
Spring Semester 2011 Programming and Data Structure 1

Control Statements

Indranil Sen Gupta

Dept. of Computer Science & Engg.
Indian Institute of Technology

Kharagpur

Spring Semester 2011 Programming and Data Structure 2

What do they do?

• Allow different sets of instructions to be
executed depending on the outcome of a
logical test.
– Whether TRUE or FALSE.
– This is called branching.

• Some applications may also require that a
set of instructions be executed repeatedly,
possibly again based on some condition.
– This is called looping.

Spring Semester 2011 Programming and Data Structure 3

How do we specify the conditions?

• Using relational operators.
– Four relation operators: <, <=, >, >=
– Two equality operators: ==, !=

• Using logical operators / connectives.
– Two logical connectives: &&, | |
– Unary negation operator: !

Spring Semester 2011 Programming and Data Structure 4

Examples

count <= 100

(math+phys+chem)/3 >= 60

(sex=’M’) && (age>=21)

(marks>=80) && (marks<90)

(balance>5000) || (no_of_trans>25)

!(grade=‘A’)

!((x>20) && (y<16))

Spring Semester 2011 Programming and Data Structure 5

The conditions evaluate to …

• Zero
– Indicates FALSE.

• Non-zero
– Indicates TRUE.

– Typically the condition TRUE is represented by
the value ‘1’.

Spring Semester 2011 Programming and Data Structure 6

Branching: The if Statement

• Diamond symbol (decision symbol) -
indicates decision is to be made.
– Contains an expression that can be TRUE or

FALSE.
– Test the condition, and follow appropriate path.

• Single-entry / single-exit structure.

• General syntax:
if (condition) { … … .. }

– If there is a single statement in the block, the
braces can be omitted.

Spring Semester 2011 Programming and Data Structure 7

A decision can be
made on any
expression.

zero - false

nonzero - true

if (grade>=60)
{
printf(“Passed \n”);
printf(“Good luck\n”);

}

grade >= 60

print “passed; good luck”

true

false

Spring Semester 2011 Programming and Data Structure 8

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);
if ((b>=a) && (b>=c))

printf (“\n The largest number is: %d”, b);
if ((c>=a) && (c>=b))

printf (“\n The largest number is: %d”, c);
}

Spring Semester 2011 Programming and Data Structure 9

Confusing Equality (==) and Assignment (=)
Operators

• Dangerous error
– Does not ordinarily cause syntax errors.
– Any expression that produces a value can be

used in control structures.
– Nonzero values are true, zero values are false.

• Example:
if (payCode = = 4)

printf("You get a bonus!\n");

if (payCode = 4)
printf("You get a bonus!\n"); WRONG

Spring Semester 2011 Programming and Data Structure 10

Some Examples

if (10<20) { a = b + c; printf (“%d”, a); }

if ((a>b) && (x=10)) { ……………. }

if (1) { ……………… }

if (0) { ……………… }

Spring Semester 2011 Programming and Data Structure 11

Branching: The if-else Statement

• Also a single-entry / single-exit structure.

• Allows us to specify two alternate blocks of
statements, one of which is executed
depending on the outcome of the condition.

• General syntax:
if (condition) { …… block 1 ……. }
else { …….. block 2 …….. }

– If a block contains a single statement, the braces
can be deleted.

Spring Semester 2011 Programming and Data Structure 12

if (grade >= 60)
printf ("Passed\n");

else
printf ("Failed\n");

grade >= 60 print “Passed”
truefalse

print “Failed”

Spring Semester 2011 Programming and Data Structure 13

Nesting of if-else Structures

• It is possible to nest if-else statements,
one within another.

• All if statements may not be having the
“else” part.
– Confusion??

• Rule to be remembered:
– An “else” clause is associated with the closest

preceding unmatched “if”.

– Some examples shown next.

Spring Semester 2011 Programming and Data Structure 14

if e1 s1
else if e2 s2

if e1 s1
else if e2 s2
else s3

if e1 if e2 s1
else s2
else s3

if e1 if e2 s1
else s2

?

Spring Semester 2011 Programming and Data Structure 15

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1
else s2 else s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1
else s2 else s2

Spring Semester 2011 Programming and Data Structure 16

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if (a>=b)

if (a>=c)
printf (“\n The largest is: %d”, a);

else printf (“\n The largest is: %d”, c);
else

if (b>=c)
printf (“\n The largest is: %d”, b);

else printf (“\n The largest is: %d”, c);
}

Spring Semester 2011 Programming and Data Structure 17

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>=b) && (a>=c))

printf (“\n Largest number is: %d”, a);
else if (b>c)

printf (“\n Largest number is: %d”, b);
else

printf (“\n Largest number is: %d”, c);
}

Spring Semester 2011 Programming and Data Structure 18

The Conditional Operator ? :

• This makes use of an expression that is either
true or false. An appropriate value is selected,
depending on the outcome of the logical
expression.

• Example:
interest = (balance>5000) ? balance*0.2 : balance*0.1;

Returns a value

Spring Semester 2011 Programming and Data Structure 19

• Examples:

x = ((a>10) && (b<5)) ? a+b : 0

(marks>=60) ? printf(“Passed \n”) : printf(“Failed \n”);

Spring Semester 2011 Programming and Data Structure 20

The switch Statement

• This causes a particular group of statements
to be chosen from several available groups.
– Uses “switch” statement and “case” labels.
– Syntax of the “switch” statement:

switch (expression) {
case expression-1: { …….. }
case expression-2: { …….. }

case expression-m: { …….. }
default: { ……… }

}

where “expression” evaluates to int or char

Spring Semester 2011 Programming and Data Structure 21

Example

switch (letter)
{

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");
break;

}

Spring Semester 2011 Programming and Data Structure 22

The break Statement

• Used to exit from a switch or terminate
from a loop.
– Already illustrated in the previous example.

• With respect to “switch”, the “break”
statement causes a transfer of control out
of the entire “switch” statement, to the
first statement following the “switch”
statement.

Spring Semester 2011 Programming and Data Structure 23

Example

switch (choice = getchar()) {

case ’r’:
case ’R’: printf (“RED \n”);

break;
case ’g’:
case ’G’: printf (“GREEN \n”);

break;
case ’b’:
case ’B’: printf (“BLUE \n”);

break;
default: printf (“Invalid choice \n”);

}

Spring Semester 2011 Programming and Data Structure 24

Example

switch (choice = toupper(getchar())) {

case ‘R’: printf (“RED \n”);
break;

case ‘G’: printf (“GREEN \n”);
break;

case ‘B’: printf (“BLUE \n”);
break;

default: printf (“Invalid choice \n”);

}

Spring Semester 2011 Programming and Data Structure 25

• The “switch” statement also constitutes a
single-entry / single-exit structure.

switch statement

Spring Semester 2011 Programming and Data Structure 26

A Look Back at Arithmetic Operators:
the Increment and Decrement

Spring Semester 2011 Programming and Data Structure 27

Increment (++) and Decrement (--)

• Both of these are unary operators; they
operate on a single operand.

• The increment operator causes its operand
to be increased by 1.
– Example: a++, ++count

• The decrement operator causes its operand
to be decreased by 1.
– Example: i--, --distance

Spring Semester 2011 Programming and Data Structure 28

• Operator written before the operand (++i, --i))
– Called pre-increment operator.

– Operator will be altered in value before it is
utilized for its intended purpose in the program.

• Operator written after the operand (i++, i--)
– Called post-increment operator.

– Operator will be altered in value after it is utilized
for its intended purpose in the program.

Spring Semester 2011 Programming and Data Structure 29

Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation
dependent)

Called side effects:: while calculating some values,
something else get changed.

