
Pointers in C

Spring Semester 2011 Programming and Data Structure 1

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data item.

• They have a number of useful applications.

– Enables us to access a variable that is defined
outside the function.

Spring Semester 2011 Programming and Data Structure 2

outside the function.

– Can be used to pass information back and forth
between a function and its reference point.

– More efficient in handling data tables.

– Reduces the length and complexity of a program.

– Sometimes also increases the execution speed.

Basic Concept

• In memory, every stored data item occupies
one or more contiguous memory cells
(bytes).

– The number of bytes required to store a data item
depends on its type (char, int, float, double, etc.).

Spring Semester 2011 Programming and Data Structure 3

depends on its type (char, int, float, double, etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the
value of the variable.

– Since every byte in memory has a unique address,
this location will also have its own (unique)
address.

Contd.

• Consider the statement

int xyz = 50;

– This statement instructs the compiler to
allocate a location for the integer variable xyz,
and put the value 50 in that location.

Spring Semester 2011 Programming and Data Structure 4

and put the value 50 in that location.

– Suppose that the address location chosen is
1380.

xyz ���� variable

50 ���� value

1380 ���� address

Contd.

• During execution of the program, the
system always associates the name xyz
with the address 1380.

– The value 50 can be accessed by using either
the name xyz or the address 1380.

• Since memory addresses are simply

Spring Semester 2011 Programming and Data Structure 5

• Since memory addresses are simply
numbers, they can be assigned to some
variables which can be stored in memory.

– Such variables that hold memory addresses
are called pointers.

– Since a pointer is a variable, its value is also
stored in some memory location.

Contd.

• Suppose we assign the address of xyz to
a “pointer” variable p.

– p is said to point to the variable xyz.

Variable Value Address

Spring Semester 2011 Programming and Data Structure 6

Variable Value Address

xyz 50 1380

p 1380 2545

p = &xyz;

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.

• Example:

p = &xyz;

Spring Semester 2011 Programming and Data Structure 7

p = &xyz;

– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a
simple variable or an array element.

&distance

&x[0]

&x[i-2]

Contd.

• Following usages are illegal:

&235 -- Pointing at a constant.

int arr[20];

:

Spring Semester 2011 Programming and Data Structure 8

:

&arr; -- Pointing at array name.

&(a+b) -- Pointing at expression.

Example

#include <stdio.h>

main()

{

int a;

float b, c;

double d;

char ch;

Spring Semester 2011 Programming and Data Structure 9

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ’A’;

printf (”%d is stored in location %u \n”, a, &a) ;

printf (”%f is stored in location %u \n”, b, &b) ;

printf (”%f is stored in location %u \n”, c, &c) ;

printf (”%ld is stored in location %u \n”, d, &d) ;

printf (”%c is stored in location %u \n”, ch, &ch) ;

}

Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

Spring Semester 2011 Programming and Data Structure 10

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

Pointer Declarations

• Pointer variables must be declared before
we use them.

• General form:

data_type *pointer_name;

• Three things are specified in the above

Spring Semester 2011 Programming and Data Structure 11

• Three things are specified in the above
declaration:

• The asterisk (*) tells that the variable
pointer_name is a pointer variable.

• pointer_name needs a memory location.

• pointer_name points to a variable of type
data_type.

Contd.

• Example:

int *count;

float *speed;

• Once a pointer variable has been declared,
it can be made to point to a variable using

Spring Semester 2011 Programming and Data Structure 12

it can be made to point to a variable using
an assignment statement like:

int *p, xyz;

:

p = &xyz;

– This is called pointer initialization.

Things to Remember

• Pointer variables must always point to a data item of
the same type.

float x;

int *p;

: ���� will result in erroneous output

Spring Semester 2011 Programming and Data Structure 13

: ���� will result in erroneous output

p = &x;

• Assigning an absolute address to a pointer variable
is prohibited.

int *count;

:

count = 1268;

Accessing a Variable Through its
Pointer

• Once a pointer has been assigned the address of
a variable, the value of the variable can be
accessed using the indirection operator (*).

int a, b;

Spring Semester 2011 Programming and Data Structure 14

int a, b;

int *p;

:

p = &a;

b = *p;

Equivalent to b = a;

Example 1

#include <stdio.h>

main()

{

int a, b;

int c = 5;

int *p;

Equivalent

Spring Semester 2011 Programming and Data Structure 15

a = 4 * (c + 5) ;

p = &c;

b = 4 * (*p + 5) ;

printf (”a=%d b=%d \n”, a, b);

} a=40 b=40

Example 2

#include <stdio.h>

main()

{

int x, y;

int *ptr;

x = 10 ;

ptr = &x ;

y = *ptr ;

Spring Semester 2011 Programming and Data Structure 16

y = *ptr ;

printf (”%d is stored in location %u \n”, x, &x) ;

printf (”%d is stored in location %u \n”, *&x, &x) ;

printf (”%d is stored in location %u \n”, *ptr, ptr) ;

printf (“%d is stored in location %u \n”, y, &*ptr) ;

printf (“%u is stored in location %u \n”, ptr, &ptr) ;

printf (“%d is stored in location %u \n”, y, &y) ;

*ptr = 25;

printf (”\nNow x = %d \n”, x);

}

Output:

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Spring Semester 2011 Programming and Data Structure 17

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

3221224908 is stored in location 3221224900

10 is stored in location 3221224904

Now x = 25

Pointer Expressions

• Like other variables, pointer variables can
be used in expressions.

• If p1 and p2 are two pointers, the following
statements are valid:

sum = *p1 + *p2;

Spring Semester 2011 Programming and Data Structure 18

sum = *p1 + *p2;

prod = *p1 * *p2;

prod = (*p1) * (*p2);

*p1 = *p1 + 2;

x = *p1 / *p2 + 5;

*p1 can appear on

the left hand side

Contd.

• What are allowed in C?

– Add an integer to a pointer.

– Subtract an integer from a pointer.

– Subtract one pointer from another (related).

Spring Semester 2011 Programming and Data Structure 19

• If p1 and p2 are both pointers to the same
array, then p2–p1 gives the number of
elements between p1 and p2.

• What are not allowed?

– Add two pointers.
p1 = p1 + p2;

– Multiply / divide a pointer in an expression.
p1 = p2 / 5;

Spring Semester 2011 Programming and Data Structure 20

p1 = p2 / 5;

p1 = p1 – p2 * 10;

Scale Factor

• We have seen that an integer value can be added
to or subtracted from a pointer variable.

int *p1, *p2;

int i, j;

:

Spring Semester 2011 Programming and Data Structure 21

:

p1 = p1 + 1;

p2 = p1 + j;

p2++;

p2 = p2 – (i + j);

– In reality, it is not the integer value which is
added/subtracted, but rather the scale factor

times the value.

Contd.

Data Type Scale Factor

char 1

int 4

float 4

double 8

Spring Semester 2011 Programming and Data Structure 22

– If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4.

• Note:

– The exact scale factor may vary from one
machine to another.

– Can be found out using the sizeof function.

– Syntax:

Spring Semester 2011 Programming and Data Structure 23

– Syntax:

sizeof (data_type)

Example: to find the scale factors

#include <stdio.h>

main()

{

printf (”No. of bytes occupied by int is %d \n”, sizeof(int));

printf (”No. of bytes occupied by float is %d \n”, sizeof(float));

printf (”No. of bytes occupied by double is %d \n”, sizeof(double));

printf (”No. of bytes occupied by char is %d \n”, sizeof(char));

}

Spring Semester 2011 Programming and Data Structure 24

Output:

Number of bytes occupied by int is 4

Number of bytes occupied by float is 4

Number of bytes occupied by double is 8

Number of bytes occupied by char is 1

Passing Pointers to a Function

• Pointers are often passed to a function as
arguments.

– Allows data items within the calling program to
be accessed by the function, altered, and then
returned to the calling program in altered form.

– Called call-by-reference (or by address or by

Spring Semester 2011 Programming and Data Structure 25

– Called call-by-reference (or by address or by
location).

• Normally, arguments are passed to a
function by value.

– The data items are copied to the function.

– Changes are not reflected in the calling program.

Example: passing arguments by value

#include <stdio.h>

main()

{

int a, b;

a = 5; b = 20;

swap (a, b);

printf (“\n a=%d, b=%d”, a, b);

}

Output

a=5, b=20

Spring Semester 2011 Programming and Data Structure 26

}

void swap (int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

a=5, b=20

Example: passing arguments by
reference

#include <stdio.h>

main()

{

int a, b;

a = 5; b = 20;

swap (&a, &b);

printf (“\n a=%d, b=%d”, a, b);

}

Output

a=20, b=5

Spring Semester 2011 Programming and Data Structure 27

}

void swap (int *x, int *y)

{

int t;

t = *x;

*x = *y;

*y = t;

}

a=20, b=5

scanf Revisited

int x, y;

printf (”%d %d %d”, x, y, x+y);

• What about scanf ?

Spring Semester 2011 Programming and Data Structure 28

scanf (”%d %d %d”, x, y, x+y) ;

scanf (”%d %d”, &x, &y) ;

NO

YES

Example: Sort 3 integers

Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

Spring Semester 2011 Programming and Data Structure 29

3. Put second smallest in y

• Swap y, z if necessary.

Contd.

#include <stdio.h>

main()

{

int x, y, z;

………

scanf (”%d %d %d”, &x, &y, &z);

Spring Semester 2011 Programming and Data Structure 30

scanf (”%d %d %d”, &x, &y, &z);

if (x > y) swap(&x,&y);

if (x > z) swap(&x,&z);

if (y > z) swap(&y,&z);

………

}

sort3 as a function

#include <stdio.h>

main()

{

int x, y, z;

………

scanf (”%d %d %d”, &x, &y, &z);

sort3 (&x, &y, &z);

………

Spring Semester 2011 Programming and Data Structure 31

………

}

void sort3 (int *xp, int *yp, int *zp)

{

if (*xp > *yp) swap (xp, yp);

if (*xp > *zp) swap (xp, zp);

if (*yp > *zp) swap (yp, zp);

}

Contd.

• Why no ‘&’ in swap call?

– Because xp, yp and zp are already pointers

that point to the variables that we want to

swap.

Spring Semester 2011 Programming and Data Structure 32

Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

Spring Semester 2011 Programming and Data Structure 33

locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

Example

• Consider the declaration:

int x[5] = {1, 2, 3, 4, 5};

– Suppose that the base address of x is 2500,
and each integer requires 4 bytes.

Element Value Address

Spring Semester 2011 Programming and Data Structure 34

Element Value Address

x[0] 1 2500

x[1] 2 2504

x[2] 3 2508

x[3] 4 2512

x[4] 5 2516

Contd.

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent.

– We can access successive values of x by
using p++ or p-- to move from one element to

another.

Spring Semester 2011 Programming and Data Structure 35

another.

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the

value of x[i]

Example: function to find average

#include <stdio.h>

main()

{

int x[100], k, n;

scanf (”%d”, &n);

float avg (array, size)

int array[], size;

{

int *p, i , sum = 0;

p = array;

Spring Semester 2011 Programming and Data Structure 36

for (k=0; k<n; k++)

scanf (”%d”, &x[k]);

printf (”\nAverage is %f”,

avg (x, n));

}

for (i=0; i<size; i++)

sum = sum + *(p+i);

return ((float) sum / size);

}

Example with 2-D array

Spring Semester 2011 Programming and Data Structure 37

TO BE DISCUSSED LATER

Structures Revisited

• Recall that a structure can be declared as:
struct stud {

int roll;

char dept_code[25];

float cgpa;

};

Spring Semester 2011 Programming and Data Structure 38

};

struct stud a, b, c;

• And the individual structure elements can
be accessed as:

a.roll , b.roll , c.cgpa

Arrays of Structures

• We can define an array of structure
records as

struct stud class[100];

• The structure elements of the individual

Spring Semester 2011 Programming and Data Structure 39

• The structure elements of the individual
records can be accessed as:

class[i].roll

class[20].dept_code

class[k++].cgpa

Example :: sort by roll number (bubble sort)

#include <stdio.h>

struct stud

{

int roll;

char dept_code[25];

float cgpa;

};

main()

for (k=0; k<n; k++)

scanf (”%d %s %f”, &class[k].roll,

class[k].dept_code,

&class[k].cgpa);

for (j=0; j<n-1; j++)

for (k=1; k<n-j; k++)

{

if (class[k-1].roll >

Spring Semester 2011 Programming and Data Structure 40

main()

{

struc stud class[100], t;

int j, k, n;

scanf (”%d”, &n);

/* no. of students */

class[k].roll)

{

t = class[k-1];

class[k-1] = class[k];

class[k] = t;

}

}

<<<< PRINT THE RECORDS >>>>

}

Example :: selection sort

int min_loc (struct stud x[],

int k, int size)

int j, pos;

{

pos = k;

for (j=k+1; j<size; j++)

if (x[j] < x[pos])

pos = j;

int selsort (struct stud x[],int n)

{

int k, m;

for (k=0; k<n-1; k++)

{

m = min_loc (x, k, n);

Spring Semester 2011 Programming and Data Structure 41

pos = j;

return pos;

}

temp = a[k];

a[k] = a[m];

a[m] = temp;

}

}main()

{

struc stud class[100];

int n;

…

selsort (class, n);

…

• C allows the use of arrays as structure members.

• Example:

struct stud {

int roll;

char dept_code[25];

int marks[6];

Arrays within Structures

int marks[6];

float cgpa;

};

struct stud class[100];

• To access individual marks of students:

class[35].marks[4]

class[i].marks[j]

Spring Semester 2011 Programming and Data Structure 42

Pointers and Structures

• You may recall that the name of an array
stands for the address of its zero-th

element.

– Also true for the names of arrays of structure
variables.

Spring Semester 2011 Programming and Data Structure 43

variables.

• Consider the declaration:
struct stud {

int roll;

char dept_code[25];

float cgpa;

} class[100], *ptr ;

– The name class represents the address of the

zero-th element of the structure array.

– ptr is a pointer to data objects of the type
struct stud.

• The assignment

ptr = class;

Spring Semester 2011 Programming and Data Structure 44

ptr = class;

will assign the address of class[0] to ptr.

• When the pointer ptr is incremented by one
(ptr++) :

– The value of ptr is actually increased by
sizeof(stud).

– It is made to point to the next record.

• Once ptr points to a structure variable, the

members can be accessed as:

ptr –> roll;

ptr –> dept_code;

ptr –> cgpa;

Spring Semester 2011 Programming and Data Structure 45

– The symbol “–>” is called the arrow operator.

A Warning

• When using structure pointers, we should
take care of operator precedence.

– Member operator “.” has higher precedence than
“*”.

ptr –> roll and (*ptr).roll mean the

Spring Semester 2011 Programming and Data Structure 46

ptr –> roll and (*ptr).roll mean the

same thing.

*ptr.roll will lead to error.

– The operator “–>” enjoys the highest priority

among operators.
++ptr –> roll will increment roll, not ptr.

(++ptr) –> roll will do the intended thing.

Structures and Functions

• A structure can be passed as argument to
a function.

• A function can also return a structure.

• The process shall be illustrated with the

Spring Semester 2011 Programming and Data Structure 47

• The process shall be illustrated with the
help of an example.

– A function to add two complex numbers.

Example: complex number addition

#include <stdio.h>

struct complex {

float re;

float im;

};

main()

{

struct complex add (x, y)

struct complex x, y;

{

struct complex t;

t.re = x.re + y.re ;

t.im = x.im + y.im ;

return (t) ;

Spring Semester 2011 Programming and Data Structure 48

{

struct complex a, b, c;

scanf (”%f %f”, &a.re, &a.im);

scanf (”%f %f”, &b.re, &b.im);

c = add (a, b) ;

printf (”\n %f %f”, c,re, c.im);

}

return (t) ;

}

With typedef

#include <stdio.h>

typedef struct {

float re;

float im;

} complex;

main()

{

complex add (complex x,

complex y)

{

complex t;

t.re = x.re + y.re ;

t.im = x.im + y.im ;

return (t) ;

Spring Semester 2011 Programming and Data Structure 49

{

complex a, b, c;

scanf (”%f %f”, &a.re, &a.im);

scanf (”%f %f”, &b.re, &b.im);

c = add (a, b) ;

printf (”\n %f %f”, c,re, c.im);

}

return (t) ;

}

Example: Alternative way using
pointers

#include <stdio.h>

typedef struct {

float re;

float im;

} complex;

void add (x, y, t)

complex *x, *y, *t;

{

t->re = x->re + y->re;

t->im = x->im + y->im;

}

Spring Semester 2011 Programming and Data Structure 50

main()

{

complex a, b, c;

scanf (”%f %f”, &a.re, &a.im);

scanf (”%f %f”, &b.re, &b.im);

add (&a, &b, &c) ;

printf (”\n %f %f”, c,re, c.im);

}

}

