
Passing Pointers to a Function

• Pointers are often passed to a function as
arguments.
– Allows data items within the calling program to

be accessed by the function, altered, and then
returned to the calling program in altered form.

– Called call-by-reference (or by address or by

Spring Semester 2011 Programming and Data Structure 25

– Called call-by-reference (or by address or by
location).

• Normally, arguments are passed to a
function by value.
– The data items are copied to the function.

– Changes are not reflected in the calling program.

Example: passing arguments by value

#include <stdio.h>
main()
{

int a, b;
a = 5; b = 20;
swap (a, b);
printf (“\n a=%d, b=%d”, a, b);

}

Output

a=5, b=20

Spring Semester 2011 Programming and Data Structure 26

}

void swap (int x, int y)
{

int t;
t = x;
x = y;
y = t;

}

a=5, b=20

Example: passing arguments by
reference

#include <stdio.h>
main()
{

int a, b;
a = 5; b = 20;
swap (&a, &b);
printf (“\n a=%d, b=%d”, a, b);

}

Output

a=20, b=5

Spring Semester 2011 Programming and Data Structure 27

}

void swap (int *x, int *y)
{

int t;
t = *x;
*x = *y;
*y = t;

}

a=20, b=5

scanf Revisited

int x, y;

printf (”%d %d %d”, x, y, x+y);

• What about scanf ?

Spring Semester 2011 Programming and Data Structure 28

scanf (”%d %d %d”, x, y, x+y) ;

scanf (”%d %d”, &x, &y) ;

NO

YES

Example: Sort 3 integers

Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

Spring Semester 2011 Programming and Data Structure 29

3. Put second smallest in y

• Swap y, z if necessary.

Contd.

#include <stdio.h>
main()
{

int x, y, z;
………
scanf (”%d %d %d”, &x, &y, &z);

Spring Semester 2011 Programming and Data Structure 30

scanf (”%d %d %d”, &x, &y, &z);
if (x > y) swap(&x,&y);
if (x > z) swap(&x,&z);
if (y > z) swap(&y,&z);
………

}

sort3 as a function

#include <stdio.h>
main()
{

int x, y, z;
………
scanf (”%d %d %d”, &x, &y, &z);
sort3 (&x, &y, &z);
………

Spring Semester 2011 Programming and Data Structure 31

………
}

void sort3 (int *xp, int *yp, int *zp)
{

if (*xp > *yp) swap (xp, yp);
if (*xp > *zp) swap (xp, zp);
if (*yp > *zp) swap (yp, zp);

}

Contd.

• Why no ‘&’ in swap call?

– Because xp, yp and zp are already pointers

that point to the variables that we want to

swap.

Spring Semester 2011 Programming and Data Structure 32

Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

Spring Semester 2011 Programming and Data Structure 33

locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

Example

• Consider the declaration:
int x[5] = {1, 2, 3, 4, 5};

– Suppose that the base address of x is 2500,
and each integer requires 4 bytes.

Element Value Address

Spring Semester 2011 Programming and Data Structure 34

Element Value Address

x[0] 1 2500
x[1] 2 2504
x[2] 3 2508
x[3] 4 2512
x[4] 5 2516

Contd.

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent.

– We can access successive values of x by
using p++ or p-- to move from one element to
another.

Spring Semester 2011 Programming and Data Structure 35

another.

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the

value of x[i]

Example: function to find average

#include <stdio.h>
main()
{
int x[100], k, n;

scanf (”%d”, &n);

float avg (array, size)
int array[], size;
{
int *p, i , sum = 0;

p = array;

Spring Semester 2011 Programming and Data Structure 36

for (k=0; k<n; k++)
scanf (”%d”, &x[k]);

printf (”\nAverage is %f”,
avg (x, n));

}

for (i=0; i<size; i++)
sum = sum + *(p+i);

return ((float) sum / size);
}

