
Pointers and 2-D Arrays

Spring Semester 2007 Programming and Data Structure 67

Initialization of 2-D Array

#include <stdio.h>

#define MAXROW 5

#define MAXCOL 5

int main()

{

int a[MAXROW][MAXCOL] = {{0,1,2,3,4},

{10,11,12,13,14},

{20,21,22,23,24},

{30,31,32,33,34},

{40,41,42,43,44}},

int b[MAXROW][MAXCOL] = {{10,20,30}, {40,50,60,70,80}},

int c[MAXROW][MAXCOL} = {0,1,2,3,4,10,11,12,13,14,20,21,22,

23,24,30,31,32,33,34,40,41,42,43,44},

int d[][MAXCOL] = {2,4,6,8,0,4,6,8,0,2};

:

:

Spring Semester 2007 Programming and Data Structure 68

What does array name mean in 2-D array?

int a[10], b[5][3];

• We know that ‘a’ is a constant pointer whose

value is the address of the 0th element of the
array a[10].

• Similarly, a+i is the address of the ith element of • Similarly, a+i is the address of the ith element of

the array.

• What is the meaning of ‘b’ and what is its

arithmetic?

Spring Semester 2007 Programming and Data Structure 69

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory
locations.

x: starting address of the array in memory

c: number of columns

k: number of bytes allocated per array element

Spring Semester 2011 Programming and Data Structure 70

k: number of bytes allocated per array element

Element b[i][j] :: allocated memory location at

address x+(i*c+j)*k

b[0][0] b[0][1] b[0]2] ….. b[1][0] b[1][1] b[1][2] …… b[2][0] b[2][1] b[2][2] ……..

Row 0 Row 1 Row 2

Arithmetic of ‘b’

• b is the address of the 0th row.

• b+1 is the address of the 1st row.

• b+2 is the address of the 2nd row.

• In general, b+i will represent the starting • In general, b+i will represent the starting

address of the ith row.

• The size of a row will be:

c × sizeof(int) = 5 × 4 = 20 bytes

where c is the number of columns.

Spring Semester 2007 Programming and Data Structure 71

An example program

#include <stdio.h>

int main()

{

int a[10], b[3][5];

printf (”a: %u \tb: %u\n”, a, b);

printf (”a+1: %u \tb+1: %u\n”, a+1, b+1);

printf (”a+2: %u \tb+2: %u\n”, a+2, b+2); printf (”a+2: %u \tb+2: %u\n”, a+2, b+2);

printf (”a+3: %u \tb+3: %u\n”, a+3, b+3);

}

Spring Semester 2007 Programming and Data Structure 72

Output

a: 3217738332 b: 3217738272

a+1: 3217738336 b+1: 3217738292

a+2: 3217738340 b+2: 3217738312

a+3: 3217738344 b+3: 3217738332

Type of ‘b’

• ‘b’ is a pointer constant of type
int[][5], that is, a row of five integers.

• If such a pointer is incremented by one, it
goes up by 5×sizeof(int) bytes.

Spring Semester 2007 Programming and Data Structure 73

Arithmetic of *(b+i)

• If ‘b’ is the address of the 0th row, *b is the

0th row itself.

– A row may be viewed as a 1-D array, so *b is

the address of the 0th element of the 0th row.

• Similarly, b+i is the address of the ith row, • Similarly, b+i is the address of the ith row,
*(b+i) is the ith row.

– So *(b+i) is the address of the 0th element of

the ith row.

Spring Semester 2007 Programming and Data Structure 74

• If *b is the address of the 0th element of
the 0th row, *b+1 is the address of the 1st

element of the 0th row.

• Similarly, *b+j is the address of the jth

element of the 0th row.element of the 0th row.

• The difference between b+1 and b is 20
bytes, but the difference between *b+1
and *b is the sizeof(int), that is, 4

bytes.

Spring Semester 2007 Programming and Data Structure 75

• So, *(b+i) is the address of the 0th

element of the ith row.

• Thus, *(b+i)+j is the address of the jth

element of the ith row.

– That is, same as &b[i][j].

Spring Semester 2007 Programming and Data Structure 76

*(b+i)+j is equivalent to &b[i][j]

Some Equivalences

((b + i) + j)

*(b + i) + j

*(b[i] + j)

b[i][j]

&b[i][j]

b[i][j]

b[i] + j

(*(b + i))[j]

&b[i][j]

b[i][j]

Spring Semester 2007 Programming and Data Structure 77

Calculation of the address of b[i][j]

int b[3][5]

• The C compiler can calculate the address
of the jth element of the ith row using the
following formula:

b + k (5i + j)

where k = sizeof(int).

• The compiler needs the following:

– Value of row and column indices

– The number of columns

– The size of the data type.

Spring Semester 2007 Programming and Data Structure 78

1-D Array and Formal Parameter

• Consider the declaration: int a[10];

– The array name ‘a’ is a constant pointer.

– The formal parameter: int x[] or int *x is

a pointer variable of the corresponding type,
where the address of an array location is where the address of an array location is
copied into the function.

– These two information are sufficient for the
compiler to calculate the address of x[i] .

Spring Semester 2007 Programming and Data Structure 79

Formal parameter for 2-D Array

• Consider the declaration: int b[ROW][COL];

– The C compiler needs the following information to
calculate the address of b[i][j] (values of i and j

are information local to the function):

• Starting address ‘b’• Starting address ‘b’

• The data type of the array elements, that is, ‘int’

• The number of columns ‘COL’

Spring Semester 2007 Programming and Data Structure 80

An example

#include <stdio.h>

void transpose (int x[][3],

int n)

{

int p, q, t;

for (p=0; p<n; p++)

main()

{

int a[3][3], p, q;

for (p=0; p<3; p++)

for (q=0; q<3; q++)

scanf (”%d”, &a[p][q]);

transpose (a, 3);

Spring Semester 2011 Programming and Data Structure 81

for (p=0; p<n; p++)

for (q=p; q<n; q++)

{

t = x[p][q];

x[p][q] = x[q][p];

x[q][p] = t;

}

}

transpose (a, 3);

for (p=0; p<3; p++)

{

printf (”\n”);

for (q=0; q<3; q++)

printf (”%d ”, a[p][q]);

}

}

