

10

MQTT Vs. Message Queues

● A message queue stores message until they are
consumed

● A message is only consumed by one client
● Queues are named and must be created explicitly

11

Client, Broker and Connection Establishment
● Client :

● any device (from a micro controller up to a full-fledged server) that runs an
MQTT library and connects to an MQTT broker over a network. Any device
that speaks MQTT over a TCP/IP stack can be called an MQTT client.

● MQTT client libraries are available for a huge variety of programming
languages. For example, Android, Arduino, C, C++, C#, Go, iOS, Java,
JavaScript, and .NET.

● Broker :
● responsible for receiving all messages, filtering the messages,

determining who is subscribed to each message, and sending the
message to these subscribed clients.

● holds the session data of all clients that have persistent sessions,
including subscriptions and missed messages

● authentication and authorization of clients.

12

MQTT Connection

MQTT protocol is based on TCP/IP. Both the client and the
broker need to have a TCP/IP stack.

MQTT connection is always between one client and the
broker. Clients never connect to each other directly

13

MQTT Connection

Initiation :

● client sends a CONNECT message to the broker.

● broker responds with a CONNACK message and a status code.

● Once the connection is established, the broker keeps it open until the client sends a
disconnect command or the connection breaks

14

MQTT Packet Components

ClientId: identifies each MQTT client that connects to an MQTT broker. The broker uses
the ClientId to identify the client and the current state of the client.Therefore, this Id should
be unique per client and broker.

Clean Session : The clean session flag tells the broker whether the client wants to
establish a persistent session or not. In a persistent session (CleanSession = false), the
broker stores all subscriptions for the client and all missed messages for the client

Username/Password : MQTT can send a user name and password for client
authentication and authorization.

Will Message : notifies other clients when a client disconnects ungracefully.

KeepAlive : time interval in seconds that the client specifies and communicates to the
broker when the connection established. It defines the longest period of time that the broker
and client can endure without sending a message.

15

Broker Resposne

Session Present flag : The session present flag tells the client whether the
broker already has a persistent session available from previous interactions with
the client.

Connect return code : tells the client whether the connection attempt was
successful or not. (0 = connection accepted)

16

Publish

MQTT client can publish messages as soon as it connects to a broker.

MQTT utilizes topic-based filtering of the messages on the broker

Each message must contain a topic that the broker can use to forward the message to
interested clients. Typically, each message has a payload which contains the data to
transmit in byte format.

use case of the client determines how the payload is structured.

The sending client (publisher) decides whether it wants to send binary data, text data,
or even full-fledged XML or JSON.

17

Publish Message Components

Topic Name : simple string that is hierarchically structured with forward slashes as
delimiters. For example, “myhome/livingroom/temperature”

QoS : indicates the Quality of Service Level (QoS) of the message. There are three levels:
0, 1, and 2. The service level determines what kind of guarantee a message has for reaching
the intended recipient (client or broker)

Retain Flag : defines whether the message is saved by the broker as the last known good
value for a specified topic. When a new client subscribes to a topic, they receive the last
message that is retained on that topic.

Payload : actual content of the message. MQTT is data-agnostic. It is possible to send
images, text in any encoding, encrypted data, and virtually every data in binary.

Packet Identifier : uniquely identifies a message as it flows between the client and broker.
The packet identifier is only relevant for QoS levels greater than zero. The client library and/or
the broker is responsible for setting this internal MQTT identifier.

DUP flag : indicates that the message is a duplicate and was resent because the intended
recipient (client or broker) did not acknowledge the original message. This is only relevant for
QoS greater than 0.

18

Subscribe
Publishing a message doesn’t make sense if no one ever receives it. In other words, if there are no clients to subscribe to the topics of
the messages. To receive messages on topics of interest, the client sends a SUBSCRIBE message to the MQTT broker. This subscribe
message is very simple, it contains a unique packet identifier and a list of subscriptions.

Packet Identifier : uniquely identifies a message as it flows between the client and broker. The client library and/or the broker is
responsible for setting this internal MQTT identifier.

List of Subscriptions : A SUBSCRIBE message can contain multiple subscriptions for a client. Each subscription is made up of
a topic and a QoS level. The topic in the subscribe message can contain wildcards that make it possible to subscribe to a topic pattern
rather than a specific topic. If there are overlapping subscriptions for one client, the broker delivers the message that has the highest
QoS level for that topic.

19

Subscribe Acknowledgement

 Packet Identifier : unique identifier used to identify a message, same as in the SUBSCRIBE msg

 Return Code : The broker sends one return code for each topic/QoS-pair that it receives in the

 SUBSCRIBE message.

20

Unsubscribe

21

Mosquitto MQTT Broker

Mosquitto : lightweight open source message broker

Implements MQTT versions 3.1.0, 3.1.1 and version 5.0

Main website : https://mosquitto.org/

A nice tutorial on MOSQUITTO is available at :

https://www.switchdoc.com/2018/02/tutorial-installing-and-testing-mosquitto-mqtt-
on-raspberry-pi/

https://mosquitto.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

