
Spring Semester 2011 Programming and Data Structure 20

The switch Statement

• This causes a particular group of statements 
to be chosen from several available groups.
– Uses “switch” statement and “case” labels.
– Syntax of the “switch” statement:

switch (expression)  {
case expression-1: { …… }
case expression-2: { …… }

case expression-m: { …… }
default: { ……… }

}

where “expression” evaluates to int or char
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Example

switch (letter) 
{

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");
break;

} 
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The break Statement

• Used to exit from a switch or terminate 
from a loop.
– Already illustrated in the previous example.

• With respect to “switch”, the “break” 
statement causes a transfer of control out 
of the entire “switch” statement, to the 
first statement following the “switch” 
statement block.
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Example

switch  (choice = getchar())  {

case ’r’:
case ’R’: printf (“RED \n”);

break;
case ’g’:
case ’G’: printf (“GREEN \n”);

break;
case ’b’:
case ’B’: printf (“BLUE \n”);

break;
default: printf (“Invalid choice \n”);

}
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Example

switch  (choice = toupper(getchar()))  {

case ’R’: printf (“RED \n”);
break;

case ’G’: printf (“GREEN \n”);
break;

case ’B’: printf (“BLUE \n”);
break;

default: printf (“Invalid choice \n”);

}
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• The “switch” statement also constitutes a 
single-entry / single-exit structure.

switch statement
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A Look Back at Arithmetic Operators: 
the Increment and Decrement
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Increment (++) and Decrement (--)

• Both of these are unary operators; they 
operate on a single operand.

• The increment operator causes its operand 
to be increased by 1.
– Example:   a++, ++count

• The decrement operator causes its operand 
to be decreased by 1.
– Example:   i--, --distance
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• Operator written before the operand (++i, --i))
– Called pre-increment operator.

– Operator will be altered in value before it is 
utilized for its intended purpose in the program.

• Operator written after the operand (i++, i--)
– Called post-increment operator.

– Operator will be altered in value after it is utilized 
for its intended purpose in the program.
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Examples

Initial values ::  a = 10;  b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value  (implementation
dependent)  

Called side effects:: while calculating some values, 
something else get changed.
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Control Structures that Allow 
Repetition 
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Types of Repeated Execution 

• Loop
– Group of instructions that are executed 

repeatedly while some condition remains true.

• Counter-controlled repetition
– Definite repetition – know how many times 

loop will execute.
– Control variable used to count repetitions.

• Sentinel-controlled repetition
– Indefinite repetition.
– Used when number of repetitions not known.
– Sentinel value indicates “end of data”.
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Counter-controlled Repetition

• Counter-controlled repetition requires
– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the 
control variable (i.e., whether looping should 
continue).

– increment (or decrement) by which the control 
variable is modified each time through the 
loop. 



Spring Semester 2011 Programming and Data Structure 33

Examples

int counter =1; /* initialization */

while (counter <= 10) {    /* repetition condition */
printf ("%d\n", counter );
++counter;      /* increment */

}

int counter;

for (counter=1;counter<=10;counter++)

printf (“%d\n”, counter);
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while Statement

• The “while” statement is used to carry out 
looping operations, in which a group of 
statements is executed repeatedly, as long as 
some condition remains satisfied. 

while (condition)
statement_to_repeat;

while (condition) 
{

statement_1;
...

statement_N;
}
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C

statement(s)

true

false
Single-entry / 

single-exit
structure
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while :: Examples

int digit = 0;

while (digit <= 9)
printf (“%d \n”, digit++);

int  weight;

while ( weight > 65 ) 
{

printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight:");
scanf ("%d", &weight);

}
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do-while Statement

• Similar to “while”, with the difference that 
the check for continuation is made at the 
end of each pass.
– In “while”, the check is made at the beginning.

• Loop body is executed at least once.
do {

statement-1;
statement-2;

statement-n;
}   while (condition );

do
statement_to_repeat;

while (condition );
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do-while :: Examples
int digit = 0;

do
printf (“%d \n”, digit++);

while (digit <= 9);

int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

} while (weight > 65 ) ;


