
Types of Lists

• Depending on the way in which the links
are used to maintain adjacency, several
different types of linked lists are possible.

– Linear singly-linked list (or simply linear list)

• One we have discussed so far.

Programming and Data Structure 22

• One we have discussed so far.

A B C

head

– Circular linked list

• The pointer from the last element in the list
points back to the first element.

head

Programming and Data Structure 23

A B C

– Doubly linked list

• Pointers exist between adjacent nodes in
both directions.

• The list can be traversed either forward or
backward.

• Usually two pointers are maintained to keep

Programming and Data Structure 24

• Usually two pointers are maintained to keep
track of the list, head and tail.

A B C

head tail

Basic Operations on a List

• Creating a list

• Traversing the list

• Inserting an item in the list

• Deleting an item from the list

Programming and Data Structure 25

• Deleting an item from the list

• Concatenating two lists into one

List is an Abstract Data Type

• What is an abstract data type?

– It is a data type defined by the user.

– Typically more complex than simple data types
like int, float, etc.

• Why abstract?

Programming and Data Structure 26

• Why abstract?

– Because details of the implementation are
hidden.

– When you do some operation on the list, say
insert an element, you just call a function.

– Details of how the list is implemented or how the
insert function is written is no longer required.

Conceptual Idea

List
Insert

Programming and Data Structure 27

List
implementation

and the
related functions

Delete

Traverse

Example: Working with linked list

• Consider the structure of a node as
follows:

struct stud {

int roll;

char name[25];

Programming and Data Structure 28

char name[25];

int age;

struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;

node *head;

Creating a List

Programming and Data Structure 29

How to begin?

• To start with, we have to create a node (the
first node), and make head point to it.

head = (node *) malloc(sizeof(node));

head

Programming and Data Structure 30

head

next

age

name

roll

Contd.

• If there are n number of nodes in the initial
linked list:

– Allocate n records, one by one.

– Read in the fields of the records.

– Modify the links of the records so that the

Programming and Data Structure 31

– Modify the links of the records so that the
chain is formed.

A B C

head

node *create_list()
{

int k, n;
node *p, *head;

printf ("\n How many elements to enter?");
scanf ("%d", &n);

for (k=0; k<n; k++)
{

if (k == 0) {
head = (node *) malloc (sizeof(node));
p = head;

}
else {

Programming and Data Structure 32

else {
p->next = (node *) malloc (sizeof(node));
p = p->next;

}

scanf ("%d %s %d", &p->roll, p->name, &p->age);
}

p->next = NULL;
return (head);

}

• To be called from main() function as:

node *head;

………

head = create_list();head = create_list();

Programming and Data Structure 33

Traversing the List

Programming and Data Structure 34

What is to be done?

• Once the linked list has been constructed
and head points to the first node of the
list,

– Follow the pointers.

– Display the contents of the nodes as they are

Programming and Data Structure 35

– Display the contents of the nodes as they are
traversed.

– Stop when the next pointer points to NULL.

void display (node *head)

{

int count = 1;

node *p;

p = head;

while (p != NULL)

Programming and Data Structure 36

while (p != NULL)

{

printf ("\nNode %d: %d %s %d", count,

p->roll, p->name, p->age);

count++;

p = p->next;

}

printf ("\n");

}

• To be called from main() function as:

node *head;

………

display (head);

Programming and Data Structure 37

display (head);

Inserting a Node in a List

Programming and Data Structure 38

How to do?

• The problem is to insert a node before a

specified node.

– Specified means some value is given for the
node (called key).

– In this example, we consider it to be roll.

Programming and Data Structure 39

– In this example, we consider it to be roll.

• Convention followed:

– If the value of roll is given as negative, the

node will be inserted at the end of the list.

Contd.

• When a node is added at the beginning,

– Only one next pointer needs to be modified.

• head is made to point to the new node.

• New node points to the previously first
element.

Programming and Data Structure 40

element.

• When a node is added at the end,

– Two next pointers need to be modified.

• Last node now points to the new node.

• New node points to NULL.

• When a node is added in the middle,

– Two next pointers need to be modified.

• Previous node now points to the new node.

• New node points to the next node.

Programming and Data Structure 41

void insert (node **head)

{

int k = 0, rno;

node *p, *q, *new;

new = (node *) malloc (sizeof(node));

printf ("\nEnter data to be inserted: ");

scanf ("%d %s %d", &new->roll, new->name, &new->age);

printf ("\nInsert before roll (-ve for end):");

Programming and Data Structure 42

printf ("\nInsert before roll (-ve for end):");

scanf ("%d", &rno);

p = *head;

if (p->roll == rno) /* At the beginning */

{

new->next = p;

*head = new;

}

else

{

while ((p != NULL) && (p->roll != rno))

{

q = p;

p = p->next;

}

if (p == NULL) /* At the end */

{

q->next = new;

new->next = NULL;

Programming and Data Structure 43

new->next = NULL;

}

else if (p->roll == rno)

/* In the middle */

{

q->next = new;

new->next = p;

}

}

}

The pointers
q and p
always point
to consecutive
nodes.

• To be called from main() function as:

node *head;

………

insert (&head);

Programming and Data Structure 44

insert (&head);

Deleting a node from the list

Programming and Data Structure 45

What is to be done?

• Here also we are required to delete a
specified node.

– Say, the node whose roll field is given.

• Here also three conditions arise:

Programming and Data Structure 46

• Here also three conditions arise:

– Deleting the first node.

– Deleting the last node.

– Deleting an intermediate node.

void delete (node **head)

{

int rno;

node *p, *q;

printf ("\nDelete for roll: ");

scanf ("%d", &rno);

p = *head;

Programming and Data Structure 47

p = *head;

if (p->roll == rno)

/* Delete the first element */

{

*head = p->next;

free (p);

}

else

{

while ((p != NULL) && (p->roll != rno))

{

q = p;

p = p->next;

}

if (p == NULL) /* Element not found */

printf ("\nNo match :: deletion failed");

Programming and Data Structure 48

printf ("\nNo match :: deletion failed");

else if (p->roll == rno)

/* Delete any other element */

{

q->next = p->next;

free (p);

}

}

}

A sample main() function

int main()

{

node *head;

head = create_list();

display(head);

Programming and Data Structure 49

insert(&head);

display(head);

delete(&head);

display(head);

}

Few Exercises to Try Out

• Write functions to:

1. Concatenate two given lists into one big list.

node *concatenate (node *head1, node *head2);

2. Insert an element in a linked list in sorted order.
The function will be called for every element to

Programming and Data Structure 50

The function will be called for every element to
be inserted.

void insert_sorted (node **head, node *element);

3. Always insert elements at one end, and delete
elements from the other end (first-in first-out
QUEUE).

void insert_q (node **head, node*element)

node *delete_q (node **head) /* Return the deleted node */

More Exercises

4. Implement a circular linked list, and write
functions to insert, delete, and traverse nodes
in the list.

5. Represent a polynomial as a linked list, where
every node will represent a term of the
polynomial (a xn), and will contain the values polynomial (anxn), and will contain the values
of ‘n’ and ‘an’. Write a function to add two
given polynomials.

Programming and Data Structure 51

