Data Analytics

Dr. Bibhas Ghoshal
Assistant Professor
Department of Information Technology

Indian Institute of Information Technology
Allahabad

1747

I Big Data

* Data that exceeds the capacity of conventional
Database systems

* Too Big, Moves Fast and does not for into the
structures of the Database

* Thus, we need an alternate way of processing

2/47

5V's

* Volume, Velocity and Variety of Data Generated

* Data Generated by Humans, Machines, Sensors
Valu

* Veracity of data anc

e out of it

3/47

Benefits

BIG DATA
AMALYTICS

~,

Interesls (Fconamk, so=siad errvranmental),
Wi, Brelereces i, Fade-crfte, risks,
infangibiex, slhice .,

Dptions, SCenartss, IMmpect Assessmenis.
Decimion Suppor Systema, degratedd
odEs .

— Information Lt g a5 M, i
artificial Inbellgence, Linked Open

szalm = added me s Oels. Semeanlic wel iechnoedogies

(Big) "-.,.__ Culabeaes, Solebibes, Secsaor
e TAsDr S SeoeC bl e,
Eitiren Obhaarsalcries

Coprery |clalia) Standunda, {metnjdald nepostores,
Visualizatkon to0ls wvd mathads,

Ceenpehuallzation, Knowbisge Erakerage, .

<

4/47

I Challenges

analysis
capture

data curation
Search
transfer
visualization
querying
updating

information privacy.

5/47

https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_curation
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Information_privacy

I Challenges

1KB
1MB
1GB
1TB
1PB
1EB
1ZB
12EE

Kilobyte
Megabyte
Gigabyte
Terabyte
Petabyte
Exabyte
Zettabyte
Yottabyte

1GB=1hr

1TB = 1024 hrs = 102 days

1 PB = 286 yrs > 1 lifetime
1EB = 293K yrs

6/47

I Big Data Challenges

iiiiiiiiiiiiiiii

I Big Data Challenges

Scale of Infrastructure 8 /47

* How to Store such Big Data ?

9/47

I Requirements

* Efficient Access
* Effective Utilization of Space

* Redundancy

10747

Hadoop EcoSystem

» Apache Hadoop is an open source framework for distributed batch processing

of big data.

Machine Learning Data Collection

- f

iy
ol o
Chukwa
Databases

1 |

Flume
HBase
@‘Cassandra s, it ™
Cassandra Sqoop

Framework & File System

G TERbEGEE
e

Data Serialization

Avro

Data Analysis

2w
L f-_.

Pig Hive

Coordination Service

|

Zookeeper

11747

I Hadoop Distributed File System

» A Hadoop cluster comprises of a Master node, backup node and a number of slave nodes.

* The master node runs the NameNode and JobTracker processes and the
slave nodes run the DataNode and TaskTracker components of Hadoop.

» The backup node runs the Secondary NameNode process.

* NameNode keeps the directory tree of all files in the file system, and tracks Slave Node
where across the cluster the file data is kept. It does not store the data of
these files itself. Client applications talk to the NameNode whenever they

DataNode

o
wish to locate a file, or when they want to add/copy/move/delete a file. TaskTracker
- NameNode is a Single Point of Failure for the Master Node Slave Node
HDFSCluster. An optional Secondary O NimeNode rd DataNode
NameNode which is hosted on a separate | '
machine creates checkpoints of the i T L TaskTracker
namespace. Y
| \'_ Slave Node
* The JobTracker is the service within Hadoop Backip Noda ——

that distributes MapReduce tasks to Secondary
specific nodes in the cluster, ideally the nodes NameNode
that have the data, or at least are
in the same rack.

TaskTracker

I:l HDFS components D MapReduce components

12747

» TaskTracker

» TaskTracker is a node in a Hadoop cluster that accepts Map, Reduce and Shuffie tasks from the
JobTracker. Each TaskTracker has a defined number of slots which indicate the number of tasks that
it can accept.

 DataNode

» A DataNode stores data in an HDFS file system.
* A functional HDFS filesystem has more than one
DataNode, with data replicated across them.

» DataNodes respond to requests from the
NameNode for filesystem

Slave Node

operations.
* Client applications can talk directly to a DataNode,
once the -

NameNode has provided the location of the data. ‘ Mastr ode Save Node
« Similarly, MapReduce operations assigned to e B & Datatode
TaskTracker instances near a DataNode, talk directly T - S
to the DataNode to access the files. \
» TaskTracker instances can be deployed on the Stve Node
same servers that host

DataNode instances, so that MapReduce operations Secontary !
are performed
close to the data.

[T Hors components 7] MapReduce components

13747

I Storing Files in HDFS
Motivation:

Reliability, Availability , Network Bandwidth
The input file (say 1 TB) is split into smaller chunks/blocks of 128 MB

The cthllnks are stored on multiple nodes as independent files on data
nodes

To ensure that data is not lost, data can typically be
replicated on:

local rack

remote rack (in case local rack fails)

remote node (in case local node fails)

randomly

Default replication factor is 3

14747

I Storing Files in HDFS

Default replication factor is 3
first replica of a block will be stored on a local rack
the next replica will be stored on a remote rack

the third replica will be stored on the same remote rack but
on a different Datanode

Why?
More replicas?

the rest will be placed on random Datanodes

As far as possible, no more than two replicas are kept on the
same rack

15747

 Master Node and Data Node

$3pou ele(]

16 /47

Tasks of NameNode
* Manages File System
* mapping files to blocks and blocks to data nodes
* Maintaining status of data nodes

* Heartbeat

- Data node sends heartbeat at reqgular intervals

- If heartbeat is not received, Data node is declared
dead

Blockreport

- DataNode sends list of blocks on it
- Used to check health of HDFS 17747

I NameNode Functions

Replication
On Datanode failure
On Disk failure
On Block corruption
Data integrity
Checksum for each block
Stored in hidden file

Rebalancing - balancer tool
Addition of new nodes
Decommissioning
Deletion of some files

18747

I Hadoop

* Framework that allows for the distributed processing of
large data sets

* across clusters of computers
* using simple programming models.

* Designed to scale up from single servers to thousands of
machines, each offering local computation and storage.

* Designed to detect and handle failures at the application
layer

* delivering a highly-available service on top of a cluster of
computers, each of which may be prone to failures. 20747

I Hadoop Modules

* Hadoop Common

The common utilities that support the other Hadoop
modules.

* Hadoop Distributed File System (HDFS™)

- Adistributed file system that provides high-throughput
access to application data.

* Hadoop YARN

A framework for job scheduling and cluster resource
management.

Hadoop MapReduce

A YARN-based system for parallel processing of large data
sets. 21/ 47

Hadoop is a replacement of database warehouse = Compliments it, not a substitute

Hadoop is used only for unstructured data, web Enables many types of analytics
analytics

23/47

I Users of Hadoop

- —
R L @ coam L Tl

“Iml.' spodl r.I b IE N =le) L ——

s quantcast

‘st BB Imkedln__.: '
neptu-ne the Iydia ne mm__lmp-wm o

e T P

. facebook

e Ehay powerset /| microsoft

oo~ netseer

Ef..‘_.':du-u-—. -IE-'- ok fc] 201 3 weerw . haidoopwizmrd. com

24747

I Map Reduce

It Is a powerful paradigm for parallel
computation

Hadoop uses MapReduce to execute jobs on
files In HDFS

Hadoop will intelligently distribute computation
over cluster

Take computation to data

25/ 47

I Functional Programming

* reducef [a,b,c] = f(a, b,c) OR f(a, f(b, €)

* Returns a list constructed by applying a function (the first
argument) on the list passed as the second argument

* Example:

- reduce sum [1, 4, 9] =sum(1, 4, 9) =14

26 /47

Input

Intermediate
output

Output

[1,2,3,4]
M1 2SO\ M3 W
Sq (1) @(2} Sq (3) | |Sq(4)
1 4 9 16
e ™, fr‘
~ \xm 5
30

Example: Sum of squares

{3 MAPPER

{33 REDUCER

27147

Example: Sum of squares of
even and odd

[1,2,3!4]
Input
A [sa()] [sa@] [sa(3 | [sa (4}\ <m MAPPER
Intermediate (odd, 1) (even, 4) (odd, 9) (even, 16)
output
Output (even, 20) {2 REDUCER
R1 R2

28 /47

Programming model- key,
value pairs

Format of input
The output (key, value)

Map: (k1, vl) - list (k2, v2)

Reduce: (k2, listv2) - list (k3, v3)

29 /47

Sum of squares of even and odd
and prime

[1,23,4]
Input
P Sa(1) | [sa(@ | [Sa()] [Sa@)
Intermediate (odd, 1) (even, 4 {odd, 9) [even, 16)
output {prime, 4} [prime, 9)

Output

30/47

I Many keys, many values

Format of input
output: (key, value)

Map: (k1, vl) - list (k2, v2)
Reduce: (k2, listv2) - list (k3, v3)

31747

I Selecting Colors

Input :

1TB text file containing color names- Blue, Green, Yellow, Purple, Pink,
Red, Maroon, Grey

Output :

Occurrence of colours Blue and Green

32/47

N, f.007

Blue

Purple =

Green Green=200

Blue Blue|G

Maroon re ue | uree

Maroon _|grep . [REDUCER

Yellow TP p——
L awk “[arf[51]++;]

N f.00n M, f.00n print arr[Blue],

Blue Green awfGleer(}1]+=52;}

Furple Blue FND{print arr[Blue],

Blue Red fﬂfﬂe=5mﬂ" Green]}’

creen e | [Green=200

Maroon Green | SOt |Unigue -

Green

Yeallow COMBINER

33/47

I MapReduce Overview

INPUT MAP SHUFFLE REDUCE OUTPUT
Map —] Reduce
Input ,# “m HH Dutput
data | i T~
e] M-Elp -
T -
| e =
4 r)
I I
Works on a record I
Works on output of

Map

34747

I Map Reduce Overview

INPUT MAP REDUCE OUTPUT
Map Combine | — — Ik
Input " - 7 z R'a. Dutput
datﬂ. fﬁ_,ﬂ’fﬁ q:h{_____.-- --__,.-""'f H
’ >
- Map Combine :F:K
\ e HHHH ~
Map Combine F——— _HFE'dIJr_E
'y I3
| LY
b
! N
Works on output of Works on output of
Map Combiner

35747

I Map reduce Overview

output
HDFS

| pmeseanq o _—

©o4 spit0 - GO
L e’ — : ;

: : _ menge :
fi-nih'i ’ ;
| — R B

36/47

I Map Reduce Summary

Mapper, Reducer and Combiner act on <key, value> pairs
Map function gets one record at a time as an input
Combiner (if present) works on output of map

Reducer works on output of map (or combiner, if present)
Combiner can be thought of local-reducer

Reduces output of maps that are executed on same node

371747

MapReduce Job Execution
Workflow

» MapReduce job execution starts when the client applications submit jobs to the Job
tracker.

» The JobTracker returns a JobID to the client application. The JobTracker talks to
the NameNode to determine
the location of the data.

 The JobTracker locates TaskTracker nodes with available slots at/or near the data.

* The TaskTrackers send out heartbeat messages to the JobTracker, usually every

few minutes, to reassure the

JobTracker that they are still alive. These messages also inform the JobTracker of
the number of available

slots, so the JobTracker can stay up to date with where in the cluster, new work can

be delegated.
38 /47

I Map Reduce Execution Flow

Client Node

| MapReduce
Program

— JobClient

JobTracker Node

TaskTracker Node

Distributed File System

"l
=
L
i

HDFS

TaskTracker Node

39/47

MapReduce Job Execution
Workflow

» The JobTracker submits the work to the TaskTracker nodes when they poll for
tasks. To choose a task for a

TaskTracker, the JobTracker uses various scheduling algorithms (default is FIFO).

» The TaskTracker nodes are monitored using the heartbeat signals that are sent by the
TaskTrackers to
JobTracker.

» The TaskTracker spawns a separate JVM process for each task so that any
task failure does not bring down
the TaskTracker.

* The TaskTracker monitors these spawned processes while
capturing the output and exit codes. When the

process finishes, successfully or not, the TaskTracker notifies
the JobTracker. When the job is completed, the

JobTracker updates its status. 40 /47

Client Node JobTracker Node TaskTracker Node

Program JobClient —

Distributed File System

TaskTracker Node

41747

I Map Reduce Demo

Task: Given a text file, generate a list of words with the
number of times each of them appear in the file

Input: Plain text file

Expected Output:
<word, frequency> pairs for all words in the file

42 /47

: & framocwark written in java

51 I
is a sizple framework

* Create files “mapper.py” for Map and
“reducer.py” for Reduce

* Mimic Hadoop using the Linux pipe (|)

cat input.txt | mapper.py | sort | reducer.py

-

* catinput.txt | mapper.py | sort | reducer.py

Actual Hadoop Flow

Qttg: /www.m'chael-noll.com/tutoﬂals/writing-an-ha
OOp-mapreduce-program-in-python/

Installation (From the above page)

Running Hadoop On Ubuntu Linux (Single-Node Cluster) — How to set up a pseudo-
distributed, single-node Hadoop cluster backed by the Hadoop Distributed
File System (HDFS)

Running Hadoop On Ubuntu Linux (Multi-Node Cluster) — How to set up a distributed,
multi-node Hadoop cluster backed by the Hadoop Distributed File System
(HDFS)

Minor changes needed due to changes in recent hadoop

distribution directory 44/ 47

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/

Actual Hadoop Flow : Snippets from
http://www.michael-noll.com/tutorials/writing-
an-hadoop-mapreduce-program-in-python/

* Copy input to HDFS

#
]

% bin/hadoop dfs -copyFromLocal /tmp/gutenberg /user/hduser/gutenberg

Run the mapper and reducer

."-'-

-file /home/hduser/mapper.py -mapper /home/hduser/mapper.py-file \

% bin/hadoop jar <path-to-jar>/hadoop-*streaming*.jar \)
/home /hduser/reducer.py ~reducer /home/hduser/reducer.py \ ‘

_ -input /user/hduser/gutenberg/* -output /user/hduser/gutenberg-output |
. J

45 /47

I Another program in hadoop

 Task:

* Given a text file containing numbers, one per line, count sum of
squares of odd, even and prime

* Input:

* File containing integers, one per line

o 0D =) L3NNG DN R =k

* Expected Output:

* <type, sum of squares> for odd, even, prime

<odd, 302>
<gyven, 278>
<prime, 323 =

46/ 47

Input (Key, List of Values) }
3 | <0dd9> [[<pime >l [odd<0819,49> | <odd,i4s> |

| 9 R
prime:<9.4.9> | Epiiiei225i
2 | sevend> [[Spimedl] [oion<36.4,60 | <evenioss

L= B ¢ = R]

P2
i

= = W

File on HDFS Map: square Reducer: sum

47147

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

