
Spring Semester 2011 Programming and Data Structure 20

The switch Statement

• This causes a particular group of statements
to be chosen from several available groups.
– Uses “switch” statement and “case” labels.
– Syntax of the “switch” statement:

switch (expression) {
case expression-1: { …… }
case expression-2: { …… }

case expression-m: { …… }
default: { ……… }

}

where “expression” evaluates to int or char

Spring Semester 2011 Programming and Data Structure 21

Example

switch (letter)
{

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");
break;

}

Spring Semester 2011 Programming and Data Structure 22

The break Statement

• Used to exit from a switch or terminate
from a loop.
– Already illustrated in the previous example.

• With respect to “switch”, the “break”
statement causes a transfer of control out
of the entire “switch” statement, to the
first statement following the “switch”
statement block.

Spring Semester 2011 Programming and Data Structure 23

Example

switch (choice = getchar()) {

case ’r’:
case ’R’: printf (“RED \n”);

break;
case ’g’:
case ’G’: printf (“GREEN \n”);

break;
case ’b’:
case ’B’: printf (“BLUE \n”);

break;
default: printf (“Invalid choice \n”);

}

Spring Semester 2011 Programming and Data Structure 24

Example

switch (choice = toupper(getchar())) {

case ’R’: printf (“RED \n”);
break;

case ’G’: printf (“GREEN \n”);
break;

case ’B’: printf (“BLUE \n”);
break;

default: printf (“Invalid choice \n”);

}

Spring Semester 2011 Programming and Data Structure 25

• The “switch” statement also constitutes a
single-entry / single-exit structure.

switch statement

Spring Semester 2011 Programming and Data Structure 26

A Look Back at Arithmetic Operators:
the Increment and Decrement

Spring Semester 2011 Programming and Data Structure 27

Increment (++) and Decrement (--)

• Both of these are unary operators; they
operate on a single operand.

• The increment operator causes its operand
to be increased by 1.
– Example: a++, ++count

• The decrement operator causes its operand
to be decreased by 1.
– Example: i--, --distance

Spring Semester 2011 Programming and Data Structure 28

• Operator written before the operand (++i, --i))
– Called pre-increment operator.

– Operator will be altered in value before it is
utilized for its intended purpose in the program.

• Operator written after the operand (i++, i--)
– Called post-increment operator.

– Operator will be altered in value after it is utilized
for its intended purpose in the program.

Spring Semester 2011 Programming and Data Structure 29

Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation
dependent)

Called side effects:: while calculating some values,
something else get changed.

Spring Semester 2011 Programming and Data Structure 30

Control Structures that Allow
Repetition

Spring Semester 2011 Programming and Data Structure 31

Types of Repeated Execution

• Loop
– Group of instructions that are executed

repeatedly while some condition remains true.

• Counter-controlled repetition
– Definite repetition – know how many times

loop will execute.
– Control variable used to count repetitions.

• Sentinel-controlled repetition
– Indefinite repetition.
– Used when number of repetitions not known.
– Sentinel value indicates “end of data”.

Spring Semester 2011 Programming and Data Structure 32

Counter-controlled Repetition

• Counter-controlled repetition requires
– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the
control variable (i.e., whether looping should
continue).

– increment (or decrement) by which the control
variable is modified each time through the
loop.

Spring Semester 2011 Programming and Data Structure 33

Examples

int counter =1; /* initialization */

while (counter <= 10) { /* repetition condition */
printf ("%d\n", counter);
++counter; /* increment */

}

int counter;

for (counter=1;counter<=10;counter++)

printf (“%d\n”, counter);

Spring Semester 2011 Programming and Data Structure 34

while Statement

• The “while” statement is used to carry out
looping operations, in which a group of
statements is executed repeatedly, as long as
some condition remains satisfied.

while (condition)
statement_to_repeat;

while (condition)
{

statement_1;
...

statement_N;
}

Spring Semester 2011 Programming and Data Structure 35

C

statement(s)

true

false
Single-entry /

single-exit
structure

Spring Semester 2011 Programming and Data Structure 36

while :: Examples

int digit = 0;

while (digit <= 9)
printf (“%d \n”, digit++);

int weight;

while (weight > 65)
{

printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight:");
scanf ("%d", &weight);

}

Spring Semester 2011 Programming and Data Structure 37

do-while Statement

• Similar to “while”, with the difference that
the check for continuation is made at the
end of each pass.
– In “while”, the check is made at the beginning.

• Loop body is executed at least once.
do {

statement-1;
statement-2;

statement-n;
} while (condition);

do
statement_to_repeat;

while (condition);

Spring Semester 2011 Programming and Data Structure 38

C

statement(s)

true

false

Single-entry /
single-exit
structure

Spring Semester 2011 Programming and Data Structure 39

do-while :: Examples
int digit = 0;

do
printf (“%d \n”, digit++);

while (digit <= 9);

int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

} while (weight > 65) ;

