INTERNET OF THINGS
C h d pte I 5 A Hands-On Approach

loT Desigh Methodology

Arshdeep Bahga - Vijay Madisetti

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015

Outline

 |oT Design Methodology that includes:
* Purpose & Requirements Specification
* Process Specification
 Domain Model Specification
* Information Model Specification
* Service Specifications
* |oT Level Specification
* Functional View Specification
* Operational View Specification
* Device & Component Integration
* Application Development

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015

loT Design I\/Iethodology Steps

Define Purpose & Reqmrementshof IoT system

Define the use cases

A 4

Define Physical Entities, Virtual Entities, Devices, Resources and Services in the loT system

‘Q'

Define the structure (e.g. relations, attributes) of all the information in the loT system

—

Map Process and Information Model to services and define service specifications

Define the loT level for the system

Map loT Level to functional groups

Define communication options, service hosting options, storage options, device options

Integrate devices, develop and integrate the components

Develop Applications

Step 1: Purpose & Requirements Specification

* The first step in loT system design methodology is to define the
purpose and requirements of the system. In this step, the system
purpose, behavior and requirements (such as data collection
requirements, data analysis requirements, system management
requirements, data privacy and security requirements, user interface
requirements, ...) are captured.

Step 2: Process Specification

* The second step in the loT design methodology is to define the
process specification. In this step, the use cases of the loT system are
formally described based on and derived from the purpose and
requirement specifications.

Step 3: Domain Model Specification

* The third step in the loT design methodology is to define the Domain
Model. The domain model describes the main concepts, entities and
objects in the domain of loT system to be designed. Domain model
defines the attributes of the objects and relationships between
objects. Domain model provides an abstract representation of the
concepts, objects and entities in the loT domain, independent of any
specific technology or platform. With the domain model, the loT
system designers can get an understanding of the loT domain for
which the system is to be designed.

Step 4: Information Model Specification

* The fourth step in the loT design methodology is to define the
Information Model. Information Model defines the structure of all
the information in the loT system, for example, attributes of Virtual
Entities, relations, etc. Information model does not describe the
specifics of how the information is represented or stored. To define
the information model, we first list the Virtual Entities defined in the
Domain Model. Information model adds more details to the Virtual
Entities by defining their attributes and relations.

Step 5: Service Specifications

* The fifth step in the loT design methodology is to define the service
specifications. Service specifications define the services in the loT
system, service types, service inputs/output, service endpoints,
service schedules, service preconditions and service effects.

Step 6: 10T Level Specification

* The sixth step in the 10T design methodology is to define the loT level
for the system. In Chapter-1, we defined five loT deployment levels.

Step 7: Functional View Specification

* The seventh step in the 1oT design methodology is to define the
Functional View. The Functional View (FV) defines the functions of
the loT systems grouped into various Functional Groups (FGs). Each
Functional Group either provides functionalities for interacting with
instances of concepts defined in the Domain Model or provides
information related to these concepts.

Step 8: Operational View Specification

* The eighth step in the IoT design methodology is to define the
Operational View Specifications. In this step, various options
pertaining to the loT system deployment and operation are defined,
such as, service hosting options, storage options, device options,
application hosting options, etc

Step 9: Device & Component Integration

* The ninth step in the loT design methodology is the integration of the
devices and components.

Step 10: Application Development

* The final step in the loT desigh methodology is to develop the loT
application.

Home Automation Case Study

Step:1 - Purpose & Requirements

* Applying this to our example of a smart home automation system, the
purpose and requirements for the system may be described as follows:

Purpose : A home automation system that allows controlling of the lights in a home
remotely using a web application.

Behavior : The home automation system should have auto and manual modes. In
auto mode, the system measures the light level in the room and switches on the
light when it gets dark. In manual mode, the system provides the option of manually
and remotely switching on/off the light.

System Management Requirement : The system should provide remote monitoring
and control functions.

Data Analysis Requirement : The system should perform local analysis of the data.

Application DeBonment Requirement : The application should be deployed locally
on the device, but should be accessible remotely.

Security Requirement : The system should have basic user authentication capability.

Step:2 - Process Specification

Mode

auto \ manual

Light-Level Light-State

Level: Low Level: High state: On state: Off

state: On state: Off state: On state: Off

Step 3: Domain Model Specification

interacts with

User
Active Digital Siomaiiiser
Artefoct
App
|
o kes eubscrth | [o
invokes/subscribes | Virtual Entity relotes to Physical Entity
maonitors
associoted | with | Ao Bl
|
Service |
|
e ——
|
associated |with '— — _| . ; : ;
Virtual Entity relates to Physical Entity
EXPOSES Appliance Appliance P
Resource associated with
hosts Device
. 4
| 4 | Minicomputer
Network OnDevice attached to T attached to
Resource Resource
Sensor Actuator
LOR Relay
— One-way Association
Type Type: Entity, service, resource,

— Generalization/Specialization : .
P device, attribute

— Aggregation Relationship

Step 4: Information Model Specification

Virtual Entity:
Virtual Entity: i Foah LightAppliance
Room EntityTs Appli
n e: iance
EntityType : Room Ylgp_ Li gh?f
ID : Room1 RoomID : Room1
Attribute: Attribute:
Light-Level State
AttributeName : lightLevel AttributeName : lightState
AttributeType : level AttributeType : state

has light-level

has light-level is in state is in state

Level: High Level: Low State: On State: Off

Process Specification

N
I'__)
I

<

state: On

Level: High Level: Low

Step 5: Service Specifications

Mode Service: Sets mode to auto or
manual or retrieves the current mode

\ State Service: Sets the light
: ~ appliance state to on/off or
! retrieves the current light state

i5 in state

auto
R T T b
| | | |
] Light- Level | | Light-State Frmg
- | | | |
o bsge e st sisogen s sone | PR SO CP e [PSP 1
P
£
s
¥, Level: Low Level: High state: On state: Off
/
s
/
;
!
/
state: On state: Off state:0n state: Off
Information Model
. . Virtual Entity:
Virtual Entity: Fap— LightAppliance
Room
EnmityType - Room EntiyType - Applance
\ 0 :Rooml
| FoomiD : Bacm1
\
\
\
‘\ e o A | |t
vl Attribute: | | Attribute:
) Light-Level : : State
| Attribtedame ; ightiewe | | | AttributeName : lightstat
| | | AttributeType
=== A I DA, <=
has light- fevel has light - level is in state

state: Off

Controller Service: In auto mode, the controller service monitors the light level

and switches the light on/off and updates the status in the status database.

In manual mode, the controller service, retrieves the current state from the

database and switches the light on/off.

tep 5: Service Specifications

Input

Mode: Auto/Manual
State: On/Off

Output

State: On/Off

has Schedule
has Input
Service
Name: Controller
Type: Native
has Output
Output

State: On/Off

Input

State: On/Off

Schedule
Output
Interval:
Every 5 sec Current Mode:
Auto/Manual
Input
Set Mode:
Auto/Manual
has Output
Service
Name: State
Type: REST
has Service Endpoint
has Input
Endpoint

Endpoint: /home/state/
Protocol: HTTP

has Output

Service

Name: Mode
Type: REST

has Input

has Service Endpoint

Endpoint

Endpoint: /home/mode/
Protocol: HTTP

Step 6: 10T Level Specification

Local Cloud
App
REST
Communication
S, REST

Database

——— > Controller Service
7
Resource

0

|
[
|
[
|
|
|
|
|
|
|
|
Services |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Device |
|

O

Monitoring Node
performs analysis, stores data

Step 7: Functional View Specification

Local

1. loT device maps to the Device FG (sensors,
actuators devices, com puting devices)
and the Management FG (device manage ment)

4. Web Services map to
Services FG (web services)

2, Resournces map to the Device FG {on-dewice
resource] and Communkcation FG
[communication AP and protocoks)

5. Database maps to the Management FG
(database management) and Security FG
(database security)

3. Controller service maps to the
Services FG (native service | Web Services
mapto Services FG (web services)

6. Application maps tothe Application FG (web
application, application and database servers),
Management FG (app management} and
Security FG lappsecurity)

Step 8: Operational View Specification

Mative Service: ControllerService Web App: DjangoWeb App

Web Services: Mode F.ESTSe::uice, - e J | webioe Cintshase Sarver 4~ — —p Application Server: Django App Server
State REST Service o | ! i Database Server: MySOL
Application Management: " Authentication: Web App, Database
Django App Management “ 7 Authorization: Web App, Database
Database Management.
MySQL DB Manage ment Communication APls: REST APls
Communication Protocols:
Device Management: . Link Layer: 802.11
Raspberry Pi device Management MNetwork Layer: |Pvd/IPvE
Transport: TCP

Application: HTTP
Computing Device: Raspberry Pi
Sensor; LOR

Actuator: Relay Switch

10N

Teew L TewReY Ty Teew TEEw
TTew L sEREw L TEwRw TEEw
"ewe L] . L] L B E RS ENERES N
L L] L] L] L] TePRESROERRY L]
LA L L L4 L] L4 TTTRETIREYRRR -
L L LJ L] L] TEPTEETRRTERRYE Ld
L L] L] L] L] * 8 a8 e L]

L AL BL N
(AR
LA A K J

LU AL

*w

tew
LA
. L
. L

L N
sssass
L
L AL BL N
LU L
sasas
A A NN

*Re w
L L LB L AL B B T

»
L]
»
L J
-
-
»
L
[
L]
[]
L]
L]

&
-

Device & Component Integrat

Step 9

Step 10: Application Development

* Auto

* Controls the light appliance automatically based on the lighting
conditions in the room

* Light
 When Auto mode is off, it is used for manually controlling the
light appliance.

 When Auto mode is on, it reflects the current state of the light
appliance.

Implementation: RESTful Web Services

REST services implemented with Django REST Framework

Output L # Models — models.py
e s Bhatgut from django.db import models
Auto/Manual
class Mode(models.Model):
name = models.CharField(max_length=50)
Service
N e 1 Map services to models. Model L T
dypeife fields store the states (on/off,

name = models.CharField(max_length=50)

has Service Endpoint aUtO/manuaI)
has Input
Endpoint . - -
Input i 2. Write Model serializers. Serializers allow
Set Mode: Endpoint: /home/mode/ complex data (such as model instances) to be
Protocol: HTTP .
i converted to native Python datatypes that can
then be easily rendered into JSON, XML or
_ other content types.
State: On/Off B # Serializers — serializers.py
from myapp.models import Mode, State
from rest_framework import serializers
Service class ModeSerializer(serializers.HyperlinkedModelSerializer):
e class Meta:
Type: REST model = Mode
fields = ('url', 'name’')
has Service Endpoint
has Input
endoal class StateSerializer(serializers.HyperlinkedModelSerializer):
Input napelnt class Meta:
Endpoint: /home/state/ model = State

et Protocol: HTTP fields = (‘url', 'name')

Implementation: RESTful Web Services

Views — views.py

Models — models.py from myapp.models import Mode, State

. : 3. Write ViewSets for the Models which . .
from django.db import models : . . . from rest_framework import viewsets

comblne the logic for a set of related views in from myapp.serializers import ModeSerializer, StateSerializer
class Mode(models.Model): a single class.

name = models.CharField(max_length=50) class ModeViewSet(viewsets.ModelViewSet):

queryset = Mode.objects.all()

class State(models.Model): serializer_class = ModeSerializer

name = models.CharField(max_length=50)

class StateViewSet(viewsets.ModelViewSet):
gueryset = State.objects.all()
serializer_class = StateSerializer

URL Patterns — urls.py

from django.conf.urls import patterns, include, url
from django.contrib import admin

from rest_framework import routers

. . 4. Write URL patterns for the services.
from myapp import views
admin.autodiscover() Since ViewSets are used instead of views, we
router = routers.DefaultRouter() can automatically generate the URL conf by
router.register(r'mode’, views.ModeViewSet) simply registering the viewsets with a router
router.register(r'state’, views.StateViewSet) class.
urlpatt,efn.s = patterns(”, Routers automatically determining how the
url(r'A', include(router.urls)), A
url(r'rapi-auth/', include('rest_framework.urls', namespace="rest_framework')), URLs for an application should be mapped to
url(r'*admin/", include(admin.site.urls)), the logic that deals with handling incoming

url(r'Ahome/', 'myapp.views.home'),

requests.
)

Implementation: RESTful Web Services

State List

Screenshot of browsable
State REST API ——

Api Root =~ Mode List

Mode Instance

Screenshot of browsable

Mode REST API Seteatne e

' DELETE OPTIONS

Implementation: Controller Native Service

Native service deployed locally

Schedule
Input

Interval:

Mode: Auto/Manual has Schedule Every 5 sec

has Input
State: On/Off

Service

Name: Controlfer
Type: Native

has Output

Output

State: On/Off

1. Implement the native service in
Python and run on the device

#Controller service
import RPi.GPIO as GPIO
import time

import sqlite3 as lite
import sys

con = lite.connect('database.sqglite')
cur = con.cursor()

GPI10.setmode(GPI0O.BCM)
threshold = 1000

LDR_PIN = 18

LIGHT_PIN = 25

def readldr(PIN):
reading=0
GPIO.setup(PIN, GP10.0OUT)
GPIO.output(PIN, GPIO.LOW)
time.sleep(0.1)
GPIO.setup(PIN, GPIO.IN)

while (GPIO.input(PIN)==GPIO.LOW):

reading=reading+1
return reading

def switchOnLight(PIN):
GPIO.setup(PIN, GP10.0OUT)
GPIO.output(PIN, GPIO.HIGH)

def switchOffLight(PIN):
GPIO.setup(PIN, GP10.0OUT)
GPIO.output(PIN, GPIO.LOW)

def runAutoMode():

Idr_reading = readldr(LDR_PIN)

if Idr_reading < threshold:
switchOnLight(LIGHT_PIN)
setCurrentState('on')

else:
switchOffLight(LIGHT_PIN)
setCurrentState('off')

def runManualMode():

state = getCurrentState()

if state=='on":
switchOnLight(LIGHT_PIN)
setCurrentState('on')

elif state=="off":
switchOffLight(LIGHT_PIN)
setCurrentState('off')

def getCurrentMode():
cur.execute('SELECT * FROM myapp_mode')
data = cur.fetchone() #(1, u'auto')

return data[1]

def getCurrentState():
cur.execute('SELECT * FROM myapp_state')
data = cur.fetchone() #(1, u'on')

return data[1]

def setCurrentState(val):
query='UPDATE myapp_state set name=
cur.execute(query)

" "

+val+

while True:
currentMode=getCurrentMode()
if currentMode=="auto':
runAutoMode()
elif currentMode=="manual':
runManualMode()
time.sleep(5)

Implementation: Application

1. Implement Django Application View

Views — views.py
def home(request):
out="

if 'on' in request.POST:
values = {"name": "on"
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username’', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'off' in request.POST:
values = {"name": "off"}
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username’', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'auto' in request.POST:
values = {"name": "auto"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'manual' in request.POST:
values = {"name": "manual"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']

r=requests.get('http://127.0.0.1:8000/mode/1/', auth=(‘username’, ‘password'))

result=r.text

output = json.loads(result)

currentmode=output['name']

r=requests.get('http://127.0.0.1:8000/state/1/', auth=(‘username’, ‘password'))

result=r.text

output = json.loads(result)

currentstate=output['name']

return render_to_response('lights.html',{'r":out, 'currentmode':currentmode, 'currentstate':currentstate},

context_instance=RequestContext(request))

Implementation: Application

2. Implement Django Application
Template

<div class="app-content-inner">

<fieldset>

<div class="field clearfix">

<label class="input-label icon-lamp" for="lamp-state">Auto</label>

<input id="lamp-state" class="input js-lamp-state hidden" type="checkbox">
{% if currentmode == 'auto' %}

<div class="js-lamp-state-toggle ui-toggle " data-toggle=".js-lamp-state">

{% else %}

<div class="js-lamp-state-toggle ui-toggle js-toggle-off" data-toggle=".js-lamp-state">
{% endif %}

<form id="my_form11" action="" method="post">{% csrf_token %}

<input name="auto" value="auto" type="hidden" />

<strong class="ui-toggle-off">0FF
</form>

<strong class="ui-toggle-handle brushed-metal">

<form id="my_form13" action="" method="post">{% csrf_token %}

<input name="manual" value="manual" type="hidden" />

<strong class="ui-toggle-on">0N
</form>

</div></div>

<div class="field clearfix">

<label class="input-label icon-lamp" for="tv-state">Light</label>

<input id="tv-state" class="input js-tv-state hidden" type="checkbox">

{% if currentstate == 'on' %}

<div class="]js-tv-state-toggle ui-toggle " data-toggle=".js-tv-state">

{% else %}

<div class="js-tv-state-toggle ui-toggle js-toggle-off" data-toggle=".js-tv-state">
{% endif %}

{% if currentmode == 'manual' %}

<form id="my_form2" action="" method="post">{% csrf_token %}

<input name="on" value="on" type="hidden" />

<strong class="ui-toggle-off">0FF
</form>

<strong class="ui-toggle-handle brushed-metal">

<form id="my_form3" action="" method="post">{% csrf_token %}

<input name="off" value="off" type="hidden" />

<strong class="ui-toggle-on">0N
</form>

{% endif %}

{% if currentmode == 'auto' %}

{% if currentstate == 'on' %}

<strong class="ui-toggle-on"> ON

{% else %}

<strong class="ui-toggle-on"> OFF

{% endif %H{% endif %}

</div>

</div>

</fieldset></div></div></div>

Finally - Integrate the System

* Setup the device

* Deploy and run the REST and Native services

* Deploy and run the Application
e Setup the database

Deployment Senario-1

Local Cloud

App

REST Call

REST Services

Database

> Controller Service

J

Resource

)

Device

Django Application

REST services implemented with Django-REST framework

SQLite Database

Native service implemented in Python

OS running on Raspberry Pi

Raspberry Pi device to which sensors and actuators are connected

