
Spring Semester 2011 Programming and Data Structure 40

for Statement

• The “for” statement is the most commonly 
used looping structure in C.

• General syntax:
for (expression1; expression2; expression3)

statement-to-repeat;

for (expression1; expression2; expression3)  
{

statement_1;
:

statement_N;
}



Spring Semester 2011 Programming and Data Structure 41

• How it works?
– “expression1” is used to initialize some variable 

(called index) that controls the looping action.
– “expression2” represents a condition that must 

be true for the loop to continue.
– “expression3” is used to alter the value of the 

index initially assigned by “expression1”.

int digit;

for (digit=0; digit<=9;digit++)

printf (“%d \n”, digit);

int digit;

for (digit=9;digit>=0;digit--)

printf (“%d \n”, digit);



Spring Semester 2011 Programming and Data Structure 42

expression2

statement(s)

true

false
Single-entry / 

single-exit
structure

expression1

expression3



Spring Semester 2011 Programming and Data Structure 43

for :: Examples

int fact = 1, i;

for (i=1; i<=10; i++)
fact = fact * i;

printf (“%d \n”, fact);

int sum = 0, N, count;

scanf (“%d”, &N);

for (i=1; i<=N, i++)
sum = sum + i * i;

printf (“%d \n”, sum);



Spring Semester 2011 Programming and Data Structure 44

• The comma operator
– We can give several statements separated by 

commas in place of “expression1”, “expression2”, 
and “expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;



Spring Semester 2011 Programming and Data Structure 45

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment 

can contain arithmetic expressions.
for (k = x;  k <= 4 * x * y;  k += y / x)

• "Increment" may be negative (decrement)
for  (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:
– Body of for structure not performed.
– Control proceeds with statement after for

structure.



A common mistake

Spring Semester 2007 Programming and Data Structure 46

int fact = 1, i;

for (i=1; i<=10; i++)
fact = fact * i;

printf (“%d \n”, fact);

int fact = 1, i;

for (i=1; i<=10; i++);
fact = fact * i;

printf (“%d \n”, fact);

Loop body will execute 
only once!



Spring Semester 2011 Programming and Data Structure 47

Specifying “Infinite Loop”

while  (1)  {
statements

}

for  (; ;)
{

statements
}

do  {
statements

}  while (1);



Spring Semester 2011 Programming and Data Structure 48

The “break” Statement Revisited

• Break out of the loop { }
– can use with

• while
• do while
• for
• switch

– does not work with 
• if 
• else 

• Causes immediate exit from a while, do/while, for or 
switch structure.

• Program execution continues with the first 
statement after the structure.



Spring Semester 2011 Programming and Data Structure 49

An example with “break”

#include  <stdio.h>
main()
{

int fact, i;

fact = 1;  i = 1;

while ( i<10 )    {   /* break when fact >100 */
fact = fact * i;
if ( fact > 100 )  {

printf ("Factorial of %d  above 100", i);
break; /* break out of the loop */

}
i ++ ;

}
}



Spring Semester 2011 Programming and Data Structure 50

The “continue” Statement

• Skips the remaining statements in the body 
of a while, for or do/while structure. 
– Proceeds with the next iteration of the loop.

• while and do/while
– Loop-continuation test is evaluated immediately 

after the continue statement is executed.

• for structure
– expression3 is evaluated, then expression2 is 

evaluated.



Spring Semester 2011 Programming and Data Structure 51

An example with “break” and “continue”

fact = 1; i = 1; /* a program to calculate 10! */
while (1)  {

fact = fact * i;
i ++;
if (i<10)

continue; /* not done yet ! Go to loop and 
perform next iteration*/

break;
}



Spring Semester 2011 Programming and Data Structure 52

Some Examples



Spring Semester 2011 Programming and Data Structure 53

Example 1: Test if a number is prime or not

#include <stdio.h>
main()
{

int  n, i=2;
scanf (”%d”, &n);
while (i < n)  {

if (n % i == 0)  {
printf (”%d is not a prime \n”, n);
exit;

}
i++;

}
printf (”%d is a prime \n”, n);

}



Spring Semester 2011 Programming and Data Structure 54

More efficient??

#include <stdio.h>
main()
{

int  n, i=3;
scanf (”%d”, &n);
while (i < sqrt(n))  {

if (n % i == 0)  {
printf (”%d is not a prime \n”, n);
exit;

}
i = i + 2;

}
printf (”%d is a prime \n”, n);

}



Spring Semester 2011 Programming and Data Structure 55

Example 2: Find the sum of digits of a number

#include  <stdio.h>
main()
{

int n, sum=0;
scanf (”%d”, &n);
while (n != 0)  {

sum = sum + (n % 10);
n = n / 10;

}
printf (”The sum of digits of the number is %d \n”, sum);

}



Spring Semester 2011 Programming and Data Structure 56

Example 3: Decimal to binary conversion

#include  <stdio.h>
main()
{

int  dec;
scanf (”%d”, &dec);
do
{

printf (”%2d”, (dec % 2));
dec = dec / 2;

}  while (dec != 0);
printf (”\n”);

}



Spring Semester 2011 Programming and Data Structure 57

Example 4: Compute GCD of two numbers

#include  <stdio.h>
main()
{

int  A, B, temp;
scanf (”%d %d”, &A, &B);
if  (A > B)  
{temp = A;  A = B;  B = temp;}

while ((B % A) != 0)  {
temp = B % A;
B = A;
A = temp;

}
printf (”The GCD is %d”, A);

}

12 )  45  (  3

36

9  )  12  (  1

9

3  )  9  (  3

9

0 

Initial:         A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0   ? GCD is 3



Spring Semester 2011 Programming and Data Structure 58

Shortcuts in Assignments

• Additional assignment operators:
+ =,     – =,    * =,    / =,    % =

a += b is equivalent to  a = a + b
a *= (b+10) is equivalent to  a = a * (b + 10)

and so on.



Spring Semester 2011 Programming and Data Structure 59

More about scanf and printf



Spring Semester 2011 Programming and Data Structure 60

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, … , argn);

– “control string refers to a string typically 
containing data types of the arguments to be 
read in; 

– the arguments arg1, arg2, …  represent pointers 
to data items in memory.

Example:  scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of 
characters, with one character group for each input 
data item.
– ‘%’ sign, followed by a conversion character.



Spring Semester 2011 Programming and Data Structure 61

– Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

– We can also specify the maximum field-width 
of a data item, by specifying a number 
indicating the field width before the conversion 
character.

Example:    scanf (“%3d %5d”, &a, &b);



Spring Semester 2011 Programming and Data Structure 62

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, … , argn);

– “control string refers to a string containing 
formatting information and data types of the 
arguments to be output; 

– the arguments arg1, arg2, …  represent the 
individual output data items.

• The conversion characters are the same 
as in scanf.



Spring Semester 2011 Programming and Data Structure 63

• Examples:
printf  (“The average of %d and %d is %f”, a, b, avg);
printf  (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f  %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.


