
Types of Lists

• Depending on the way in which the links 
are used to maintain adjacency, several 
different types of linked lists are possible.

– Linear singly-linked list (or simply linear list)

• One we have discussed so far.
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• One we have discussed so far.

A B C

head



– Circular linked list

• The pointer from the last element in the list 
points back to the first element.

head
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A B C



– Doubly linked list

• Pointers exist between adjacent nodes in 
both directions.

• The list can be traversed either forward or 
backward.

• Usually two pointers are maintained to keep 
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• Usually two pointers are maintained to keep 
track of the list, head and tail.

A B C

head tail



Basic Operations on a List

• Creating a list

• Traversing the list

• Inserting an item in the list

• Deleting an item from the list
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• Deleting an item from the list

• Concatenating two lists into one



List is an Abstract Data Type

• What is an abstract data type?

– It is a data type defined by the user.

– Typically more complex than simple data types 
like int, float, etc.

• Why abstract?
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• Why abstract?

– Because details of the implementation are 
hidden.

– When you do some operation on the list, say 
insert an element, you just call a function.

– Details of how the list is implemented or how the 
insert function is written is no longer required.



Conceptual Idea

List 
Insert
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List 
implementation

and the
related functions

Delete

Traverse



Example: Working with linked list

• Consider the structure of a node as 
follows:

struct stud {  

int   roll;

char  name[25];
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char  name[25];

int   age;

struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;

node *head;



Creating a List
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How to begin?

• To start with, we have to create a node (the 
first node), and make head point to it.

head = (node *) malloc(sizeof(node));

head
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head

next

age

name

roll



Contd.

• If there are n number of nodes in the initial 
linked list:

– Allocate n records, one by one.

– Read in the fields of the records.

– Modify the links of the records so that the 
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– Modify the links of the records so that the 
chain is formed.

A B C

head



node *create_list() 
{ 

int  k, n; 
node *p, *head; 

printf ("\n How many elements to enter?"); 
scanf ("%d", &n); 

for  (k=0; k<n; k++) 
{ 

if (k == 0) {
head = (node *) malloc (sizeof(node)); 
p = head; 

}
else {
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else {
p->next = (node *) malloc (sizeof(node)); 
p = p->next;      

}

scanf ("%d %s %d", &p->roll, p->name, &p->age); 
} 

p->next = NULL; 
return (head);

} 



• To be called from main() function as:

node *head;

………

head = create_list();head = create_list();
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Traversing the List
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What is to be done?

• Once the linked list has been constructed 
and head points to the first node of the 
list,

– Follow the pointers.

– Display the contents of the nodes as they are 
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– Display the contents of the nodes as they are 
traversed.

– Stop when the next pointer points to NULL.



void display (node *head)

{

int  count = 1;

node  *p;

p = head;

while (p != NULL)
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while (p != NULL)

{

printf ("\nNode %d: %d %s %d", count, 

p->roll, p->name, p->age);

count++;

p = p->next;      

}

printf ("\n");

}



• To be called from main() function as:

node *head;

………

display (head);
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display (head);



Inserting a Node in a List
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How to do?

• The problem is to insert a node before a 

specified node.

– Specified means some value is given for the 
node (called key).

– In this example, we consider it to be roll.
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– In this example, we consider it to be roll.

• Convention followed:

– If the value of roll is given as negative, the 

node will be inserted at the end of the list.



Contd.

• When a node is added at the beginning,

– Only one next pointer needs to be modified.

• head is made to point to the new node.

• New node points to the previously first 
element.
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element.

• When a node is added at the end,

– Two next pointers need to be modified.

• Last node now points to the new node.

• New node points to NULL.



• When a node is added in the middle,

– Two next pointers need to be modified.

• Previous node now points to the new node.

• New node points to the next node.

Programming and Data Structure 41



void insert (node **head) 

{ 

int  k = 0, rno; 

node *p, *q, *new; 

new = (node *) malloc (sizeof(node)); 

printf ("\nEnter data to be inserted: ");

scanf ("%d %s %d", &new->roll, new->name, &new->age); 

printf ("\nInsert before roll (-ve for end):"); 
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printf ("\nInsert before roll (-ve for end):"); 

scanf ("%d", &rno); 

p = *head; 

if (p->roll == rno)      /* At the beginning */ 

{ 

new->next = p; 

*head = new; 

} 



else 

{

while ((p != NULL) && (p->roll != rno))      

{ 

q = p; 

p = p->next; 

}      

if  (p == NULL)       /* At the end */ 

{ 

q->next = new;    

new->next = NULL;     
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new->next = NULL;     

} 

else if  (p->roll  == rno)     

/* In the middle */ 

{ 

q->next = new; 

new->next = p; 

} 

}

} 

The pointers 
q and p 
always point 
to consecutive 
nodes.



• To be called from main() function as:

node *head;

………

insert (&head);
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insert (&head);



Deleting a node from the list
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What is to be done?

• Here also we are required to delete a 
specified node.

– Say, the node whose roll field is given.

• Here also three conditions arise:
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• Here also three conditions arise:

– Deleting the first node.

– Deleting the last node.

– Deleting an intermediate node.



void  delete (node **head) 

{ 

int  rno; 

node  *p, *q; 

printf ("\nDelete for roll: "); 

scanf ("%d", &rno); 

p = *head; 
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p = *head; 

if  (p->roll == rno)            

/* Delete the first element */ 

{ 

*head = p->next;   

free (p); 

} 



else

{

while  ((p != NULL) && (p->roll != rno))      

{ 

q = p; 

p  =  p->next; 

}      

if  (p == NULL)      /* Element not found */ 

printf ("\nNo match :: deletion failed");
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printf ("\nNo match :: deletion failed");

else if (p->roll == rno)           

/* Delete any other element */ 

{        

q->next  =  p->next; 

free (p); 

} 

}

} 



A sample main() function

int main()

{

node *head;

head = create_list();

display(head);
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insert(&head);

display(head);

delete(&head);

display(head);

}



Few Exercises to Try Out

• Write functions to:

1. Concatenate two given lists into one big list.

node  *concatenate (node *head1, node *head2);

2. Insert an element in a linked list in sorted order. 
The function will be called for every element to 
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The function will be called for every element to 
be inserted.

void  insert_sorted (node **head,  node *element);

3. Always insert elements at one end, and delete 
elements from the other end (first-in first-out 
QUEUE).

void  insert_q (node **head,  node*element)

node  *delete_q (node **head) /* Return the deleted node */



More Exercises

4. Implement a circular linked list, and write 
functions to insert, delete, and traverse nodes 
in the list.

5. Represent a polynomial as a linked list, where 
every node will represent a term of the 
polynomial (a xn), and will contain the values polynomial (anxn), and will contain the values 
of ‘n’ and ‘an’. Write a function to add two 
given polynomials.
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