
Passing Arrays to a Function

Spring Semester 2011 Programming and Data Structure 24

How to pass arrays to a function?

• An array name can be used as an argument
to a function.

– Permits the entire array to be passed to the
function.

– The way it is passed differs from that for ordinary
variables.

Spring Semester 2011 Programming and Data Structure 25

variables.

• Rules:

– The array name must appear by itself as argument,
without brackets or subscripts.

– The corresponding formal argument is written in
the same manner.

• Declared by writing the array name with a pair of empty
brackets.

An Example with 1-D Array

main()

{

int n;

float list[100], avg;

:

avg = average(n,list);

:

}

We can also write

float x[100];

But the way the
function is written

Spring Semester 2011 Programming and Data Structure 26

}

float average(a,x)

int a;

float x[];

{

:

sum = sum + x[i];

}

function is written
makes it general; it
works with arrays of
any size.

main()

{

int n;

float list[100], avg;

:

avg = average(n,list);

:

Same program, with
the parameter types
specified in the same
line as the function
definition.

Spring Semester 2011 Programming and Data Structure 27

:

}

float average(int a, float x[])

{

:

sum = sum + x[i];

}

definition.

The Actual Mechanism

• When an array is passed to a function, the
values of the array elements are not passed

to the function.

– The array name is interpreted as the address of
the first array element.

– The formal argument therefore becomes a pointer

Spring Semester 2011 Programming and Data Structure 28

– The formal argument therefore becomes a pointer
to the first array element.

– When an array element is accessed inside the
function, the address is calculated using the
formula stated before.

– Changes made inside the function are thus also
reflected in the calling program.

Contd.

• Passing parameters in this way is called

call-by-reference.

• Normally parameters are passed in C using

call-by-value.

Spring Semester 2011 Programming and Data Structure 29

call-by-value.

• Basically what it means?

– If a function changes the values of array elements,
then these changes will be made to the original
array that is passed to the function.

– This does not apply when an individual element is
passed on as argument.

Example: Parameter passed as a value

#include <stdio.h>

void swap (int a, int b)

{

int temp;

Spring Semester 2011 Programming and Data Structure 30

temp=a;

a=b;

b=temp;

}

main()

{

int x,y;

x=10; y=15;

printf("x=%d y=%d \n",x,y);

Output:
x=10 y=15

x=10 y=15

Spring Semester 2011 Programming and Data Structure 31

printf("x=%d y=%d \n",x,y);

swap(x,y);

printf("x=%d y=%d \n",x,y);

}

x=10 y=15

Example: Minimum of a set of numbers

#include <stdio.h>

int minimum (int x[], int y);

main()

{

int a[100], i, n;

int minimum (x,size)

int x[], size;

{

int i, min = 99999;

for (i=0;i<size;i++)

if (min < a[i])

Spring Semester 2011 Programming and Data Structure 32

scanf (”%d”, &n);

for (i=0; i<n; i++)

scanf (”%d”, &a[i]);

printf (“\n Minimum is %d”,

minimum(a,n));

}

if (min < a[i])

min = a[i];

return (min);

}

Parameter x passed by reference, size by value.

Example: Square each element of array

#include <stdio.h>

void square (int a[], int b);

main()

{

int a[100], i, n;

scanf (”%d”, &n);

void square (x,size)

int x[], size;

{

int i;

for (i=0;i<size;i++)

a[i] = a[i]*a[i];

Spring Semester 2011 Programming and Data Structure 33

scanf (”%d”, &n);

for (i=0; i<n; i++)

scanf (”%d”, &a[i]);

square (a, n);

printf (“\nNew array is: “);

for (i=0; i<n; i++)

printf (“ %d”, a[i]);

}

a[i] = a[i]*a[i];

min = a[i];

return;

}

Character String

Spring Semester 2011 Programming and Data Structure 34

Introduction

• A string is an array of characters.

– Individual characters are stored in memory in
ASCII code.

– A string is represented as a sequence of
characters terminated by the null (‘\0’)

Spring Semester 2011 Programming and Data Structure 35

characters terminated by the null (‘\0’)
character.

‘\0’leH ol“Hello” ����

ASCII Code
Chart

Spring Semester 2011 Programming and Data Structure 36

Declaring String Variables

• A string is declared like any other array:

char string-name [size];

– size determines the number of characters in
string_name.

Spring Semester 2011 Programming and Data Structure 37

• When a character string is assigned to a
character array, it automatically appends the
null character (‘\0’) at the end of the string.

– size should be equal to the number of characters
in the string plus one.

Examples

char name[30];

char city[15];

char dob[11];

• A string may be initialized at the time of
declaration.

Spring Semester 2011 Programming and Data Structure 38

declaration.

char city[15] = ”Calcutta”;

char city[15] = {’C’, ’a’, ’l’, ’c’, ’u’,

’t’, ’t’, ’a’};

char dob[] = ”12-10-1975”;

Equivalent (?)

• Hot to access individual characters of a
string?

– Just like a normal array.

– city[0], city[1], city[2], etc.

• Accessing individual characters from a • Accessing individual characters from a
string constant.

– Possible to do in C.

– Example: ”GOOD MORNING”[3] will give
the value ’D’.

Spring Semester 2011 Programming and Data Structure 39

Reading Strings from the Keyboard

• Two different cases will be considered:

– Reading words

– Reading an entire line

Spring Semester 2011 Programming and Data Structure 40

Reading “words”

• scanf can be used with the “%s” format
specification.

char name[30];
:
:
scanf (”%s”, name);

– The ampersand (&) is not required before the

Spring Semester 2011 Programming and Data Structure 41

– The ampersand (&) is not required before the
variable name with “%s”.

• name represents an address.

– The problem here is that the string is taken to
be up to the first white space (blank, tab,
carriage return, etc.)

• If we type “Rupak Biswas”

• name will be assigned the string “Rupak”

Reading a “line of text”

• In many applications, we need to read in
an entire line of text (including blank
spaces).

• We can use the getchar() function for the
purpose.

Spring Semester 2011 Programming and Data Structure 42

purpose.

char line[81], ch;

int c=0;

:

:

do

{

ch = getchar();

line[c] = ch;

c++;

Read characters
until CR (‘\n’) is
encountered

Spring Semester 2011 Programming and Data Structure 43

c++;

}

while (ch != ’\n’);

c = c – 1;

line[c] = ’\0’;

encountered

Make it a valid
string

Reading a line :: Alternate Approach

char line[81];

:

:

scanf (”%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

� Reads a string containing uppercase

characters and blank spaces

Spring Semester 2011 Programming and Data Structure 44

char line[81];

:

:

scanf (”%[^\n]”, line);

characters and blank spaces

� Reads a string containing any characters

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

char name[50];

:

Spring Semester 2011 Programming and Data Structure 45

:

:

printf (”\n %s”, name);

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.

– strcpy :: string copy

– strlen :: string length

– strcmp :: string comparison

Spring Semester 2011 Programming and Data Structure 46

– strcmp :: string comparison

– strtcat :: string concatenation

• It is required to add the line

#include <string.h>

strcpy()

• Works very much like a string assignment
operator.

strcpy (string1, string2);

– Assigns the contents of string2 to string1.

• Examples:

Spring Semester 2011 Programming and Data Structure 47

• Examples:

strcpy (city, ”Calcutta”);

strcpy (city, mycity);

• Warning:

– Assignment operator do not work for strings.

city = ”Calcutta”; ���� INVALID

strlen()

• Counts and returns the number of characters
in a string.

len = strlen (string);

/* Returns an integer */

Spring Semester 2011 Programming and Data Structure 48

– The null character (‘\0’) at the end is not counted.

– Counting ends at the first null character.

char city[15];

int n;

:

:

strcpy (city, ”Calcutta”);

n = strlen (city);

Spring Semester 2011 Programming and Data Structure 49

n is assigned 8

strcmp()

• Compares two character strings.

int strcmp(string1, string2);

– Compares the two strings and returns 0 if they
are identical; non-zero otherwise.

Examples:

Spring Semester 2011 Programming and Data Structure 50

• Examples:

if (strcmp(city, ”Delhi”) == 0)

{ …… }

if (strcmp(city1, city2) != 0)

{ …… }

strcat()

• Joins or concatenates two strings together.

strcat (string1, string2);

– string2 is appended to the end of string1.

– The null character at the end of string1 is
removed, and string2 is joined at that point.

Spring Semester 2011 Programming and Data Structure 51

removed, and string2 is joined at that point.

• Example:

strcpy(name1, ”Amit ”);

strcpy(name2, ”Roy“);

strcat(name1, name2);

‘\0’imA t

‘\0’yoR

imA t ‘\0’yoR

Example:: count uppercase

/* Read a line of text and count the number of

uppercase letters */

#include <stdio.h>

#include <string.h>

main()

{

char line[81];

int i, n, count=0;

Spring Semester 2011 Programming and Data Structure 52

int i, n, count=0;

scanf (“%[^\n]”, line);

n = strlen (line);

for (i=0; i<n; i++)

if (isupper(line[i])

count++;

printf (“\n The number of uppercase letters in

the string %s is %d”, line, count);

}

Example:: compare two strings

#include <stdio.h>

int my_strcmp(char s1[],char s2[])

{

int i=0;

Parameters passed as character array

Compare character pairs till the end of a string

Spring Semester 2011 Programming and Data Structure 53

int i=0;

while(s1[i]!='\0' && s2[i]!='\0'){

if(s1[i]!=s2[i]) return(s1[i]-s2[i]);

else i++;

}

return(s1[i]-s2[i]);

}

Return immediately if they

are not equal.

main()

{

char string1[100],string2[100];

printf("Give two strings \n");

scanf("%s%s",string1,string2);

printf("Comparison result: %d \n",
my_strcmp(string1,string2));

}

Spring Semester 2011 Programming and Data Structure 54

}

Give two strings
IITKGP IITMUMBAI

Comparison result: -2

Give two strings
KOLKATA KOLKATA

Comparison result: 0

Introduction to Pointers

• What is the concept?

– Pointer is a variable which stores the address
in memory location of another variable.

– When declared, we must specify the data type
of the variable being pointed to.of the variable being pointed to.

– Examples:
int *p;

float *x, *y;

char *flag;

Spring Semester 2011 Programming and Data Structure 55

• A pointer variable can be assigned the
address of another variable.

int a, *p;

a=10;

p = &a; /* Address of ‘a’ assigned to ‘p’ */p = &a; /* Address of ‘a’ assigned to ‘p’ */

printf (”%d %d”, a, *p);

/* Will print “10 10” */

• Point to note:

– Array name indicates pointer to first array element.

int num[10], *xyz;

xyz = num; /* Points to x[0] */

Spring Semester 2011 Programming and Data Structure 56

– When an integer expression E is added to or
subtracted from a pointer, actually scale factor
times E is added/subtracted.

• Scale factor indicates size of the data item being pointed
to in number of bytes.

• Scale factor for char is 1, int is 4, float is 4, double is 8, etc.• Scale factor for char is 1, int is 4, float is 4, double is 8, etc.

int a, *p;

p = &a; /* p is assigned address of a

(say, 2500) */

p++; /* p will become 2504 */

p = p – 10; /* p will become 2464 */

Spring Semester 2011 Programming and Data Structure 57

• Consider the declaration:

int x[5] = {1, 2, 3, 4, 5};

int *p;

– Suppose that the base address of x is 2500,
and each integer requires 4 bytes.

Spring Semester 2011 Programming and Data Structure 58

and each integer requires 4 bytes.

Element Value Address

x[0] 1 2500

x[1] 2 2504

x[2] 3 2508

x[3] 4 2512

x[4] 5 2516

Contd.

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent.

• Relationship between p and x:

Spring Semester 2011 Programming and Data Structure 59

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the

value of x[i]

• An example:

int x[] = {1,2,3,4,5,6,7,8,9,10};

int *p;

p = x + 3; /* Point to fourth element of x */p = x + 3; /* Point to fourth element of x */

printf (”%d”, *p); /* Will print 4 */

printf (”%d”, *(p+5));

/* Will print 9 */

printf (”%d %d”, p[3], p[-1]);

/* Will print 7 and 3 */

Spring Semester 2011 Programming and Data Structure 60

Example: function to find average

#include <stdio.h>

main()

{

int x[100], k, n;

scanf (”%d”, &n);

float avg (array, size)

int array[], size;

{

int *p, i , sum = 0;

p = array;

Spring Semester 2011 Programming and Data Structure 61

for (k=0; k<n; k++)

scanf (”%d”, &x[k]);

printf (”\nAverage is %f”,

avg (x, n));

}

for (i=0; i<size; i++)

sum = sum + *(p+i);

return ((float) sum / size);

}

